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Abstract. In this paper we present a framework and algorithm for 
modularization and composition of ORM schemes. The main goals of 
modularity are to enable and increase reusability, maintainability, distributed 
development of ORM schemes. Further, we enable effective browsing and 
management of such schemes through libraries of ORM schema modules. For 
automatic composition of modules, we present and implement a composition 
operator: all atomic concepts and their relationships (i.e. fact-types) and all 
constraints, across the composed modules, are combined together to form one 
schema (called modular schema). 
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1   Introduction and motivation 

ORM (Object-Role Modeling) [H01] is a conceptual modeling approach that was 
developed in the early 70's. It is a successor of the NIAM (Natural-language 
Information Analysis Method) [VB82]. The ORM conceptual schema methodology is 
fairly comprehensive in its treatment of many "practical" or "standard" business rules 
and constraint types (e.g. identity, mandatory, uniqueness, subsumption, subset, 
equality, exclusion, value, frequency, symmetric, intransitive, acyclic, etc.). 
Furthermore, ORM has an expressive and stable graphical notation since it captures 
many rules graphically and it minimizes the impact of change on the models.  

Although ORM was originally developed as a database modeling approach, it has 
been also successfully reused in other conceptual modeling scenarios, such as XML-
Schema conceptual design [BGH99], business rule modeling language 
[H04][N99][DJM02a], ontology modeling [JDM03][J05], etc. Hence, we shall regard 
an ORM schema, in this paper, as a general conceptual model independently of a 
certain application or modeling scenario; and we sometimes interchange the term 
“ORM schema” with the term “axiomatization” to refer to the same thing. 

The main idea of ORM modularization in this paper is to decompose an ORM schema 
into a set of smaller related modules, which: 1) are easier to reuse in other kinds of 
applications; 2) are easier to build, maintain, and replace; 3) enable distributed 
development of modules over different locations and expertise; 4) enable the effective 
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management and browsing of modules, e.g. enabling the construction of libraries of 
ORM modules [JM02b]1. 

To compose modules automatically, we propose a composition operator: all atomic 
concepts and their relationships (i.e. fact-types) and all constraints, across the 
composed modules, are combined together to form one schema (called modular 
schema). 

1.1 A simple example 

In what follows, we give an example to illustrate the (de)composition of ORM 
schemes. Fig. 1 shows two ORM schemas of Book-Shopping and Car-Rental 
applications. Notice that both schemes share the same axioms about payment. 

 
Fig. 1. Book-shopping and Car-Rental schemes. 

                                                           
1 Notice that reusability, maintainability, and distributed development of ORM schemes might 

not be challenges in database modeling (the original usage of ORM), but they are urgent 
demands when using ORM e.g. in ontology Engineering [J05][SMS+05]. 



 

Instead of repeating the same effort to construct the axioms of the “payment” part, we 
suggest decomposing these schemes into three modules, which can be shared and 
reused among other applications (see fig. 2). Each application-type (viz. Book-
Shopping and Car-Rental) selects appropriate modules (from a library) and composes 
them through a composition operator. The result of the composition is seen as one 
schema2. 

 
Fig. 2. Modularized schemes. 

Engineering schemes in this way will not only increase their reusability, but also the 
maintainability and management of these axiomatizations3. As the software 
engineering literature teaches us, small modules are easier to understand, change, and 
replace [P72] [SWCH01]. An experiment by [BBDD97] proves that the modularity of 
object-oriented design indeed enables better maintainability and extensibility than 
structured design. Decomposing schemes into modules also enables the distributed 
development of these modules over different location, expertise, and/or stakeholders. 

                                                           
2 The illustrated composition in this example is very simplistic, as each pair of modules overlap 

only in one object-type, i.e. the “Payment Method”. In farther sections, we discuss more 
complicated compositions, in which rules in different modules may contradict or imply each 
other. 

3 In this way, one can imagine axiomatizations (/schemes) as large sets of business rules 
modularized and organized as sets of compose-able modules. 



 

As an analogy, compare the capability of distributing the development of a program 
built in Pascal with a program built in JAVA, i.e. structured verses modular 
distributed software development.  

The modularity criteria could typically be subject-oriented and/or purpose/task-
oriented. Subject-oriented parts should be released into separate modules, e.g. 
separate between the financial axioms (e.g. salary, contract, etc.) and the academic 
axioms (e.g. course, exams, etc.). The general purpose/task-oriented parts of an 
axiomatization could be released into separate modules, e.g. the axiomatization of 
“payment”, “shipping”, “invoicing”, which are often repeated in many e-commerce 
applications.  

