
A Data Mashup Language for the Data Web

Mustafa Jarrar
University of Cyprus

mjarrar@cs.ucy.ac.cy

Marios D. Dikaiakos

University of Cyprus
mdd@cs.ucy.ac.cy

ABSTRACT

This paper is motivated by the massively increasing structured
data on the Web (Data Web), and the need for novel methods to
exploit these data to their full potential. Building on the
remarkable success of Web 2.0 mashups, this paper regards the
internet as a database, where each web data source is seen as a
table, and a mashup is seen as a query over these sources. We
propose a data mashup language, which allows people to
intuitively query and mash up structured and linked data on the
web. Unlike existing query methods, the novelty of MashQL is
that it allows people to navigate, query, and mash up a data
source(s) without any prior knowledge about its schema,
vocabulary, or technical details. We even do not assume even that
a data source should an online or inline schema. Furthermore,
MashQL supports query pipes as a built-in concept, rather than
only a visualization of links between modules.

Published as:
Mustafa Jarrar and Marios D. Dikaiakos: A Data Mashup
Language for the Data Web. Proceedings of LDOW, at
WWW’09, ACM, 2009.

1. INTRODUCTION AND MOTIVATION

In this short article we propose a data mashup approach in a
graphical and Yahoo Pipes’ style. This research is still a work in
progress, thus please refer to [13] for the latest findings.

In parallel to the continuous development of the hypertext web,
we are witnessing a rapid emergence of the Data Web. Not only
the amount of social metadata is increasing, but also many
companies (e.g., Google Base, Upcoming, Flicker, eBay,
Amazon, and others) started to make their content freely
accessible through APIs. Many others (see linkeddata.org) are
also making their content directly accessible in RDF and in a
linked manner [3]. We are also witnessing the launch of RDFa,
which allows people to access and consume HTML pages as
structured data sources.

This trend of structured and linked data is shifting the focus of
web technologies towards new paradigms of structured-data
retrieval. Traditional search engines cannot serve such data
because their core design is based on keyword-search over
unstructured data. For example, imagine how would be the results
when using Google to search a database of job vacancies, say
“well-paid research-oriented job in Europe”. The results will not

be precise or clean, because the query itself is still ambiguous
although the underlying data is structured. People are demanding
to not only retrieve job links but also want to know the starting
date, salary, location, and may render the results on a map.

Web 2.0 mashups are a first step in this direction. A mashup is a
web application that consumes data originated from third parties
and retrieved via APIs. For example, one can build a mashup that
retrieves only well-paid vacancies from Google Base and mix it
with similar vacancies from LinkedIn. The problem is that
building mashups is an art that is limited to skilled programmers.
Although some mashup editors have been proposed by the Web
2.0 community to simplify this art (such as Google Mashups,
Microsoft’s Popfly, IBM’s sMash, and Yahoo Pipes), however,
what can be achieved by these editors is limited. They only focus
on providing encapsulated access to some APIs, and still require
programming skills. In other words, these mashup methods are
motivating for -rather than solving- the problem of structured-data
retrieval. To expose the massive amount of structured data to its
full potential, people should be able to query and mash up this
data easily and effectively.

Position: To build on the success of Web 2.0 mashups and
overcome their limitation, we propose to regard the web as a
database, where each data source is seen as a table, and a mashup
is seen as a query over one or multiple sources. In other words,
instead of developing a mashup as an application that access
structured data through APIs, this art can be simplified by
regarding a mashup as a query. For example, instead of
developing a “program” to retrieve and fuse certain jobs from
Google Base and Jobs.ac.uk, this program should be seen as a
data query over two remote sources. Query formulation (i.e.,
mashup development or data fusion) should be fast and should not
require any programming skills.

Challenges: Before a user formulates a query on a data source,
she needs to know how the data is structured, and what are the
labels of the data elements, i.e., the schema. Web users are not
expected to investigate “what is the schema” each time they
search or filter structured information. This issue is particularly
more difficult in case of RDF and linked data. RDF data may
come without a schema\ontology, and if exists, the schema is
mixed up with the data. In addition, as RDF data is a graph, one
have to manually navigate this graph in order to formulate a query
about it. Imagine large and multiple linked data sources, with
diverse content and vocabularies, how you would manage to
understand the data structure, inter-relationships, namespaces, and
the unwieldy labels of the data elements. In short, formulating
queries in open environments, where data structures and

vocabularies are unknown in advance, is a hard challenge, and
may hamper building data mashups by non-IT people.

