
Querying the Data Web 
 

Technical Article, TAR200904
 

Mustafa Jarrar 
University of Cyprus 

mjarrar@cs.ucy.ac.cy 

 
Marios D. Dikaiakos 

University of Cyprus 
mdd@cs.ucy.ac.cy 

 

ABSTRACT 
Given a source of structured data, how the casual user can query this 
data without prior knowledge about its schema. Some data sources 
are even schema-free or poorly-schematized. In this article, we 
present a graphical query formulation language, called MashQL. 
The main novelty of MashQL is that it allows people with limited 
IT-skills to query and explore one (or multiple) data sources without 
prior knowledge about the schema, structure, vocabulary, or any 
technical details of these sources. Users only use drop-down lists 
generated dynamically, as they interact with the query editor. 
Furthermore, to be more robust and cover most cases in practice 
(compared with related work), we even do not assume that a data 
source should have -an offline or inline- schema. To illustrate the 
query formulation power of MashQL, the Data Web is chosen as an 
application scenario in this paper. We also chose RDF as a data 
model and SPARQL as a backend query language. This is because 
RDF is the most primitive data model, and thus, MashQL can be 
similarly used for querying, e.g., databases and XML. 

1. INTRODUCTION AND MOTIVATION 
Allowing end-users to easily search and consume structured data is 
a known challenge, and started recently to receive a great attention 
from the Web 2.0 and the Data Web communities. In parallel to the 
continuous development of the hypertext web, we are witnessing a 
massive widespread of public structured data. Companies are 
competing not only on gathering structured content and making it 
public, but also on encouraging people to reuse and profit from this 
content. Many companies such as Google Base, Yahoo Local, 
Freebase, Upcoming, Flicker, eBay, Amazon, LinkedIn, and others, 
have made their content publicly accessible. In addition, companies 
have also started to widely adopt advanced web metadata standards. 
For example, Yahoo has officially announced [ 7] that if a web site 
points to or embeds RDF, it will be better presented in the search 
results. Several other models (such as RDFa, microformats, and 
RDF vocabularies) will also be supported by Yahoo. MySpace 
announced that they will adopt RDF for profile and data portability 
[ 30]. Upcoming.org is already publishing their content in 
microformats and RDFa. RDFa -a forthcoming W3C standard- is a 
new simple way of embedding RDF inside XHTML; so that 
machines can also understand the web. 

This trend of structured data is shifting the focus of web 
technologies towards new paradigms of structured-data retrieval. 
Traditional search engines cannot serve such data because their 
core design is based on keyword-search over unstructured data. 
The results of a keyword-based query will not be precise or clean, 
because the query itself is still ambiguous although the underlying 
data is structured.  To expose the massive amount of structured 

data to its full potential, people should be able to query this data 
easily and effectively. Formulating queries should be fast and 
should not require programming skills. 

1.1 Challenges 
The main challenge is that before formulating a query, one has to 
know the structure of the data and the attribute labels (i.e., the 
schema). End users are not expected to investigate “what is the 
schema” each time they search or filter information. In many 
cases, a data schema might be even dynamic, i.e., many kinds of 
items with different attributes are often being added and dropped 
(e.g., ebay). Other sources might be schema-free, or if it exists, 
the schema might be mixed up with the data (e.g., RDF). 
Allowing end users to query structured data flexibly is a 
challenge, especially when a query involves multiple sources. 

Example: Figure 1 shows two RDF data sources1 in the left-hand 
side. Suppose you want to “Retrieve Lara’s articles after 2007”. 
These sources do not only disagree on the labels of properties 
(e.g., Year versus PubYear), but also on data semantics. For 
example, while the rdf:Type property in the Example1 tells us that 
A1 and A2 are Articles, such knowledge does not exist in 
Example2; i.e., we do not know whether B1 and B2 are articles, 
books, or songs.  

http://example1.com 
:A1 rdf:Type bibo:Article 
:A1 :Title “Data Web” 
:A1 :Author “Tom Lara” 
:A1 :Author “Bob Hacker” 
:A1 :Year  2007 
:A2 rdf:Type bibo:Article 
:A2 :Title “Semantic Web” 
:A2 :Author “Tom Lara” 
:A2 :Year  2005

http://example2.com 
:B1 :Title “Linked Data” 
:B1 :Author “Lara T.” 
:B1 :PubYear  2008 
:B1 :Publisher “Springer” 
:B2 :Title “Data on the Web” 
:B2 :Author “Abiteboul S.”

SPARQL Query: 
PREFIX S1:<http://example1.com> 
PREFIX S2:<http://example2.com> 
SELECT ?ArticleTitle 
FROM <http://example1.com> 
FROM <http://example2.com> 
WHERE {{{?X S1:Title ?ArticleTitle} UNION 
        {?X S2:Title ?ArticleTitle}} 
 {?X S1:Author ?X1} UNION{?X S2:Author ?X1} 
 {?X S1:Year ?X2} UNION {?X S2:PubYear ?X2} 
 FILTER regex(?X1, “^Lara”) 
 FILTER (?X2 > 2007)} 

Results: 

ArticleTitle 
Data Web 

Linked Data 
 

Figure 1. SPARQL query over two RDF data sources. 

It is not necessary in RDF that data adheres to a certain schema or 
ontology, and if it does, it is inline with the data. Such data can be 
queried using SPARQL, the RDF query language [ 31]. The query in 
the right-hand side retrieves “the titles of the items that are written 
by Lara after 2007”. Query conditions in SPARQL are called triple-
patterns, and evaluated as pattern-filling [ 31], rather than truth-
evaluation if compared with SQL. This is a robust technique for 
querying web data indeed. Not only schema-free data can be 
queried but also changes to data do not break queries. However, 
                                                                 
1 Data in RDF is represented as a set of triples <Subject, Predicate, 
Object>. Subjects and Predicates must be URIs, an Object must be 
either a URI or a Literal. In this way, an RDF sources can be seen as a 
directed label graph. We shall come back to this in later sections. 



before writing a SPARQL query, one have to be fully-aware of the 
property labels and structures, which is difficult even for experts. In 
other words, unlike formulating SQL queries that start from small 
and offline schemes, formulating a SPARQL query requires one to 
manually investigate the data itself before querying it. 

In short, the problem statement: How to allow people with 
limited IT-skills to query structured data, assuming that: 

 The user does not have to know the schema. (1)

 The data might be schema-free. (2)

 A query may involve multiple data sources. (3)

 The query language is sufficiently expressive. 
  (i.e., not merely a single-purpose user interface) 

(4)

 The query language is intuitive for people with limited IT-skills. (5)

Since some of these assumptions are subjective, they should be read 
rigidly. However, pinpointing the assumptions helps reading the 
article and remembering its contributions w.r.t to related works. 

1.2 Our Contributions 
We propose an interactive query formulation language, called 
MashQL. MashQL advances the state-of-the-art with a language 
that tackles all of the above assumptions. As we shall discuss in 
Section  2, there are similar query formulation methods 
considering some of these assumptions; however, up to our 
knowledge, none has tried to tackle all of them, which is indeed 
challenging. When comparing our approach with others, we do 
not consider the expressivity and intuitiveness assumptions 
(unless it is obvious), because of their subjective nature. 

To be more concrete in illustrating the usefulness and the power of 
MashQL, we chose to focus on querying RDF, which is the most 
challenging data model; since it is the most primitive data 
representation model, and thus other models can be easily mapped 
into it [ 3]. Our contribution is subdivided into four major 
components: 

 Graphical query language. This is the notational system and 
constructs that makes MashQL a formal, expressive, and yet 
intuitive query language. MashQL supports all constructs of 
SPARQL, allowing people to query and mash up multiple data 
sources at the same time, and redirect the results to be input to 
other queries. The design challenge of MashQL is the trade-off 
between its expressivity and intuitiveness. 

 Interactive query formulation algorithm. This is the 
algorithm that the MashQL editor uses to allow users to 
interactively formulate a query. The challenging issue (and the 
novelty) of this algorithm is that it neither assumes the end user 
to know the data schema, nor the data itself to adhere to a 
certain schema (Assumption 1-2). As a user interacts with the 
editor, the editor queries the dataset (as a black-box) in the 
background and instantly offers the user the next choices. 

 Graph-Signature Index. Because of assumption 2 (data is 
schema-free), the previous algorithm has to query the whole 
dataset at real-time. There is no offline schema of the data that 
can be used instead. Querying the whole dataset is challenge 
because queries may involve many joins, and thus, the 
interactivity of editor might be unacceptable in case of 
querying large and “deep” data graphs. Hence, we propose a 
new way of summarizing an RDF graph (called Graph-
signature). Because the size of a graph-signature is typically 

much smaller than the original graph, queries become much 
faster, yielding an instant response-time by the MashQL editor. 

  Implementation and Evaluation. Two different 
implementation scenarios of MashQL are presented in this 
paper: an online mashup editor, and a Firefox add-on mashup 
extension. The response-time of the MashQL editor is 
evaluated on querying two datasets (DBLP and DBPedia), and 
using both: our graph-signature index and Oracle’s Semantic 
Technology. Our index shows that even a query involving long 
joins-path, can be answered instantly, regardless of the data 
size. 

Paper organization: Section  2 positions our contributions w.r.t 
related works, and Section  3 gives a quick overview of MashQL. 
The query formulation algorithm is presented in Section  4, and 
the formalization of MashQL and its SPARQL translation rules 
are presented in Section  5 Section  6 presents the notion of query 
pipes. In Section  7 and Section  8 we present the graph-signature 
and the evaluation, respectively. Section  9 illustrates our 
implementation. 

2. Related Work 
Query formulation is the art of allowing people to easily query a 
data source (database, XML, or RDF). In the background, queries 
are translated into formal languages (SQL, XQuery, or SPARQL). 
This section reviews the main approaches to query formulation 
and how they relate to the novel contributions of MashQL. 

Query-By-Form. This is the simplest approach to query data. All 
fields in a form are seen as query variables. However it is neither 
flexible nor expressive (fails with assumptions 2-4). For each 
query, a form needs to be developed; and changes to a query 
imply changes to its form. 

Query-By-Example. Users formulate their queries as filling a 
table [ 39]. The names of the queried relations and fields are 
selected first; then users can enter their keywords. Although this 
approach is claimed to be easy for non-experts, it was not used by 
such users. This is mainly because users need to understand the 
schema among other issues (fails with assumptions 1, 2, and 5). 