2   Composition Framework 
To compose modules we define a composition operator. All concepts and their 
relationships (i.e. fact-types) and all constraints, across the composed modules, are 
combined together to form one axiomatization. In other words, the resultant 
composition is the union of all axioms in the composed modules. As shall be 
discussed later, a resultant composition might be incompatible in case this 
composition is not satisfiable, e.g. some of the composed constraints might contradict 
each other. 

Our approach to composition is constrained by the following argument. A developer, 
when including a module into another, must expect that all rules in the included 
module are inherited by the including module, i.e. all axioms in the composed 
modules must be implied in the resultant composition. Formally speaking, the set of 
possible models for a composition is the intersection of all sets of possible models for 
all composed modules. In other words, we shall be interested in the set of models that 
satisfy all of the composed modules. 

In fig. 3, we illustrate the set of possible instances (i.e. possible models) for a concept 
constrained differently in two modules composed together. Fig. 3(a) shows a 
compatible composition where the set of possible instances for M.c is the intersection 
of the possible instances of M1.c and M2.c. Fig. 3(b) shows a case of incompatible 
composition where the intersection is empty. 

 
Fig. 3. (a) Compatible composition, (b) Incompatible composition. 



 

Notice that our approach to module composition is not intended to integrate or unite 
the extensions (i.e. ABoxes) of a given set of modules, as several approaches to 
schema integration aim to do [SP94] [SK03][BS03]. Our concern is to facilitate 
developers (at the development phases) with a tool to inherit (or reuse) 
axiomatizations without “weakening” them. In other words, when including a module 
into another module (using our composition operator, which we shall formalize in the 
next sections) all axioms defined in the included module should be inherited by (or 
applied in) the including module. 

It is also worth to mention that Vermeir [V83] has proposed an approach for 
modularizing large ORM diagrams based on heuristic procedures. However, this 
approach is not related to ours, as it is only concerned with how to “view” a one large 
ORM diagram in different degrees of abstraction or viewpoints. Another similar 
approach is proposed by Shoval [S85]. 

2.1 Definition (Module) A module is an axiomatization (i.e. a typical ORM Schema) 
of the form Μ = <Ρ, Ω>, where Ρ is a non empty set of fact-types, i.e. the set of 
object-types and their relationships; Ω is a set of constraints which declares what 
should necessarily hold in any possible world of M. In other words Ω specifies the 
legal models of M. 

2.2 Definition (Model, Module satisfiability) Using the standard notion of an 
interpretation of a first order theory, an interpretation I of a module M, is a model 
(also called “legal model”) of M iff each sentence of M (i.e. each ρ ∈ Ρ and each  ω 
∈ Ω) is true for I. 

Each module is assumed to be self-consistent, i.e. satisfiable. Module satisfiability 
demands that each role in the module can be satisfied [BHW91]. For each ρ in a 
given module Μ, ρ is satisfiable w.r.t. to M if there exists a model I of M such that ρI 
≠  ∅. 

Notice that we adopt a strong requirement for satisfiability, as we require each role in 
the schema to be satisfiable. A weak satisfiability requires only the module itself (as a 
whole) to be satisfiable [H89][BHW91]. 

2.3 Definition (Composition operator) Modules are composed by a composition 
operator, denoted by the symbol ‘⊕’. Let Μ = Μ1 ⊕ Μ2, we say that M is the 
composition of Μ1 and Μ2. Μ typically is the union of all fact-types and constraints 
in both modules. Let Μ1 = <Ρ1, Ω1> and Μ2 = <Ρ2, Ω2>, the composition of (Μ1 ⊕ 
Μ2) is formalized as Μ = < Ρ1 ⊕ Ρ2, Ω1 ⊕ Ω2>. A composition (Μ1 ⊕ Μ2) should 
imply both Μ1 and Μ2. In other words, for each model that satisfies (Μ1 ⊕ Μ2), it 
should also satisfy each of Μ1 and Μ2. Let (Μ1)I and (Μ2)I be the set of all possible 
models of Μ1 and Μ2 respectively. The set of possible models of (Μ1 ⊕ Μ2)I = (Μ1)I 
∩ (Μ2)I. A composition is called incompatible iff this composition cannot be 
satisfied, i.e. there is no model that can satisfy the composition, or each of the 
composed modules. 



 

2.4 Definition (Modular schema) A modular schema M = {Μ1 … Μn, ⊕ } is a set of 
modules with a composition operator between them, such that P =  (Ρ2 ⊕ … ⊕  Ρn) 
and Ω = (Ω1 ⊕ … ⊕ Ωn). 