To allow people to query and mash up data sources intuitively, we
propose a data mashup language, called MashQL. The main
novelty of MashQL is that it allows non IT-skilled people to
query and explore one (or multiple) RDF sources without any
prior knowledge about the schema, structure, vocabulary, or any
technical details of these sources. To be more robust and cover
most cases in practice, we even do not assume that a data source
should have -an offline or online- schema\ontology at all. In the
background, MashQL queries are translated into and executed as
SPARQL queries.

Paper organization: Before presenting MashQL, in the next
section we overview the art of query formulation, which has been
studied by different research communities. We present MashQL
in section 3, and in section 4 we introduce the notion of query
pipes. The implementation of MashQL and a three use cases are
presented in section 5 and 6 respectively. The coverage and the
limitations of MashQL and its future directions are discussed in
section 7.

2. RELATED WORK

Several approaches have been proposed by the DB community to
query structured data sources, such as query-by-example [23] and
conceptual queries [4,6,17]. However, none of these approaches
was used by casual users. This is because they still assume
knowledge about the relational/conceptual schema. Among these,
we found ConQuer [4] has some nice features, specially the tree
structure of queries, but it also assumes one to start from the
schema. In the natural language processing community, it has
been proposed to allow people to write queries as natural
language sentences, and then translate these sentences into a
formal language (SQL [15] or XQuery [16]). However, these
approaches are challenged with the language ambiguity and the
“free mapping” between sentences and data schemes.

This topic started to receive a high importance within the
Semantic Web community. Several approaches (GRQL [1],
iSPARQL [11], NITELIGHT [19] and RDFAuthor [18]) are
proposing to represent triple patterns graphically as ellipses
connected with arrows. However, these approaches assume
advanced knowledge of RDF and SPARQL. Other approaches use
Visual Scripting Languages (e.g., SPARQLMotion [21] and Deri
Pipes [22]), by visualizing links between query modules; but a
query module merely is a window containing a SPARQL script in
a textual form. These approaches are inspired by some industrial
mashup editors such as Popfly, sMash, and Yahoo Pipes. These
industry editors provide a nice visualization of APIs’ interfaces
and some operators between them. However, when a user needs to
express a query over structured data, she needs to use the formal
language of that editor, such as YQL for Yahoo Pipes. Although
MashQL visualizes links between query modules, similar to
Yahoo Pipes and other Mashup editors, but the main purpose of

MashQL is to help people to formulate what is inside these query
modules.

Differently from the above Web 2.0 mashup editors, a more
sophisticated editor has been proposed in [8], called MashMaker.
It is a functional programming environment that allows one to
mashup web content in a spreadsheet-style user interface. Like a
spreadsheet, MashMaker stores every value that is computed in a
single, central data structure. MashMaker is not comparable with
MashQL since it cannot serve as a query language by it is own.

In XML databases, the Lore query language [9] has been
proposed to allow people to query XML data graphically, and
without prior knowledge about the data. Lore assumes that data is
represented as a graph, called EOM, which is close to RDF. The
difference between Lore and MashQL is not only the intuitiveness
and expressivity, but essentially, MashQL does not assume the
data graph to have a certain schema, however, Lore assumes that
a data graph should have a dataguide, which is a computed
summary of the data, i.e. play the role of a schema.

More about query formulations scenarios and (which scenario is
more intuitive to the casual user) can be found in a recent
usability study in [14]. It concluded that a query language should
be close to natural language and graphically intuitive, and it
should not assume knowledge about the data source.