Conceptual Queries. As many databases are modeled at the 
conceptual level using EER or ORM diagrams, one can query these 
databases starting from these diagrams. Users can select certain 
concepts and relations from a given EER diagram, and their 
selection is automatically translated into SQL [ 14, 33]. ORM 
approaches are different. RIDL [ 16] allows querying a database 
based on its ORM Schema but in a textual hybrid language. LISA-D 
[ 19] allows querying a database by converting its ORM schema into 
a list of facts, users can then drag-drop from this list. ConQuer [ 12] 
it starts from the logical schema and converts it into a list of 
concepts and a list of relations, based on its ORM diagram. Users 
can then formulate their queries by dragging and dropping from 
these lists. None of these languages was used in practice, since 
formulating a query starting from a conceptual diagram is still a 
difficult task for non-experts, (fails with assumptions 1,2,3, and 
relatively to 5, however we found [ 12] more intuitive). 

Natural Language Queries allow people to write their queries as 
natural language sentences, and then translate these sentences into a 
formal language (e.g., SQL [ 32], XQuery [ 24]). Hence, people are 
not required to know the schema in advance. The main problem is 
that this approach is fundamentally bounded with the language 



ambiguity and the “free mapping” between sentences and the data 
schemes (fails with assumptions 2,3, and relatively 4). 

Visualize Triple Patterns. Several approaches in the semantic 
web community [ 2, 6, 34] propose to formulate a SPARQL query 
by visualizing its triple patterns as ellipses connected with arrows, 
so that one would need less programming skills to formulate a 
query (fail with assumptions 1 and 5). 

Mashup Editors and Visual Scripting. Some mashup editors (e.g., 
Yahoo Pipes, Popfly, sMash) allow people to write query scripts 
inside a module, and visualize these modules and their inputs and 
outputs as boxes connected with lines. However, when a user needs 
to express a query over structured data, she has to use the formal 
language of that editor (e.g., YQL for Yahoo). Two approaches in 
the semantic web community [ 5, 37] are inspired by this visual 
scripting. For example, [ 37] allows people to write their SPARQL 
queries (in a textual form) inside a box and link this box to another, 
in order to form a pipeline of queries. All of these visual scripting 
approaches are not comparable with MashQL, as they do not 
provide query formulation guide in any sense. They are included in 
this section, because MashQL is also inspired by the way Yahoo 
Pipes visualizes query modules. However, the main purpose of 
MashQL is not to visualize such boxes and links, but rather, to help 
formulating what is inside these boxes. 

Interactive Queries. One of the most related approaches to 
MashQL is the Lorel query language [ 17]. Lorel was developed 
for querying XML graphically, and without assuming a user’s 
knowledge about a schema (assumption 1). Lorel maps an XML 
document into a data graph, called EOM, which is close to RDF. 
The differences between MashQL and Lorel are: (First) Lorel 
assumes also the queried data to be schema-free (assumption 2), 
but it does not accurately handle this issue. Instead of querying 
the original data source, Lorel queries a summary of the data 
(called dataguide[ 28]). A dataguide is a small-size summary of 
all paths in an XML document. This summary is used to play the 
role of a schema. As we shall discuss this issue in details in 
section  7, a data guide groups many unrelated items together as 
they extrinsically use similar property labels. This was noted by 
the same authors in a later article [ 18]: “…we have no way of 
knowing whether O is a publication, book, play, or song. 
Therefore, a DataGuide may group unrelated objects together”. 
The authors also noted that dataguides cannot be used for 
interactive queries as “the worst case running time is exponential 
in the size of the database, and for a large database even linear 
running time would be too slow for an interactive session”. As the 
authors show the more the original data is graph-shaped (rather 
than tree-shaped as XML) the summary grows exponentially, and 
can be bigger than the original data graph. Notice that RDF is 
typically graph-shaped thus dataguide summaries are likely to be 
large. (Second) Lorel does not support querying multiple data 
sources (assumption 3) as MashQL does; and (third) its 
expressivity is very basic (assumption 4); however, MashQL 
supports path disjunctions and negations, variables, union, reverse 
properties, among many other operators. 

Another relevant approach to MashQL is [ 24], which suggests a 
highly user interactive searching box. A user can write a keyword, 
the system then smartly and quickly suggests to auto-complete 
this keyword, based on a full index of the data and its schema. As 
such, the query becomes a set of schema-based annotated 
keywords. We found this approach intuitive as it is simple and 
does not assume any prior about the schema indeed (assumptions 

1 and 5). However, unlike MashQL, the existence of a data 
schema is fundamental in this approach, and this is what makes it 
highly interactive. The problem with this approach also is that it 
cannot be play the role a query language (i.e., assumptions 2-3). 

Being, at the sometime, expressive, intuitive, and highly 
interactive query language (over multiple, large, and schema-free 
data sources) is a very difficult challenge indeed. We refer to a 
recent usability study [ 23] about (which query formulation 
scenario the casual users prefer), which concluded that a query 
language should be close to natural language, graphically 
intuitive, and should not assume prior knowledge about the data. 

3. A Quick Overview of MashQL 
In this section we give a quick overview about MashQL. We start 
from the given the two RDF sources in Figure 1, and the SPARQL 
query to retrieve “Lara’s articles after 2007”. Figure 2 shows the 
same query but in MashQL. The first module specifies the query 
input, while the second module specifies the query body. The output 
of this query can be piped into a third module (not shown here), 
which renders the results into a certain format (such as HTML, 
XML or CSV), or as RDF input to other MashQL queries; so to 
form a query pipe as will be shown in Figure 8. 

 
Figure 2. The same SPARQL query in Figure 1, but in MashQL. 

3.1 The general Intuition 
Each MashQL query is seen as a tree. The root of this tree is called 
the query subject, which is the subject matter being inquired. A 
subject can be a particular instance (e.g., s2:A1 or s1:B1), an 
instance type (e.g., Article), or a variable label, such as ‘Anything’, 
which is the default subject. Each branch of the tree is called a 
restriction and is used to restrict a certain property of the query 
subject. All branches (/restrictions) of the subject are conjunctive 
(i.e., an AND between them). Optional and negative restrictions are 
also supported; such restrictions are respectively prefixed with 
‘maybe’ and ‘without’. Branches can be expanded to allow sub 
trees, called query paths. In this case, the object of a property is seen 
as the subject of its sub query. As will be shown later the notion of 
query paths allows one to navigate through the underlying dataset 
and build complex queries. The symbol “” before a subject, 
property, or object indicates a projection (i.e., it will be produced in 
the results with its label as the column header).  

When querying different sources, two properties (or two 
instances) are considered the same if an only if they have the 
same URI. To help end users not seeing cryptic URI, the query 
editor normalizes URIs, based on heuristics (see section Error! 
Reference source not found.) by simply detecting different 
namespaces of the same property labels and optionally combines 
them together. In case of different namespaces and property labels 
(e.g., S1:Year vs. S2:PubYear), the user can choose the union 
operator “\” to complain them.   



Remark: As MashQL allows people to query multiple sources 
(especially through the union operator “\”); in a sense, MashQL 
can be used to integrate data. However, the goal of MashQL is 
data integration per se. Data integration is more complex, as it 
requires not only syntax but also semantic integration, which is 
not supported in MashQL. MashQL allows people to spot 
different labels of same properties (as they navigate data using the 
editor) and to manually combine them together. 

Example 2: To illustrate the notion query paths, we extend the 
data given in Figure 1. We introduce new triples about the authors 
and their address (See Figure 3). Suppose you want to retrieve 
only the recent articles from Malta; i.e., retrieve the title of every 
article that has an author, this author has an address, this address 
as country called “Malta”, and the article is published after 2007. 
This query path can be easily formed and easily understood in 
MashQL, as the query in Figure 3 shows. 

http://www.example1.com 
:A1 rdf:Type bibo:Article 
:A1 :Title “Data Web” 
:A1 :Author :P1 
:A1 :Author :P2 
:A1 :Year  2007 
:A2 rdf:Type bibo:Article 
:A2 :Title “Semantic Web” 
:A2 :Author :P1 
:A2 :Year  2005 

:P1 :Name “Tom Lara”
:P1 :Address :d1 
:d1 :Country “Malta” 
:d1 :City “Valletta” 
:P2 :Name “Bob Hacker” 
:P2 :Address :d2 
:d2 :Country “Cyprus” 
:d2 :City “Nicosia” 
... 

 

 

PREFIX S1:<http://fu-berlin.de/dblp/> 
SELECT ?ArticleTitle 
FORM <http://fu-berlin.de/dblp/> 
WHERE { 
   ?X rdf:Type :Article 
   ?X S1:Title ?ArticleTitle 
   ?X S1:Author ?X1 
   ?X1 S1:Address ?X2 
   ?X2 S1:Country ?X3 
   ?Article S1:Year ?X4 
   FILTER regex(?X3, “Malta”)) 
   FILTER (?X4 > 2000)} 

Figure 3. Query paths (/sub trees) in MashQL 

Formulating a query is an interactive process; users only select 
from drop-down lists. While interacting with the query editor, the 
editor instantly queries the dataset to dynamically generate these 
lists. First, the editor queries a given dataset (as a black-box) to 
find the main concepts/instances, from which the query subject 
can be selected (e.g. Article). The editor then finds the possible 
properties for this subject (e.g. Title, Author, Year). The user 
can select a property (e.g. Year) and restrict it using a filtering 
function (e.g. MoreThan) and a filter value (e.g. 2007). If a user 
selects to expand a property (e.g. Author), the editor will find the 
set of properties that this ‘Author’ may have (e.g. Address, 
Name), and so on. In this way, users can query and navigate a data 
source without any prior knowledge about it. The algorithm that 
the editor uses to generate “the next list” is formalized and 
explained in Section  4. To achieve extremely fast user-interaction, 
in case of large and deep graphs, a graph signature index has been 
developed and evaluated (Section  7 and  8). 

3.2 Intuitiveness 
The trade-off between expressivity and simplicity in MashQL is 
achieved by making technical variables and namespaces to be 
implicit, and specially through the tree structure of MashQL 
queries, which is close to the intuition people use in their natural 
language communication. For example, the query path shown in 
Figure 3 means, retrieve the article that has an Author x1, and x1 
has an address x2, and x2 has a country x4, and x4 equals “Malta”. 
Because the query is represented as a tree, these variables are 
implicit for end users. Furthermore, suppose you would like to 
ask; “Give me the list of all stores that sell parts of the iPhone 
mobile, and that are located in Rome”; or, “Which cinemas are 

located in Lyon, offer a movie called ‘Fahrenheit’ and will be 
played between 20:00 and 23:00”. Notice that apart from some 
terms (such as: give me the list of all, which, who, that are), all of 
these inquiries can be directly converted into MashQL queries. 