3 Composition of ORM conceptual schemes 
In this section we present an algorithm for automatic composition of modules 
specified in ORM. We adopt the ORM formalization and syntax as found in 
[H89][H01], excluding three things. First, although ORM supports n-ary predicates, 
only binary predicates are considered in our approach. Second, our approach does not 
support objectification, or the so-called nested fact types in ORM. Finally, our 
approach does not support the derivation constraints that are not part of the ORM 
graphical notation.  
A composition of two modules (M = M1 ⊕ M2) is performed in the following steps: 
1) Combine the two sets of fact types (Ρ = Ρ1 ⊕ Ρ2). 2) Combine the two sets of 
constraints, Ω = Ω1 ⊕ Ω2. 3) Reason to find out whether the composition is 
satisfiable. Optionally, 4) reason to eliminate all implied constraints from the 
composition. The last two steps are not presented in this paper because of the limited 
space. See our approach in [JH05] for reasoning about the satisfiability of ORM 
Schemes. For step 4 we refer to [H89] for a comprehensive specification of constraint 
implication in ORM. 
The composition is considered an incompatible operation (and thus terminated) iff the 
result cannot be satisfied. 
Step 1: combining fact types 
When composing two sets of fact-types (Ρ = Ρ1 ⊕ Ρ2), an object-type M1(Τ) in 
module M1 and a object-type M2(Τ) in module M2 are considered exactly the same 
concept iff they are referred to by the same term T, and/or URI. Formally, (Μ1(Τ) = 
Μ2.(Τ)). Likewise, two fact-types are considered exactly the same (M1.<T1, r, r’, T2> 
= M2.<T1, r, r’, T2>) iff M1(Τ1) = M2(Τ1), M1.(r) = M2.(r), M1.(r’) = M2.(r’), and 
M1.(Τ2)= M2.(Τ2)4. See fig. 4. 
In case that M1 and M2 do not share any object-type between them (i.e. two disjoint 
sets of fact-types), the composition (M1 ⊕ M2) is considered an incompatible 
operation5, as there is no model that can satisfy both M1 and M2. Notice that in case 
an object-type is specified as “lexical” in one module and as “non-lexical” in another 
(e.g. ‘Account’), then in the composition, this object-type is considered “non-lexical”. 

                                                           
4 T refers to a Term (concept label), r refers to a role, r’ refers to an inverse role. 
5 In practice, we weaken this requirement to allow the composition of disjoint modules. For 

example, in case one wishes to compose two disjoint modules and later compose them within 
a third module that results in a joint composition.  



 

 
Fig. 4. Combining ORM fact types. 

Step 2: combining constraints 
When composing two modules, the combination of all constraints (Ω1 ⊕ Ω2) should 
be syntactically valid according to the ORM syntax. For example, some constraints 
need to be syntactically combined into one constraint. The combination of a set of 
constraints should imply all of them. Furthermore, some logical (i.e. satisfiability and 
implication) validations are also performed in this step, e.g. in case of combining two 
constraints that contradict or imply each other. In the following, we show how all 
ORM constraints can be combined. 
Step 2.1: Combining value constraints  
Given two value constraints T.v1 and T.v2 on the same object-type T, (notice that v1 
and v2 are two sets of values), their combination is the intersection T.v = T.v1 ∩ T.v2, 
see fig. 5(a). If T.v1 ∩ T.v2 is empty, then the composition (M1 ⊕ M2) is considered as 
incompatible operation, because the value constraints contradict each other and thus 
the object type cannot be satisfied, see fig. 5(b). 

 
Fig. 5. Combining value constraints.  

 



 

Step 2.2: Combining mandatory constraints 
When composing two modules, all mandatory constraints are included in the 
composition without any specific combining operation. 

Step 2.3: Combining disjunctive mandatory 
When composing two modules, all disjunctive mandatory constraints are included in 
the composition without any specific combining operation. 
Step 2.4: Combining uniqueness and frequency constraints 
When composing modules, uniqueness and frequency constraints are combined as 
follows: 
• As internal uniqueness implies predicate uniqueness [H89], the combination of 

these two constraints is internal uniqueness (see fig. 6. (a) and (b)).  
• In case of internal uniqueness and frequency constraints on the same role (see 

fig. 6(c)), the composition of (M1 ⊕ M2) is considered an incompatible 
operation, because the two constraints contradict each other [H89], and thus the 
role cannot be satisfied. Recall that a frequency of maximum 1 is considered 
internally uniqueness (see fig. 6(d)). 

• In case of two frequency constraints on the same role, FC1(min-max) and 
FC2(min-max), the combination FC(min-max) is calculated as FC.min = 
MaxOf(FC1.min, FC2.min) and FC.max = MinOf(FC1.max, FC2.max), see fig. 
6(e). In case the FC.min > FC.max, see fig. 6(f), then the composition of (Μ1 ⊕ 
Μ2) is considered an incompatible operation, because the two constraints are 
in conflict each other, and the role cannot be satisfied. 