3. THE MASHQL LANGUAGE

The main goal of MashQL is to allow people to mash up and fuse
data sources easily. In the background MashQL queries are
automatically translated into and executed as SPARQL queries.
Without prior knowledge about a data source, one can navigate
this source and fuse it with another source easily. To allow people
to build on each other’s results MashQL supports query pipes as a
built-in concept. The example below shows two web data sources
and a SPARQL query to retrieve “the book titles authored by Lara
and published after 2007”. The same query in MashQL is shown
in Figure 2. The first module specifies the query input, and the
second module specifies the query body. The output can be piped
into a third module (not shown here), which renders the results
into a certain format (such as HTML,XML or CSV), or as RDF
input to other queries. Notice that in this way, one can easily build
a query to fuse the content of two sources in a linked manner [3].
http://Site1.com/RDF

:a1 :Title “Web 2.0”
:a1 :Author “Hacker B.”
:a1 :Year 2007
:a1 :Publisher “Springer”
:a2 :Title “Web 3.0”
:a2 :Author “Smith B.”

http://Site2.com/RDF

:4 :Title “Semantic Web”
:4 :Author “Tom Lara”
:4 :PubYear 2005
:5 :Title “Web services”
:5 :Author “Bob Hacker”

Query:
PREFIX S1: <http://site1.com/rdf>
PREFIX S2: <http://site1.com/rdf>
SELECT ? ArticleTitle
FROM <http://site1.com/rdf>
FROM <http://site2.com/rdf>
WHERE {
 {{?X S1:Title ?ArticleTitle}UNION
 {?X S2:Title ?ArticleTitle}}
 {?X S1:Author ?X1} UNION {?X S2:Author ?X1}
 {?X S1:PubYear ?X2} UNION {?X S2:Year ?X2}
 FILTER regex(?X1, “^Hacker”)
 FILTER (?X2 > 2000)}

Results:
ArticleTitle

Web 2.0

Figure 1. An example of a SPARQL query.

Figure 2. An example of MashQL query.

The intuition of MashQL is described as the following: Each
query Q is seen as a tree. The root of this tree is called the query
subject (e.g. Article), denoted as Q(S), which is the subject matter
being inquired. Each branch of the tree is called a restriction R
and is used to restrict a certain property of the query subject, Q(S)

 R1 AND … AND Rn. Branches can be expanded to allow sub
trees (called query paths), which enable one to navigate the
underlying dataset. In this case, the object in the restriction is
considered the subject of its sub query. As Figure 3 shows, the
query retrieves the title of every article, published after 2005, and
written by an author, who has an address, this address has a
country called Cyprus.

PREFIX S1: <http://www.example.com>
SELECT ?ArticleTitle
FORM < http://www.example.com?
WHERE { ?X1 rdf:type :Article.
 ?X1 S1:Title ?ArticleTitle.
 ?X1 S1:Year ?X2.
 FILTER (?X2 > 2005).
 ?X1 S1:Author ?X3.
 ?X3 S1:Address ?X4.
 ?X4 S1:Country ?X5.
 FILTER regex(?X5, “Malta”)}

Figure 3. A query involving paths, and its mapping into SPARQL.

Formulating queries in MashQL is designed to be an interactive
process, by which the complexity of understanding data structures
is moved to the query editor. Users only use drop-down lists to
express their queries.

The query subject is selected from a list generated dynamically
from, either: (1) the set of the subject-types in the dataset; (2) or
the union of all subject and object identifiers in the dataset; users
can also choose to (3) introduce their own label; in this case the
label is seen as a variable and displayed in italic. The default
subject is the variable “Anything”. To add a restriction, the list of
properties (e.g., Title, Author) is generated, depending on the
chosen subject. Users may then select a filter (e.g., Equals,
Contains, Between, etc.), or select an object identifier from a list,
which is then generated from the set of the possible objects
identifies, depending on the previous selections. Furthermore,
users select to expand the tree to declare a query path. The
projection symbol  can be used before a variable to indicate that

it will be returned in the results1. In short, while interacting with
the editor, the editor queries the dataset in the background in
order to generate the next list depending on the previous
selections. In this way, people can navigate a graph without prior
knowledge about it.

Similar to SPARQL, all restrictions in MashQL are considered
necessary when evaluating a query. However, if a restriction is
prefixed with “maybe”, it is considered optional; and, if it is
prefixed with “without” is considered unbound (see Figure 3).
MashQL supports also union (denoted as “\”) between objects,
predicates, subjects, and queries; as well as, a type operator
(“Any”), Inverse predicates, datatype and language tags, and
many objects filters.