4. QUERY FORMULATION ALGORITHM 
In this section, we propose a query formulation algorithm, by 
which the complexity and the responsibility of understanding a 
data source (even it is schema-free) are moved from the user to 
the query editor. The algorithm is formally described in the steps 
below; Figure 4 is a walk-through demo of this algorithm. 

Step 0: Specifies the dataset D in the Input module. D can be one 
or a merge2 of multiple data graphs.  

Step 1: Select the query subject S, where S  ST  SI  V. In other 
words, after specifying the dataset users can select S from a drop-
down list that contains, either: (i) ST: the set of the subject-types in the 
dataset, such as Article as in Figure 3; or (ii) SI: the union of all 
subject and object identifiers in the dataset. Users can also choose 
(iii) not to select from the list but introduce their own subject label. In 
this case, the subject is seen as a variable and displayed in italic, 
which means anything (S  V). These three options are formalized 
respectively as the following, in both relational algebra and 
SPARQL: 

(1)   S  ST :  O ( P=‘:Type’ (D)) 
(1’)  O1:{(?S1 <:Type> ?O1)} 
(2)   S  SI :  S (D)   O (OURI (D)) 
(2’)  S1:{(?S1 ?P1 ?O1)} UNION O1:{(?S1 ?P1 ?O1).Filter 
isURI(?O1)} 

(3)   S  V 
Repeat step 2-3 (until the user stops) 

Step 2: Select a property P. Depending on the chosen subject in 
step 1, a list of the possible properties for this subject is 
dynamically generated. There are four possibilities: (i) if (S  ST), 
such as Article, then the list will be set of all properties that the 
instances of the subject-type have may {Title, Author, Year}. 
(ii) if (S  SI), such as A1, the list will the set of all properties that 
this instance may have. (iii) If the subject is a variable (S  V), the 
list will be the set of all properties in the dataset. (iv) users can 
also choose the property to be a variable by introducing their own 
label. See the formalization3 of these four options below. 
Furthermore, users can choose to make the selected property 
required, optional, or unbound. As discussed in the next section 
(see Figure 6), if a property is prefixed with “maybe” this 
property is considered optional, if it is prefixed with “without” it 
is considered unbound, and if it is not prefixed then it is required. 

(4)   (S  ST)  P  P2 ( P1=‘:Type’  O1=Subject (D) ډS1=S2  (D)) 
(4’)  P2:{(?S1 <:Type> <S>)(?S2 ?P2 ?O2)} 
(5)   (S  SI)  P   P (S=Subject (D)) 
(5’)  P1:{(<S> ?P1 ?O1)} 
(6)   (S  V)  P   P ( (D)) 
(6’)  P1:{(?S1 ?P1 ?O1)} 
(7)   P  V 

                                                                 
2 Merging RDF graphs is straightforward as specified in the W3C 

standard [ 31], All triples are put together. Two nodes or two edges are 
considered exactly the same if and only if they have the same labels (i.e., 
URI). 

3 To avoid confusion with variable and attribute names, when self-joins 
are used, we assume that the attributes of a source D are named as (S1, 
P1, O1), (S2, P2,O2)… (Sn, Pn,On). 



Step 3: Add a filter on P. There are three types of restrictions: 
object filter, object identifier, or query path. (i) If a user wants to 
add an object filter on the previously selected property, a set of 
functions will be offered (e.g., Equals, Contains, Doesn’t 
contain, OneOf, Between, MoreThan, Not, etc.). (ii) If a user wants 
to add an object identifier as a restriction, a list of the possible 
objects will be generated. For example, if a user previously chose 
Article as a subject, and Author as a property, the set of object 
identifiers would be {A1, A2}, given the dataset in Figure 3. The 
formalizations given below (8-13) specify what the list of objects 
identifier may contain, taking into account the previously chosen 
subject and property. Furthermore, (iii) users can also chose to 
expand the property to declare a query path on it, such as Author 
in Figure 3. In this case, the value of the property Author, which 
is a variable here, will be considered as the subject of this sub-
query. The possible properties of this subject (in the 2nd level) will 
be determined as described in step 1, taking into account the 
previous selections. The general case formalization of an n-level 
property and n-level object are presented below (14-17), in both 
cases, where the root subject is a type and is an instance. 

(8)   (S  SI)  (P  V)  O   O1 (S1=S  O1URI (D))  
(8’)  O1:{(<S> ?P1 ?O1) Filter isURI(?O1)} 
(9)   (S  SI)  (P  V)  O   O1 (S1=S  P1=P  O1URI (D)) 
(9’)  O1:{(<S> <P> ?O1) Filter isURI(?O1)} 
(10)  (S  ST)  (P  V)  O   O2 (P1=‘:Type’  O1=S (D) ډS1=S2  (D)) 
(10’) O1:{(?S1 <:Type> <S>)(?S1 ?P2 ?O2)} 
(11)  (S  ST)  (P  V)  O   O2 (P1=‘rdf:Type’  O1=S (D) ډS1=S2 P2=P (D)) 
(11’) O:{(?S <rdf:Type> <S>)(?S <P> ?O)} 
(12)  (S  V)  (P  V)  O   O ( (D)) 
(12’) O1:{(?S1 ?P1 ?O1)} 
(13)  (S  V)  (P  V)  O   O (P=P (D)) 
(13’) O1:{(?S1 <P> ?O1)} 

General Cases 
The n-level paths properties and objects, in case (S  ST) 
(14)  P  Pn (P1=‘:Type’  O1=S (D) ډS1=S2 (C2(D) ډO2=S3 (C3(D) … ډOn-1=Sn (Cn(D))))) 
(14’) Pn:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3) … (On-1 ?Pn ?On)} 

(15)  O  On (P1=‘:Type’  O1=S(D) ډS1=S2 (C2(D) ډO2=S3 (C3(D) … ډOn-1=Sn (Cn(D)))))
(15’) On:{(?S1 <Type> O)(?S1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)} 

The n-level paths properties and objects, in case (S  SI) 

(16)  P Pn (C1 (D) ډO1=S2 (C2 (D) ډO2=S3 (C3 (D) … ډOn-1=Sn (Cn (D))))) 
(16’) Pn:{(S1 P1 O1)(O1 P2 O2 … (On-1 ?Pn ?On)} \\Subject  SI 

(17)  O On (C1 (D) ډO1=S2 (C2 (D) ډO2=S3 (C3 (D) … ډOn-1=Sn (Cn (D))))) 
(17’) On:{(S1 P1 O1)(O1 P2 O2)(O2 P3 O3)…(On-1 Pn ?On)} 
 
Step 4: The symbol  can be used before subject, property, or 
object variables to indicate that this variable will be returned in 
the results (i.e., projection). 

 
Figure 4. A Query Formulation Demo. 

5. THE DEFINITION OF MASHQL AND 
ITS TRANSLATION INTO SPARQL 
5.1 Data Model 
MashQL assumes the queried dataset is structured as (or mapped 
into) a directed labeled graph, similar to but not necessarily the 
exact RDF syntax. The minimum definition of a dataset D is a set 
of data triples <Subject, Predicate, Object>. A subject and a 
predicate can only be a unique identifier I (a URL or a key). The 
value of an object can be a unique identifier I or a literal L. 

Def.1 (Dataset): A dataset D is a set of triples forming a directed 
labeled graph, each triple t is formed as <S, P, O>, where S  I, 
P  I, and O  I  L. 

The only difference between this definition and the RDF model is 
that we allow an identifier to be any form of a key (i.e. weaker than 
a URI). Allowing this, would simplify the use of MashQL for 
querying databases. Relational databases (or XML) can be directly 
converted to this primitive data structure. In Figure 5 we show a 
simple example of mapping (or viewing) a database to a directed 
labeled graph. The primary key of a table is seen as a subject, a 
column label as a predicate, and the data-entry in that column as an 
object. Foreign keys represent relationships between data elements 
across tables. Mapping from database and XML into RDF is a 
mature topic and is entering a standardization phase [ 3]. 

 
Figure 5. Mapping a database to RDF. 

Furthermore, we assume that each object literal must have a 
datatype. If an object value does not have an explicit datatype, it 
can be implicitly assumed by taking advantage of XML and RDF 



conventions: in XML, the syntax for literals is a String, enclosed 
in double or single quotes; Integers are written directly without 
quotes; Booleans are written as true or false; and so on. In RDF 
and XML Schema, stating a datatype explicitly is done using 
namespaces, such as: "1"^^xsd:integer, "2004-12-06"^^xsd:date. 

Def.2 (Typed Literals): Every object literal must have a datatype 
D: If O  L then O  D. 

Object literals may also have a language tag Lt (such as “En”, 
“Gr”, “It”) to indicate to which language the object value belongs. 
In the RDF best practice, language tags are expressed using @ 
followed by a language tag, such as “Person”@En, “”@Gr. 

Def.3 (Language Tags): An object literal (O  L) may have a 
language tag Lt. 

5.2 The Formal Definition of MashQL  
As a MashQL query itself cannot be executed, but, its SPARQL 
translation that is execute, the semantics of MashQL follows the 
semantics of SPARQL. Table 1 presents the formal definition of the 
MashQL constructs, and Table 2 presents their SPARQL 
interpretation.   

Similar to SPARQL, when evaluating a query Q(S), only the triples 
that satisfy all restrictions are retrieved, such that: First, if a restriction 
is not prefixed, (Rؔ<empty, P, Of>), see Def.6, the truth-evaluation 
of the restriction is considered true if the subject, the predicate, and 
the object-filter are matched (see the first two restrictions in Figure 
6). This case is mapped into a normal graph pattern in SPARQL (see 
rule-3). Second, if a restriction is prefixed with “maybe” 
(Rؔ<maybe, P, Of>), its truth-evaluation is considered always true 
(see the 3rd restriction in Figure 6). This case is mapped into an 
optional graph pattern in SPARQL (see rule 4). Third, if a restriction 
is prefixed with “without” (Rؔ<without, P, Of>), it is truth-
evaluation is considered true if the subject S and the predicate P do 
not appear together in a triple (see the last restriction in Figure 6). 
Notice that there is no such a construct in SPARQL, but in MashQL, 
it means that the object O should not be bound (see rule 5). 