• In other cases, all constraints are included in the composition without any 
specific combining operation. 

 
Fig. 6. An example of combining uniqueness and frequency constraints. 

Step 2.5: Combining set-comparison constraints 
Combining set-comparison constraints across two modules is performed in the 
following steps: 



 

• Each exclusion constraint that spans more than two singles or sequences of roles 
(called “multiple” exclusion) is converted into pairs of exclusions6, such in Fig. 7. 

 
Fig. 4.7. Converting multiple exclusions into pairs of exclusions. 

• When combining a subset (or equality) in one module and an exclusion in 
another, the composition of (Μ1 ⊕ Μ2) is considered an incompatible operation, 
because the two constraints contradict each other, and so both roles cannot be 
satisfied. See fig. 8. 

• As equality implies subset (but not vice versa) [H89], when combining a subset in 
one module and equality in another module, or when combining two subset 
constraints that are opposite to each other, the combination is always equality. See 
Fig. 9. 

 
Fig. 8. Combining subset (or equality) with exclusion. 

 
  Fig. 9. Combining subset and equality constraints. 

                                                           
6 This conversion is temporary for reasoning purposes, so it will not appear in the final result of 

the composition. Notice that “a single exclusion constraint a cross n roles replaces n(n-1)/2 
separate exclusion constraints between two roles” [H01]. 



 

Step 2.6: Combining subtype constraints (total, exclusive) 

When composing two modules, all subtype constraints are included in the 
composition without any specific combining operation. 

Step 2.7: Combining ring constraints 

ORM allows ring constraints to be applied to a pair of roles that are connected 
directly to the same object-type in a fact-type, or indirectly via supertypes. Six types 
of ring constraints are supported by ORM: antisymmetric (ans), asymmetric (as), 
acyclic (ac), irreflexive (ir), intransitive (it), and symmetric (sym) [H01][H99]. The 
relationships between the six ring constraints are formalized by [H01] using the Eular 
diagram as in fig. 10. This formalization helps one to visualize the implication and 
incompatibility between the constraints. For example, one can see that acyclic implies 
reflexivity, intransitivity implies reflexivity, the combination between antiasymmetric 
and reflexivity is exactly asymmetric, and acyclic and symmetric are incompatible.  

 
Fig. 10. Relationships between ring constraints [H01]. 

When composing two modules, ring constraints are combined based on the 
formalization in fig. 10. Any combination of ring constraints should be compatible, 
i.e. there is an intersection between their zones in the Eular diagram, e.g. see fig. 11 
(a). Otherwise, the composition of (Μ1 ⊕ Μ2) is considered an incompatible 
operation, because the combined rings constraints conflict each other, and thus the 
role cannot be satisfied. See fig. 11 (b). 

 
Fig. 11. Examples of compositions ring constraints. 

4 Discussion, conclusions and future work 
This paper has presented an approach to modularize and automatically compose 
ORM schemes. This approach is fully implemented in DogmaModeler [J05], which is 
a software tool for modeling ontologies and business rules using the ORM graphical 
notation. DogmaModeler enables users to create, compose, add, delete, manage, and 
browse ORM (modular) schemes. DogmaModeler also implements a library of ORM 



 

modular schemes, allowing different metadata standards (e.g. Dublin-Core, LOM, 
etc.) to be used for describing modules. This approach has been also used in a real-
life case study (CCFORM EU project, IST-2001-34908, 5th framework.) for 
developing modular axiomatizations of costumer complaints knowledge, see 
[J05][JVM03] for the experience and lessons learned. 

Although we assume in our formal framework (in section 2) that the composition is 
terminated in case of unsatisfiability, it is not necessary for the resultant composition, 
in our algorithm of composing ORM schemes (in section 3) to be satisfiable, thus our 
algorithm is called incomplete. This is because the general problem of determining 
consistency for all possible constraint patterns in ORM is undecidable [H97]. A 
complete semantic tableaux algorithm for deciding the satisfiability of ORM schemes 
(a research topic by itself) is not a goal of this paper. See our pattern-based approach 
in [JH05] for reasoning about the satisfiability of ORM schemes.  

As an upcoming effort, we plan to map ORM into the DLR Description Logic 
[CDLNR98], which is a powerful and decidable fragment of first order logic. In this 
way, the satisfiability of ORM schemes can be completely verified, and so our 
algorithm can be called complete. Furthermore, this will allow us to reuse our 
approach to modularize and compose DLR knowledge bases. 
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