Example. The query in Figure 6 means: retrieve everything (call this 
thing as a Song) that: has a title, for the artist Shakera, possibly has an 
Album, and does not have a Copyright. In other words, when 
evaluating this query, we retrieve all triples that have same subject 
and: 1) with a predicate Title, 2) with a predicate Artist and the object 
identifier is Shakera, 3) maybe with a predicate Album, and 4) should 
not have the predicate Copyright. 

 

SELECT ?SongTitle, AlbumTitle  
WHERE { 
{?X :Title ?SongTitle. 
 ?X :Artist :Shakera  
 Optional{?X :Album ?AlbumTitle} 
 Optional{?X :Copyrihgt ?X1}  
 Filter FILTER (!Bound(?X1)).  

Figure 6. A MashQL query and its mapping into SPARQL. 

As defined in Def.7, MashQL supports 9 forms of object filters: 
Equals, Contains, MoreThan, LessThan, Between, OneOf, Not, and 
query paths. Not all of these functions have a direct support in 
SPARQL but they are emulated somehow (see rules 6-13). MashQL 
also supports a union operator between objects, properties, subjects, 
and queries (see Def.8, and rules 14-17). In addition, to allow people 
formulate queries at the type level, the construct “Any” before a 
subject or object means that the instances of this subject/object  will 
be retrieved instead of the subject/object itself. As shown in rules 
18-19, types in RDF are indicated by the property “rdf:type”. 
Furthermore, since RDF is a directed graph, it is very helpful for a 

user to explore this graph backward. This is supported in my 
MashQL by the Reverse construct (see Def.9 and rule 20). 

Table 1. The formal definition of MashQL 
Def. 4 (Query): A Query Q with a subject S, denoted by Q(S), is a set of 
restrictions on S. Q(S) ؔ R1  …  Rn. 

Def. 5 (Subject): A subject S  (I  V), I is an identifier, V is a variable. 

Def. 6 (Restriction):  A restriction R  ؔ<Rx , P, Of>, Rx is an restriction prefix 
Rx  {empty, maybe, without}; P is a predicate (P  I  V); Of is an object filter. 

Def.7 (Object Filter): An object filter Of ؔ <O, f>, O is an object, f is a 
filtering function. f can have one of the following nine forms: 

1. Of ؔ <O>, where O is an object, O  V  I. This object filter does not 
add any restriction on the object value as shown in Figure 6. 

2. Of ؔ <O, Equals(X, T, Lt)>, where X can be a variable or a constant, T 
is a datatype, and Lt is a language tag. See the restriction (Country 
“Malta”) in Figure 3. See the mapping rule-6 to SPARQL. 

3. Of ؔ <O, Contains(X, T, Lt)>, where O is an object variable, X is a 
regex literal, T is a data type, and Lt is a language. O should be equal 
to regex(X). See the restriction (Author “^Lara”) in Figure 2. see rule-7. 

4. Of ؔ <O, MoreThan(X, T)>, where O is an object variable, X is a 
variable or a constant, T is a datatype.  

5. Of ؔ  <O, LessThan(X, T)>, where O is an object variable, X is a 
variable or a constant, T is a datatype identifier.  

6. Of ؔ <O, Between(X, Y, T)>, where X and Y are variables or constants, 
T is a datatype identifier.  

7. Of ؔ <O, OneOf(V)>, where O is an object variable, and V is a set of 
values {v1, ... , vn}, vi is a variable or constant. 

8. Of ؔ <O, Not(f)>, where f is one of the functions defined above. This 
filter extends all of the above functions with simple negation. 

9. Of ؔ <O, Qi(O)>, where O is an object (O  V  I), and Qi(O) is a 
sub-query with O being the query subject. The restrictions defined in 
the sub-query Qi(O) should be satisfied as well. 

Def.8 (Union): A union can be declared between objects, predicates, 
subjects and/or queries, in the following forms: 

1. On = <O1\O2 \ . . . \On>, to indicate unions between objects, Oi   I. 

2. Pn = <P1\P2 \ . . . \Pn>, to indicate unions between predicates, Pi  I. 

3. Sn = <S1\S2 \ . . . \Sn>, to indicate unions between subjects, where Si  I.  

4. Qn = <Q1\Q2 \ . . . \Qn>, to indicate unions between queries,  

Def.8 (Types): A subject (S  I) or an object (O  I) can be prefixed with 
“Any” to mean the instances of this subject/object type.  
Def.9 (Reverse): <~P> indicates the reverse of the predicate P. Let R1 be 
a restriction on S such that <S P O>, and R2 be <O ~P S>, R1 and R2 
have the same meaning. 

Table 2. MashQL-To-SPARQL mapping rules 



The following rules map the MashQL constructs into SPARQL: 
Rule-1: The symbol  before a variable means that it will be returned in 

the results; i.e., included in the SELECT part of in SPARQL. If the 
output of the query is input to another, use CONSTRUCT  * 

Rule-2: if a subject, predicate, or object in a MashQL query is italicized: 
it is seen as a SPARQL variable, i.e. prefixed with “?”. 

Rule-3: If S is a subject and R = < , P, Of>, the mapping is: {S P O}. 
Rule-4: If S is a subject and R = <maybe, P, Of>, the mapping is:  

{OPTIONAL{S P O}}. 
Rule-5: If S is a subject and R = < without, P, Of>, the mapping is:  
            {S P O. FILTER (!bound(?O))}. 
Rule 6.  If Of = <O, Equals(X, T, Lt)>:  
       Append the mapping with: FILTER(?O = X) 
       If T  Null: Append the mapping with: FILTER(datatype(?O)=T)
       If Lt  Null: Append the mapping with: FILTER(lang(?O) = Lt) 

Rule 7.  If Of = Contains(X, T, Lt)>: 
      Append the mapping with: FILTER regex(?O, X) 
       If T  Null: Append the mapping with: FILTER(datatype(?O)=T) 
       If Lt  Null: Append the mapping with: FILTER(lang(?O) = Lt) 

Rule 8. If Of = <O, MoreThan(X, T)>: 
       Append the mapping with: FILTER(?O > X) 
       If T  Null: Append the mapping with: FILTER(datatype(?O=T) 

Rule 9. If Of = <O, LessThan(X, T)>:  
      Append the mapping with: FILTER(?O < X) 
       If T  Null: Append the mapping with:  FILTER(datatype(?O=T) 

Rule 10. If Of = <O, Between(X, Y, T)>: 
      Append the mapping with: FILTER(?O >=X)&& FILTER(?O<=Y) 

  If T  Null: Append the mapping with: FILTER(datatype(?O)=T) 
Rule 11.  If Of = <O, OneOf (V)>:  Append the mapping with:  

{FILTER(?O = V1)|| . . . || FILTER(?O = Vn)} 
      If Vi is a regex-ed literal, the ith filter above should be replaced with:  

FILTER Regex(?O, Vi) 
Rule 12. If Of = <O, Not(f)>:  f filter is generated as above, but with a negation. 
Rule 13. If Of = <O, Qi(O)>:Repeat all mapping rules to generate Qi(O). 
Rule 14. Given On , If n >1 and Oi   I : The mapping in rules 3-4 will be:  

   {{S P :O1} UNION . . . UNION {S P :On}} 
Rule 15.  Given Pn , If n >1 and Pi   I : The mapping in rules 3-4 will be:  

  {{S :P1 O} UNION . . . UNION {S :Pn O}} 
Rule 16.  Given Sn , If n >1 and Si   I : Regenerate the query n times,  
           each time with Si as a root, and with a UNION between the queries.
Rule 17.  Given Qn , If n >1 :  Add UNION between the n queries. 
Rule 18. If a subject S is prefixed with “any”: {?S rdf:type :S} 
Rule 19. If an object O is prefixed with “any”: {?O rdf:type :O} 
Rule 20. If S is a subject and R = <~P, O>, the mapping is: {O P S}. 

6. THE NOTION OF QUERY PIPES  
A simple scenario of using MashQL is to place it as a query 
interface topping a relational or a graph database; however, in an 
open world scenario other challenges might be faced. This section 
overviews these challenges (only from a query formulation 
viewpoint) and introduces the notion of query pipes. 

Suppose one creates a mashup by querying Upcoming.org to 
retrieve all events happening in Paris (Q1); another person creates 
another mashup based on Q1 to only retrieve the scientific events 
(Q2); a third person mashes up the results of Q2 with the events 
retrieved from the ACM Conferences (Q3); and so on. We call 
queries that connect to each other in this way as pipe. This notion is 
important in open worlds as it enables people to collaborate and 
build on each others’ efforts. Allowing people to formulate query 
pipes is not merely a visualization of links between query modules, 
but when compiling a pipe (i.e., translating its queries into 
SPARQL, or SQL), some query formulation should be considered. 

6.1 Translating MashQL into SELECT and CONSTRUCT 
statements. 

(First) Translating MashQL into SELECT statements in SPARQL 
is not enough, because the SELECT statement produces the 
results in a tabular form. To allow queries to input each other, the 

results of a query should be formed as a graph. This is not 
important when using SQL, because the input and the output of a 
query have the same tabular form. In SPARQL, the 
CONSTRUCT statement produces a graph, but then one needs to 
manually specify how this graph should be produced. To 
overcome this and allow a MashQL query to produce the results 
in both tabular and graph forms, we propose the construct 
(CONSTRUCT *). This is not part of the standard SPARQL but 
has been proposed also by others to be included in the next 
version of the standard [ 3]. In MashQL, the CONSTRUCT * 
means retrieves all triples involved in the query conditions and 
satisfy them. For example, suppose the query in Figure 2 is piped 
into another, its CONSTRUCT * translation will retrieve {<:B1 
:Title “Linked Data”>,<:B1 :Author “Lara T.”>,<:B1 :Year  

2007>}. When compiling a pipe of queries, If the output of a query 
is directed as input to another query, a CONSTRUCT * statement 
will be generated, otherwise, the SELECT statement will be 
generated (see Figure 10). 

In short, in case MashQL is used to formulate a pipe over a 
relational database, all queries in this pipe are translated into 
SQL SELECT statements. However, in case of formulating pipe 
over an RDF graph, each query will be translated into either 
SELECT or CONSTRUCT statements, depending on the pipe 
structure. 

6.2 Cashing and Materialization 

When executing a SPARQL query, all query engines assume that 
the queried data is stored locally; otherwise, this data must be 
downloaded and stored at the engine-side before the execution 
process starts. The time complexity of executing a query on local 
data is usually fast4; however, the bottleneck will be the 
downloading time. In case the input of a query is an output to 
another query (i.e., in case of query pipes) the problem will be 
even more difficult, as queries will be calling each other. 
Furthermore, it is also possible that users (intentionally or by 
mistake) end up with query loops (e.g. Q1Q2Q3Q1), which 
may cause computational overheads. 

To face this challenge, MashQL allows users to materialize the 
results of their queries/pipes and decide their refreshing 
strategies. This can be easy done in case of querying relational 
databases, by translating MashQL into Views and Materialized 
Views statements. However, as this is not supported by SPARQL, 
a similar framework is defined below. 

The results of a query (called derived source) are stored 
physically and deployed as a concrete RDF source. Primal input 
sources (called base sources) are also cached for performance 
purposes. Given a query Q over a set of base or derived sources 
{D1,..,Dm}, the results of this query is denoted as D = Q(D1,..,Dm), 
and D  {D1,..,Dm}. We define a Pipe as an acyclic chain of 
queries, where the result of a query is an input to the next. The 
chain of the queries that derives D is denoted as the pipe P(D). 

We call the problem of keeping a pipe up-to-date, the pipes 
consistency. Let D be the results of a query Q(D1,..,Dm), and T the 
latest time the set {D1,..,Dm} has been changed. Then, D is 
consistent at T, if D=Q(D1,..,Dm). To maintain the pipes consistency, 
two updating strategies are used: Query auto-refresh and Pipe auto-
refresh. MashQL maintains for each base or derived source D a 

                                                                 
4 A query with medium size complexity over a large dataset takes one or 

few seconds [ 13]. 



timestamp of its last update RD
T and an auto-refresh time interval 

RD
A; and for each query Q a timestamp of its previous successful 

execution RQ
T and an auto-refresh interval RQ

A. 

Query auto-refresh: Each query will be automatically executed if 
its auto-refresh interval expires and one of its inputs is updated. 
Let Qi be a query over a set of sources {D1,..,Dm}, and T is a 
given time. Qi will be re-executed if (RQi

T + RQi
A)  T and (RQi

T < 
RDj

T), where 1  j  m. 

Pipe auto-refresh: Each pipe P(D) is automatically refreshed if 
RD

A expires. This implies re-executing the chain of queries in this 
pipe. Let P(D) be a pipe, D=Qn(D1,..,Dm), and T is a given time. If 
(RD

T+RD
A)  T, then each ith query in P(D) is executed if (RQi

T < 
RDj

T ), where 1  j  m for Qi, and 1  i  n. Queries in P(D) are 
executed from the bottom to the topmost, or recursively as 
P(P(D1),…,P(Dm)). 

As argued in the data warehousing literature (e.g., [ 10,  38]) an 
efficient refreshing strategies is the incremental updates strategy, 
which suggests that if a base source receives new transactions, 
only these transactions are transformed and the affected queries 
are refreshed. This strategy is still an open research issue for RDF 
in an open world [ 15], because RDF data and queries are 
developed and maintained autonomously by different people. 

6.1 Query Pipes Use Case 
Bob has a PhD in bioinformatics. He is looking for a fulltime, 
well-paid, and research-oriented job in some countries. Instead of 
visiting many job portals and each time trying many keywords 
and filters, Bob used MashQL to query these portals according to 
his preferences (Figure 8). First, he visited Google and Jobs and 
performed a keyword search on each site (bioinformatics OR 
“systems biology” OR e-health). He copied the links of the 
retrieved results (Figure 7) from Google and Jobs into the Input 
modules5, and created two queries on the results. The third query 
integrates the results and filters them based on location. 

http//:base.google.com/jobs/rdf 
<:job2> :Title “Project Manager E-Health” 
<:job2> :Type “Contract” 
<:job2> :Salary 60000 
<:job2> :Currency “Euro” 
<:job2> :Location “Paris, France” 
<:job2> :Employer “UniLife” 
<:job2> :JobIndustry “Insurance” 
<:job3> :Title “Genome Annotation” 
<:job3> :Type “Full-Time” 
<:job3> :Salary 77000 
<:job3> :Currency “€” 
<:job3> :Location “Gent, Belgium” 
<:job3> :Employer “BioCom” 
<:job3> :JobIndustry “Healthcare” 

http//:www.jobs.ac.uk/rdf
<:1> dc:Title “Senior Research Manager” 
<:1> :Category “Health” 
<:1> :Location “London, UK” 
<:1> : MinimumSalary 55000 
<:1> : MaximumSalary 85000 
<:1> :SalaryCurrency UKP 
<:1> :Role “Research/Academic” 
<:2> dc:Title “PhD scholarship” 
<:2> :Category “BioSciences” 
<:2> :Location “Manchester, UK ” 
<:2> :MinimumSalary 21000 
<:2> :MaximumSalary 21000 
<:2> :SalaryCurrency UKP 
<:2> :Role “Research/Academic”

Figure 7. Sample of RDF data about jobs. 

                                                                 
5 We assume Google and Jobs.ac.uk render their search results in RDFa 

i.e. RDF triples are embedded in HTML. Otherwise, Bob need to use a 
third party’s service (e.g. Dapper) to extract triples from HTML. 

 
Figure 8. Bob’s MashQL Queries.  

Job 

http//:base.google.com/jobs/rdf/job3 

http/:www.jobs.ac.uk/rdf/1 

Figure 9. The results of piped queries in Figure 8 
CONSTRUCT *
WHERE { 
?Job :JobIndustry ?X1; :Type ?X2; 
     :Currency ?X3; :Salary ?X4. 
FILTER(?X1=“Education”|| 
       ?X1=“HealthCare”) 
FILTER(?X2=“Full-Time”|| 
?X2=“Fulltime”)||?X2=“Contract”) 
FILTER(?X3=“^Euro” || ?X3=“^€”) 
FILTER(?X4>=75000|| ?X4<=120000)} 

CONSTRUCT * 
WHERE { 
?Job :Category ?X1; :Role ?X2; 
:SalaryCurrency ?X3; :SalaryLower ?X4.
FILTER (?X1=“Health” ||  
        ?X1=“BioSciences”) 
FILTER (?X2=“Research\Academic) 
FILTER (?X3 = “UKP”) 
FILTER (?X4 > 50000) } 

SELECT ?Job
WHERE { ?Job :Location ?X1 
      FILTER (?X1=“^UK” || ?X1=“^Belgium”)|| ?X1 = “^Germany”)||    
              ?X1=“^Austria”)|| ?X1=“^Holland”))} 
Figure 10. The SPARQL translation of the MashQL queries in Figure 8. 

7. The Graph-Signature Index 
Recall that when formulating a MashQL query, the editor queries 
the data in the background to generate the list of next choices. In 
such a user-interaction setting the response-time be small, preferably 
less than 100ms [ 25]. However, such queries might be slow since a 
graph is typically stored in one relational table, RDF(S,P,O). 
Suppose the graph in Figure 11 is stored in such a table, and you 
want to know the “list of properties of the authors of A1”: {?P: (A1 Author 

?O1) (?O1 ?P ?O2)}; or “the countries of the affiliation of the authors of A1”: 
{?O3: (A1 Author ?O1) (?O1 Affiliation ?O2) (?O2 Country ?O3)}. Such queries 
might be inefficient as they involve several self joins. MashQL’s 
background queries are a special case of graph\SPARQL queries; 
they are only linear join-paths. A background query can be 1) what 
is the set of properties Pn of a given subject S, of the form {Pn: (S 

P1?O1)(?O1 P2 ?O2)… (On-1 P On)}, where n  1; 2) what is the set of objects 
On of a subject S, through a chain of properties, of the form {On: (S P1 

?O1)(?O1 P2 ?O2)… (?On-1 P On)}, where n  1. Executing a query of level n, 
implies self joining the RDF table n-1 times.  

 
Figure 11. An RDF data graph. 

Several approaches have been proposed to index RDF graphs for 
fast queries. Among these, Oracle suggested in [ 13] to build a 
subject-property matrix materialized join views on the RDF table, 
such that, all direct and nested properties for a group of subjects is 
materialized. This approach (called Semantic Technology) has 
been released as part of Oracle 10g and 11g. Another approach 
(called C-Store [ 8]) claimed a better performance over Oracle by 



partitioning the RDF table vertically, into n two-column tables, 
where n is the number of unique properties in the data. In other 
words, a table (S,O) is created for each property. A more recent 
approach (called RDF3X [ 29]) claimed a better performance over 
both, by simply building many B+-Tree indexes, and “careful 
optimization of complex join queries” [ 29]. We have tried to use 
these approaches as a backend RDF index for MashQL, and we 
found that non can reach an acceptable user-interaction (<100ms 
response-time) with large data graphs. As explained earlier 
MashQL’s background queries are a special case, as they form 
only join-path queries; rather than, e.g., star-like queries, which is 
claimed to be a strength of [ 29]. 

The problem -of joins-path queries- has been studied also by the 
XML community, and the notion of structural summaries has 
been proposed. The idea is to summarize all paths in a given 
XML document, so that, a long joins-path can be optimized when 
executing an XQuery. The size of a structural summary is 
typically very small, compared to the original XML document, 
because it contains only the paths (i.e., the structure) between 
XML elements; such as {Author.Affiliation.Name, 

Author.Affiliation.country.capital, etc.}. One of the most known structural 
summary approaches is called DataGuide[ 28]. This approach was 
later used by the Lorel [ 18] query formulation language (see 
Section  2). A DataGuide contains all and only the possible paths 
in an XML document. The problem with this approach is that 
unrelated entities are grouped together [ 18]. As also stated by its 
proposers a DataGuide “can tell you that a link labeled “Book” 
can only be followed by links labeled “Author”… but cannot tell 
you if every link labeled “Book” is followed by a link labeled 
“Author” [ 28]. That is, when asking “what are the properties of 
the Authors of A3”, the answer would be {Affiliation, email Name}. Notice 
that Name is not a property of A3. The reason is that all possible 
properties followed by Author are combined together. Another idea 
by the authors has been proposed, called Strong DataGuide, 
which guarantees that unrelated entities will not be grouped 
together. However, the problem is that the size of a DataGuide 
can grows exponantionaly and can be bigger than the original data 
in case this data is graph-shaped. In other words, Strong 
DataGuides behaves better in case of XML, as it is tree-shaped. 
Among many other approaches, F&B index [] proposed to group 
nodes in a graph if and only iff they reachable by all incoming 
and outgoing paths, i.e. indistinguishable by any forward and 
backward path. This approach also guarantees (unlike 
DataGuides) that the worst case for the size of a summary (upper-
bound) will be always less than or equals the original graph. The 
problem with this approach is that the size of the summary is 
often large. That is, it better behaves in case of XML tree-shaped 
data. 

In the following we propose a new summarizing approach suitable 
for RDF graphs, which we call graph-signature index. The idea is 
similar to XML structural summaries as it generates a small-size 
summary of an RDF graph; so that, certain queries (in particular, 
MashQL’s formulation queries) can be answered from this small 
summary, much faster than querying the whole original graph. 
Our RDF graph-signature is fundamentally different from XML 
structural summaries. Not only that it holds information about all 
subjects in the graph, but more importantly, because RDF is not 
the same as XML. “RDF triples form a graph rather than a 
collection of trees” [ 29]. 

The intuition of the graph-signature is to have a graph of 
categories that summarizes the original RDF graph. Nodes are 
grouped if they have the same set of outgoing paths, i.e., 

indistinguishable by any backward path. In other words, Similar 
subjects in an RDF graph are grouped into categories, such that, a 
category is the set of all subjects that have exactly the same 
property labels, and the objects of each of their properties belong 
to same categories. Each category is given a unique identifier. We 
also define a category signature as the set of properties that some 
subjects share. 
Def.1. (Category) Given two subjects S1 and S2, we say that they 
have the same category Ci, if and only if: 
1. They share the same property labels: There exist (S1 P1 O)… 

(S1 Pm O), m>0, and (S2 P1 O) … (S2 Pn O), n>0, such that, 
the distinct set of properties of S1 {P1..,Pm} equals the distinct 
set of properties of S1{P1,..,Pn}. 

2. The objects of each of their properties belong to the same 
categories: for each property Pi of S1 there is O1, and Pi of S2 
there is O2, such that, O1 and O2 belong to a same category Cj. 
Notice that Ci and Cj, can be same or different categories. 

3. If O is a literal or it does not belong to the set of all subjects in 
the dataset, its category is null. 

Def.2 (Category Signature) A Category signature is a set of 
triples of the form <SC, P, OC>, where SC is a category of some 
subjects, P is a property label, and OC is a category of some 
objects. 

Def.3 (Graph Signature) is the set of all category signatures. 

Although Def.1 is recursive, for a brevity, however generating the 
graph signature is not. See the algorithm in Figure 14. 

Example. The data graph in Figure 11 is summarized by the 
graph shown in Figure 12, and alternatively in the table 
GraphSignature. The SubjectCat table indexes each subject and its 
category. Notice, for example, that P1 and P2 are assigned the 
same category 3, because they share the same set of property 
labels {Affiliation, Name}. However, P3 is assigned another category 4, 
as its properties are not the same as P1 and P3. It has an email and 
does not have a name. A1 and A2 have the same properties but they 
are assigned different categories, because (see Def.1.2) the objects 
of their properties do not have the same category. That is, the 
category of A1.Author is 3, while the category of A3.Auhtor is 4. UoM and 
UoC, and mt and cy, and Valletta and Nicosia are assigned the categories 
5, 6, 7 respectively; as they satisfy all requirements in Def.1. 

 
SubjectCat

S C
A1  1
A2  2
P1  3
P2  3
P3 4
UoM 5
UoC  5
mt  6
cy  6
Valletta 7
Nicosia 7

Graph Signature 
SC Predicate OC

1 Author 3 
2  Author 4 
3 Name - 
3 Affiliation 5 
4 email - 
4 Affiliation 5 
5 Country 6 
6 Capital 7 
6 Type - 
7 Type - 
7 University 5 

 

Figure 12. Graph-Signature index. 

Note that adding more instances of the same category into a 
dataset, does not increase the size of its graph signature. In other 
words, the size of the graph signature will be smaller than the size 
of the original graph. As will be shown in the next section, the 
DBLP dataset (a graph with 9M Million triples) generated a graph 
signature of 1.2K triples. The DBpedia dataset (a graph 32 
Million triples), generated a graph signature of 156K triples. As 
we shall evaluate in the next section, the importance of a graph 
signature is that querying it, is cheaper than querying the original 



graph. Because of its small size (thus fits in a small memory), self 
joining is cheaper than self joining the original graph. 
Furthermore, a graph signature holds information about all 
subjects in the dataset, not only paths, compared with structural 
summaries. For example, the answer of “what are the properties 
of the Authors of A1” is {Affiliation, name}, and “the properties of the 
Authors of A3” is {Affiliation, email}. However, a DataGuide’s answer 
would be {Affiliation,email, name}, because all links following Author are 
grouped together. 

To gain further efficiency in querying and storage, we replace all 
string labels in RDF with unique integers, as described in [ 13]. In 
addition, to support the “rdfs:SameAs” property. For example, if we 
have a triple (A3 rdfs:SameAs A4), both A3 and A4 will be given the 
same identifier, before generating the graph signature. 

Furthermore, not all RDF sources are schema-free. For example, 
we found that every subject in the DBLP dataset is described by 
the property Type. In DBPedia, not all but the majority of the 
subjects are typed. Hence, it is important to make use of these 
types when formulating a query. For example, because mt and cy 
are typed with Country it might be better to ask “Give me the Capital 
of any Country”. To support this as a build-in feature in MashQL, 
we extend the SubjectCat table to include Types (see Figure 13). 

Type  S  C  
  A1  1 
  A2  2  
  P1  3 
  P2  3 
  P3 4 
  UoM  5 
  UoC  5 
Country  mt  6 
Country  cy  6 
City  Valletta  7 
City  Nicosia  7 

Figure 13. Typed subjects are included in Graph-signature index. 

In this way, MashQL can be used to formulate queries starting 
from a certain instance as discussed in the beginning of the 
section; or starting from types, if they exist. As also discussed 
earlier, a user can start a query by a variable. Recall that in this 
case the variable label is displayed in italic. The default query 
subject is the variable Anything, see Section 4. For example, 
“what are the properties of authors of anything” {?P2: (?AnyThing Author 

?O1)(?O1 P2 ?O2)}. Moreover, MashQL allows predicates to be 
variables. For example, “what are the properties of the properties 
of the properties of A1”, {P4: (A1 ?P1 ?O1)(?O1 P2 ?O2) (?O2 P3 ?O3) (?O3 P4 

?O4)}. As we will discuss in the next section, such queries are 
expensive in Oracle, but became cheap using the graph-signature. 
The idea of allowing such queries in MashQL is to allow one to, 
for example, find the relations between two entities, at a certain 
degree of relationships. 

To conclude, in this section we have proposed the notion of graph 
signature to summarize a given RDF graph. As the size of such 
summaries tends to be much smaller than the original data graph, 
joins-path queries (for the purposes of MashQL) become cheaper 
than joining the whole data graph. In the next section, we evaluate 
MashQL’s background queries using the graph signature and 
compare it with using Oracle’s Semantic Technology. 

Remark: To avoid any misconception, we would like to 
emphasize that our graph signature is designed only for query 
formulation purposes. In other words, the graph signature is 
indexed and contains only the information that is needed to 
formulate a MashQL query. Hence, we do not claim the graph 
signature to be a general purpose RDF index, to e.g., answer any 
SPARQL query as the Oracle’s Semantic Technology index does. 
Exending the graph signature for query optimization is a future 
work, which is very promising indeed. We basically build two 

separate graph signatures for each data graph, one is to index all 
incoming baths and one to index all outgoing baths. The 
intersection of the answers of the tow signatures is the smallest 
superset of the target answer. 

An algorithm to create a Graph-Signature  
Input: RDF(S,P,O) 
Output: SubjectSignature(S,Cat), CatSignature(Cat, Predicate, NextCat) 

P = The set of all distinct predicates in RDF; 
Create Table SPredicates (S,P1,P2,…Pn);   \\ n is the number of predicates is P. 
For i  =  1…n  { 
     Pred = lookup the next predicate from P; 
     Update SPredicates set Pi = Pred where S in (Select S from RDF where P = Pred);} 
Create Table SCat (Cat,P1,P2,…Pn); 
Insert into SCat(P1…Pn) Select P1…Pn from SPredicates group by P1…Pn; 
Assign a sequential id to Cat for each row in SCat; 
Alter Table SPredicates add column Cat; 
Assign a hash key for similar (P1,…,Pn) in both SPredicates and SCat. 
 \\A hash can be generated for every concatenation(P1,…,Pn), this becomes the category id.

Alter Table SPredicates Drop columns (P1,…,Pn); \\ The result is SPredicates(S,Cat) 
Alter Table RDF add column CatId, NextCat; 
Assign Cat for each S in RDF. \\ Can be done by left joining RDF and SPredicates on S=S; 
Assign NextCat id for each O in RDF. \\ left joining RDF and SPredicates on O=S; 

Insert into CatSignature Select Cat,P,NextCat from RDF group by Cat,P,NextCat; 
Insert into SubjectCat(S,Cat) Select S,Cat from RDF group by S,Cat. 
Alter Table RDF drop column (Cat,NextCat); Drop Table SPredicates. Drop Table 
Predicates;

Figure 14. An algorithm to create a graph-signature index. 

8. Evaluation 
We present two types of evaluations. 1) We evaluate the 
scalability of the graph-signature index. 2) We evaluate the time-
cost of formulating a MashQL query using this index, and 
compare it with using the Oracle’s Semantic Technology. 

8.1 Datasets and Experiment Settings 
Our evaluation is based on two public datasets: A) DBLP and B) 
DBPedia. The DBLP (700MB size) is a graph of 9 million edges. 
We partitioned this graph into three parts: A9 is the whole DBLP; 
A4 is 4 million triples from A9; and A2 is 2 million. No sorting is 
used to partition the data. We only used “Create Table A4 as select * from A9 

where rownum<4000001”. The original A9 is not sorted either. Figure 16 
shows some statistics about these partitions. The DBPedia (6.7 
GB) is graph of 32 million edges. Similarly, DBPedia is 
partitioned into 4 parts (see Figure 16). DBPedia is the RDF 
version of the whole Wikipedia. Each part of the two datasets is 
loaded into a separate relational table -of the form RDF(S,P,O). 
The DBMS used to store these tables is Oracle 11g, which was 
installed on a server with: 2GHz dual CPU, 2 GB RAM, 500GB 
HHD, 32-bit Unix OS.  

Number of 
(A)DBLP (B)DBPedia

A9 A4 A2 B32 B16 B8 B4
UniqueTriples 9M 4M 2M 32M 16M 8M 4M
UniqueSubjects 1.1M 1M 0.8M 9.4M 6M 4M 2.6M
UniquePredicate
s

28 27 26 35 35 34 34

UniqueObjects 2.4 1.2 0.7M 16M 8.7M 4.7M 2.5

Data Size 700MB 350M
B 170MB 6.7GB 3.1GB 1.4GB 550M

B

Figure 15. Statistics about the experimental data. 

8.2 Scalability Evaluation 
A graph-signature is built on each partition of the datasets.  Figure 
16 shows some statistics. As one can see, the time cost to build a 
graph signature is liner w.r.t data size. For example, B4 (4M 
triples) cost 285 seconds, the time is almost doubled when the 
data size is doubled (B8 costs 528sec, B16 costs 1177, etc).  

Number of (A)DBLP (B)DBPedia
A9 A4 A2 B32 B16 B8 B4

Indexing Time (Sec) 429 216 162 2378 1177 528 285
Unique Categories  136 6K 3K 6K 32K 16K 6K
Triples in GraphSignature 1.2K 53K 23K 165K 486K 185K 56K

Figure 16. Statistics about the graph-signatures of all parts of the dataset. 

What is more scalable, is the behavior of the index w.r.t the 
number of the triples . For example, the whole DBPedia B32 



(32M triples) is summarized into 156k triples; this number tends 
to increase when the data is smaller, 486K for B16. Similarly, the 
whole instances in DBLP A9 (9M triples) are summarized by 
1.2K triples, but half of this data A4 generated 53K triples. This 
means, it is likely that the more data we have, the more 
similarities (i.e., categories) are found, hence, the smaller the 
graph-signature. In fact, the index reflects the homogeneity of a 
graph. For example, because DBLP is indeed well-structured (i.e., 
most instances have similar properties), it is summarized only by 
136 categories. However, the DBPedia (which is automatically 
extracted from the Wikipedia, with too much noise; in fact, large 
parts of it, is meaningless), it generated more categories. Anyway, 
for both datasets, the generated graph-signatures fit in a small 
memory, which yields fast queries as the next evaluation will 
show. 

8.3 Response-Time Evaluation 
This section evaluates the response-time of the MashQL editor’s 
user interaction. In other words, we are not interested to evaluate 
the execution of a MashQL query itself, as this is not the purpose 
of the graph-signature; but rather, the execution of the queries that 
the editor performs in the background to generate the “next” drop-
down list (see Section  4). In the following we presented three 
MashQL queries. We identify the set of background queries, and 
execute them using: (1) the graph-signature index, which we 
implemented in Oracle 11g, and (2) Oracle’s Semantic 
Technology, which is the native RDF index in Oracle 11g. 

Experiment 1: To formulate the query in Figure 17 on DBLP, the 
user first selects the query subject from a list. The query produces 
this list is annotated by . The user then selects a property of this 
subject from a list. The query produces this list is annotated by ; 
and so on. These queries are executed on each partition of the 
DBLP, using both: the graph-signature (GS) and Oracle’s 
Semantic Technology. The cost6 (in seconds) is shown in Figure 
18. 

 

 O:(?S Type ?O) 
 P:(?S Type Article)(?S ?P ?O1) 
 P:(?S Type Article) 
    (?S Creator ?O1) (?O1 ?P ?O2) 
 O:(?S Type Article) 
    (?S Creator ?O1)(?O1 Type ?O) 

Figure 17. 4 queries are needed to formulate this MashQL query. 

Query (A9) 9 M triples (A4) 4 M triples (A2) 2 M triples
GS Oracle GS Oracle GS Oracle

Q1 0.003 0.005 0.003 0.004 0.003 0.003
Q2 0.001 0.136 0.001 0.148 0.001 0.108
Q3 0.001 0.187 0.001 0.846 0.001 0.671
Q4 0.001 1.208 0.001 0.835 0.001 0.650

Figure 18. Time cost (in ms) of background queries. 

As shown by this experiment, the time cost for each query 
remains within few milliseconds using our index, regardless of the 
data size. This is because the size of the index is small, compared 
with the Oracle’s Semantic Technology that scans the whole 
dataset. 
Experiment 2: Here we show a similar evaluation on DBPedia, 
but with longer queries (see Figure 19). Each query is executed on 
all partitions, and the time-cost is shown in Figure 20.  

                                                                 
6 To avoid the I/O dominance, we did not include GROUB-BY 

and ORDER-BY, and only the top 10000 rows are retrieved.   

 
 O:(?S Type ?O) 
 P:(?S Type Album)(?S ?P ?O1) 
 O:(?S Type Article)(?S Genre ?O) 
 P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 ?P ? O2)  
 P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 PreviousAlbum? O2)(?O2 ?P ?O3) 
 P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 PreviousAlbum? O2)  
     (?O2 Artist ?O3)(?O3 ?P ?O4) 
 O:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)  
     (?O2 Artist ?O3)(?O3 CurrentMember ?O4) 
 P:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2) 
     (?O2 Artist ?O3)(?O3 CurrentMember The_Furious_Five)(The_Furious_Five ?P ?O5) 
 O:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)  

    (?O2 Artist ?O3)(?O3 CurrentMember The_Furious_Five)(The_Furious_Five Genre 
?O5) 

Figure 19. 9 queries are needed to formulate this MashQL query. 

Quer
y 

(B32) 32 M (B16) 16 M  (B8) 8 M  (B4) 4 M 
GS Oracle GS Oracle GS Oracle GS Oracle

Q1 0.003 0.003  0.003 0.003
Q2 0.002 0.002  0.002 0.002
Q3 0.005 0.004  0.003 0.003
Q4 0.005 0.004  0.004 0.004
Q5 0.005 0.004  0.004 0.004
Q6 0.005 0.005  0.005 0.005
Q7 0.007 0.007  0.007 0.007
Q8 0.005 0.005  0.005 0.005
Q9 0.007 0.007  0.007 0.006

Figure 20. Time cost of the background queries in Figure 19. 

Similar to the previous experiment, this experiment also shows 
that the time cost, for all queries remains very small indeed, 
although the dataset is larger, more heterogeneous, and the 
queries involve longer join-path expressions. 

Experiment 3(Extreme): This experiment might not be faced in 
practice; but its goal is to exposes the limits of both, our index 
and Oracle’s index. Figure 21 shows a query where all properties 
are variables. It means, what are the properties of the properties 
of … (at 9 degree) of properties of any Album. After selecting 
Album as the query subject, and then move to select from the list 
of its properties, the user decides to make the property as a 
variable, at each level. The query editor, at each level, generates 
the list of the possible properties depending on the previous 
selections. For example, at the 2nd level, the editor’s query, : 
P2:(?S Type Album)(?S ?RelatedTo1 ?O1)(?O1 ?P2 ?O2); at the 3rd level, 
: P3:(?S Type ?Album)(?S ?RelatedTo1 ?O1)(?O1 ?RelatedT02 ?O2)(?O2 ?P3 
?O4); and so on. Notice that executing such queries is very 
expensive as the whole index must be scanned and joined with 
itself i-1 times, at level i.  

 
Figure 21. A query with all predicates are variables. 

Quer
y 

(B32) 32 M  (B16) 16 M  (B8) 8 M  (B4) 4 M  
GS Oracle GS Oracle GS Oracle GS Oracle

Q1 0.001 0.027 0.001  0.001 0.001

Q2 0.006
17.45

0
0.026  0.010 

0.005

Q3 0.011
49.65

6
0.048  0.010 

0.010



Q4 0.017 
5348.
7 

0.087 - 0.022 - 0.011
- 

Q5 0.032 - 0.135 - 0.036 - 0.011 - 
Q6 0.047 - 0.185 - 0.055 - 0.016 - 
Q7 0.061 - 0.234 - 0.076 - 0.023 - 
Q8 0.077 - 0.265 - 0.098 - 0.027 - 
Q9 0.092 - 0.280 - 0.110 - 0.034 - 

Figure 22. A query involving many background joins. 

This is indeed the worst-case scenario for both indexes. As shown 
in Figure 22, Oracle’s Semantic Technology did not respond after 
the 4rd level. On the other side, although the execution time using 
our index increases at each level, but the important thing is that 
this increase remains fairly acceptable, for such type of extreme 
queries. The reason for our index to be faster, is that the graph 
signature fits in a small memory, even with some magnitudes of 
self joins. However, Oracle’s Semantic Technology performs the 
self joins on the whole dataset, which is too large. In other words, 
our index joins only the graph signature, which is 165K edges, 
however Oracle’s joins the whole data graph, which is 32M 
edges.  

To conclude, as shown by these three experiments, because the 
size of the graph-signature index is small, long join-path queries 
can be executed very fast. This speed enables the MashQL editor 
to perform its background queries instantly, regardless of the 
dataset. 

9. IMPLEMENTATION AND DISCUSSION  
MashQL can be used in different scenarios to query data. An 
obvious scenario is to place it on top of a relational or a graph 
database. For example as many offline or online databases need to 
queried by non-IT experts in a flexible manner, such as , about 
health, scientific, traffic data  (e.g., see [ 35]). MashQL can be 
used as a graphical query interface of such databases. In the 
following we overview two different usage scenarios that we have 
implemented: an online server-side mashup editor, and a browser-
side Firefox plug-in.  

9.1 Online Mashup Editor 
We have developed an online mashup editor, where MashQL is 
used as a data mashup language (see Figure 23 and its system 
model in Figure 22). The functionality of this tool comprises: i) 
the MashQL language components; ii) the user-interface; iii) a 
state-machine dispatching the “background queries” in order to 
support query formulation during the interactive exploration of 
RDF datasets; iv) a module that translates a formulated MashQL 
query into SPARQL and submits this for execution, or debugging; 
the formulated MashQL query is serialized in XML; v) a module 
that retrieves, merges, and presents the results of the submitted 
SPARQL query. Users can query and mash up web data sources 
and the output of their queries can be redirected as input to other 
queries. In the background, Oracle 11g is used for storing and 
querying RDF, and our graph-signature index is used to achieve 
instant response-time user interaction. When a user specifies a 
data source(s) as input, it is bulk-loaded and indexed. MashQL 
queries are also translated into Oracle’s SPARQL7. While 
interacting with the editor to formulate a query, the editor 
performs some background queries through AJAX. Users can 

                                                                 
7 Oracle has extended SQL with a table-function to allow SPARQL-like 

queries [ 13]. For simplicity, we call this extension as “Oracle’s 
SPARQL”. Notice that in this paper we only present the translation of 
MashQL into the W3C standard SPARQL, MashQL to Oracle’s 
SPARQL is not presented here for space limitation. 

store and publish their queries so that others can discover, reuse, 
or clone. Each published query is given a URL. Calling this URL 
means executing this query and getting its results back. In this 
way, the output of a query is seen as a concrete RDF source. 
Queries (that require high execution cost) and primer input 
sources (that require high downloading and bulk-loading costs) 
are materialized and refreshed periodically.  

 
Figure 23. MashQL Editor Screenshot. 

 
Figure 24. System Model 

As one may notice, MashQL’s GUI follows the style Yahoo Pipes 
visualizes feed mashups, by using the Yahoo open-source Java-
Script libraries. Our choice of following this style is to illustrate 
that MashQL can be used to query and mash up the Data Web as 
simple as filtering and pipes web feeds. In this way is a data 
mashup is a query over multiple sources. It is worth noting also 
that the examples of this article cannot be built using Yahoo 
pipes. Yahoo allows a limited support of XML mashups, but this 
is neither graphical nor intuitive; as one have to write complex 
scripts in YQL, the Yahoo Pipes’ query language. 

9.2 Firefox add-on MashQL editor 
We have also developed a Firefox add-on in order to allow 
developing mashups at the client side (See Figure 25). The left 
side shows the MashQL query module. When creating a mashup, 
the visited pages -in the browser tabs- are automatically selected 
as input sources to this query. Users can exclude some of them, 
and/or add local files. The results are rendered into a new tab, and 
can be saved locally. Users can also save queries and choose their 
periodic refreshments. Unlike the online mashup editor, where 
data sources are loaded into and queried from a database, this 
client-side editor uses the Jena library to parse, cache, and query 
data directly from the memory of the client. Thus, it is faster and 
cheaper solution, but, the amount of the processed data is limited 
by the memory. The goal of this implementation is to allow 
querying and fusing websites that embed RDFa. In this way, the 
browser is used as a Web composer rather than only a navigator. 
Because not many pages support RDFa yet, users currently need 
to use a third-party service (such as triplr.org, buzzword.org.uk, 
or wandora.org) to distil the RDF triples from HTML. When 



many pages will include RDF, the goal of this plug-in is to allow 
one, for example, to compose his publication list from Google 
Scholar, DBLP, ACM, and CiteSeer; or, filter all video lectures 
given by Berners-Lee from YouTube, VedioLectures, and iTunes. 

 
Figure 25. MashQL Firefox add-on (an early screenshot). 

9.3 Implementation Issues 
URI Normalization: As RDF data may contain unwieldy URIs, 
MashQL queries might be inelegant. Thus, the editor normalizes 
URIs and displays the normalization instead; for example, Type 
instead of http://www.w3.org/1999/02/22-rdf-syntax-ns#type. In addition, if one 
moves over Type, its URI is displayed as a ‘tip’.  Internally, the 
editor uses only the long URIs. In case of different URIs leading to 
the same normalization, we add a gray prefix to distinguish them 
(e.g., 1:Type, 2:Type). The normalization is based on a repository 
that we built for the common namespaces (e.g., rdf, rdfs, WOL, 
FOAF). In case a URI does not belong to these namespaces, the 
editor uses heuristics. For example, takes the last part after ‘#’. If ‘#’ 
does not exist, then the part after ‘/’. The result should be at least 3 
characters and start with a letter, otherwise we take the last two parts 
of the URL, and so on. We have evaluated this on many datasets 
and found it covering the extreme majority of cases. However, there 
is no guarantee to always produce elegant normalization. 

Verbalization: To further improve the elegancy of MashQL, we 
use a verbalize/edit modes.  When a user moves the mouse over a 
restriction, it gets the edit mode and all other restrictions get the 
verbalize mode. That is, all boxes and lists are made invisible, but 
their content is verbalized and displayed instead (See Figure 4). 
This makes the queries readability closer to natural language, and 
guides users to validate whether what they see is what they 
intended.   

Scalable lists: In case of querying large datasets, the usual drop-
down list becomes un-scalable. We have developed a scalable and 
friendly list that supports search, auto-complete, and sorting based 
on Rank and Asc/Desc. If Rank is selected, we order items/nodes 
based on how many nodes points to them. This knowledge is pre-
computed, from the Graph Signature. Our list supports also 
scalable scrolling. The first 50 results are displayed first, but one 
can scroll to go to the next, arbitrarily middle, or last 50. Each 
time the editor sends an AJAX query to fetch only those 50. 
Furthermore, our list allows the user to select either Instances 
(i.e., any URI in the dataset) or Types of instances (i.e., instances 
that have the predicate rdf:Type if exits, such as Author, Person, 
University). See the lists in Figure 4. When a user selects the 
option Type, the MashQL editor generates different background 
queries, i.e., at the type level (See the specification of these 
queries in section  4).  

Acknowledgment We are indebted to many people who gave us 
many valuable comments and suggestion, including, George 
Pallis, Yannis Ioannidis, Demetris Zeinalipour, Rizos Sakellariou, 
Vasilis A. Vassalos. This research is partially supported by the 
SEARCHiN project (FP6-042467, Marie Curie Actions). 
 

References 
1 http:// agraph.franz.com/allegrograph (Mar. 2009) 
2 http://demo.openlinksw.com/isparql (Mar. 2009) 
3 http://www.w3.org/2005/Incubator/rdb2rdf/ (Mar. 2009) 
4 http://esw.w3.org/topic/SPARQL/Extensions? (Mar. 2009) 
5 http://www.topquadrant.com/sparqlmotion (Mar. 2009) 
6 http://rdfweb.org/people/damian/RDFAuthor (Mar. 2009) 
7 http://www.ysearchblog.com/archives/000527.html (Mar.08) 
8 Abadi D, Marcus A, Madden S, Hollenbach K: Scalable semantic web 

data management using vertical partitioning. VLDB, 2007. 
9 Athanasis N, Christophides V, Kotzinos D: Generating On the Fly 

Queries for the Semantic Web. ISWC, 2004. 
10 Abiteboul S, Duschkal O: Complexity of Answering Queries Using 

Materialized Views. ACM SIGACT-SIGMOD-SIGART. (1998) 
11 Blackwell F, Britton C, Cox A, Green T, Gurr C, Kadoda G, Kutar M, 

Loomes M, Nehaniv C, Petre M, Roast C, Roe C, Wong A, Young R: 
Cognitive dimensions of notations: Design tools for cognitive 
technology. 4th Conf. on Cognitive Technology, Springer. (2001) 

12 Bloesch A, Halpin, T: Conceptual Queries using ConQuer–II. ER, 
1997 

13 Chong E, Das S, Eadon G, Srinivasan J: An efficient SQL-based RDF 
querying scheme. VLDB’05, Springer. 2005 

14 Czejdo B, and Elmasri R, and Rusinkiewicz M, and Embley D: An 
algebraic language for graphical query formulation using an EER 
model. Computer Science conference. ACM. 1987 

15 Deng Y, Hung E, Subrahmanian VS: Maintaining RDF views. Tech. 
Rep CS-TR-4612 University of Maryland. 2004 

16 De Troyer O, Meersman R, Verlinden P: RIDL on the CRIS Case: A 
Workbench for NIAM. Proc. of IFIP WG 8.1 Working. (1988) 

17 Goldman R, Widom J: DataGuides: Enabling Query Formulation and 
Optimization in Semistructured Databases. VLDB, 1997 

18 Goldman R, Widom J: Interactive Query and Search in Semistructured 
Databases. WebDB, 1998 

19 Hofstede A, Proper H, and Weide T: Computer Supported Query 
Formulation in an Evolving Context. Australasian DB Conf. (1995) 

20 Jarrar M, and Dikaiakos M: MashQL: A Query-by-Diagram Language. 
ONISW'08, part of the ACM CiKM conference. ACM. (2008). 

21 Jarrar M, and Dikaiakos M.: MashQL: A Query-By-Diagram Language 
for Data Mashups. Tech. Article (TAR200805). University of Cyprus. 

22 Jayapandian M, Jagadish H: Automated Creation of a Forms based 
Database Query Interface. VLDB, 2008 

23 Kaufmann E, Bernstein A: How Useful Are Natural Language 
Interfaces to the Semantic Web for Casual End-Users. ISWC, 2007. 

24 Li Y, Yang H, Jagadish H: NaLIX: an interactive natural language 
interface for querying XML. SIGMOD, 2005 

25 Miller R: Response time in man-computer conversational transactions. AFIPS 
1968 

26 Moro M,Vagena Z, Tsotras V: Evaluating Structural Summaries as 
Access Methods for XML. WWW 2006 

27 Nandi A, Jagadish H: Assisted querying using instant-response 
interfaces. SIGMOD, 2007. 

28 Nestorov S, Ullman J, Wiener J, Chawathe S: Concise Representations 
of Semistructured Hierarchical Data. ICDE 1997. 

29 Neumann T, Weikum G: RDF3X: RISC style engine for RDF. VLDB 
2008 

30 O'Donoghue, J.: MySpace joins the 'semantic' web. The Web User 
online magazine. May 9, 2008 

31 Prud’hommeaux E, Seaborne A: SPARQL Query Language for RDF. 
2008 

32 Popescu A, Etzioni O, Kautz H: Towards a theory of natural language 
interfaces to databases. 8th Con on Intelligent user interfaces. 2003 

33 Parent C, Spaccapietra S: About Complex Entities, Complex Objects 
and Object-Oriented Data Models. Information System Concepts, 
1989 



34 Russell A, Smart R, Braines D, Shadbolt R.: NITELIGHT: A Graphical Tool 
for Semantic Query Construction. SWUI Workshop. 2008. 

35 Schomburg I,  Chang A,  Ebeling C,  Gremse M,  Heldt C,  Huhn G,  
Schomburg D: BRENDA, The enzyme database: updates and major 
new developments. Nucleic acids research. (2004) 

36 Spyns P, Oberle D, Volz R, Zheng J, Jarrar M, Sure Y, Studer R, 
Meersman R: Semantic Web Community Portal. PAKM, 2002. 

37 Tummarello G, Polleres A, Morbidoni C: Who the FOAF knows 
Alice? A needed step toward Semantic Web Pipes. ISWC Workshops. 
2007 

38 Zhuge Y, Garcia-Molina H, Hammer J, Widom J: View Maintenance 
in a Warehousing Environment. SIGMOD Conf. (1995) 

39 Zloof M: Query-by-Example: Data Base Language. IBM Systems, 16(4). 
1977 
 
 