PREFIX a: <http:www.example.nam.com>
PREFIX S1: <http:www.example.si.com>
SELECT ?SongTitle, ?AlbumName
FROM <http:www.example.si.com>
WHERE {?Song S1:Title ?SongTitle.
 {{?Song S1:Duration ?X1}
UNION {?Song a:Length ?X1}}
 FILTER (?X1 > 3).
 {{?Song S1:Artist S1:Shakira}
UNION {?Song S1:Artist S1:AxelleRed}}
 OPTIONAL{?Song S1:Album ?AlbumName}.
 OPTIONAL{?Song S1:Copyright ?X2}.
 FILTER (!Bound(?X2)).}

Figure 4. A query involving optional and negative restrictions.

4. THE NOTION OF QUERY PIPES

To deploy MashQL in an open world some challenges might be
faced. This section overviews these challenges (from a query
formulation viewpoint) and introduces the notion of query pipes.

As discussed earlier, one may create a mashup and redirect its
output to another mashup. We call the chain of queries that
connect to each other in this way as pipe. Allowing people to
formulate query pipes is not merely a visualization of links
between query modules, but when compiling a pipe (i.e.,
translating it into SPARQL), some issues should be considered.

First: Translating MashQL into SPARQL SELECT statements is
not enough, because the SELECT statement produces the results
in a tabular form. To allow queries to input each other (especially

1 Some issues are lengthy to illustrate here. For example, when a
user moves the mouse over a restriction, it gets the editing mode
and all other restrictions get the verbalize mode (i.e., all boxes
and lists are made invisible, but the verbalization of their
content is generated and displayed instead). This is not only to
make the readability of the queries closer to natural language,
but also to allow users to validate whether what they did is what
they intended. The editor also detects and normalizes
namespaces: find similar URLs and hide them when necessary.
For example, when two properties originating from different
data sources have the same URL, their namespaces are found
and hided.

for producing linked data), the results of a query should be
formed as a graph. In SPARQL, the CONSTRUCT statement
produces a graph, but then one needs to manually specify how
this graph should be produced. To overcome this, we propose the
construct (CONSTRUCT *). This is not part of the standard
SPARQL but has been proposed also by others to be included in
the next version of the standard [20]. In MashQL, the
CONSTRUCT * means retrieves all triples involved in the query
conditions and satisfy them. For example, suppose the query in
Figure 2 is piped into another, its CONSTRUCT * translation will
retrieve {<:b1 :Title “Linked Data”>,<:b1 :Author “Lara

T.”>,<:b1 :Year 2007>}. When compiling a pipe of queries, If
the output of a query is directed as input to another query, a
CONSTRUCT * statement will be generated, otherwise, a
SELECT statement will be generated.

Second: When executing a SPARQL query, all query engines
assume that the queried data is stored locally; otherwise, this data
must be downloaded and stored at the engine-side before the
execution process starts. The time complexity of executing a
query on local data is usually fast2; however, the bottleneck will
be the downloading time. In case the input of a query is an output
to another query (i.e., in case of query pipes) the problem will be
even more difficult, as queries will be calling each other.
Furthermore, it is also possible that users (intentionally or by
mistake) end up with query loops (e.g. Q1Q2Q3Q1), which
may cause computational overheads. To face this challenge,
MashQL allows users to materialize the results of their
queries/pipes and decide their refreshing strategies, as follows:

The results of a query (called derived source) are stored
physically and deployed as a concrete RDF source. Primal input
sources (called base sources) are also cached for performance
purposes. Given a query Q over a set of base or derived sources
{D1,..,Dm}, the results of this query is denoted as D = Q(D1,..,Dm),
and D  {D1,..,Dm}. We define a Pipe as an acyclic chain of
queries, where the result of a query is an input to the next. The
chain of the queries that derives D is denoted as the pipe P(D).

We call the problem of keeping a pipe up-to-date, the pipes
consistency. Let D be the results of a query Q(D1,..,Dm), and T the
latest time the set {D1,..,Dm} has been changed. Then, D is
consistent at T if D=Q(D1,..,Dm). To maintain pipes consistency,
two updating strategies are used: Query auto-refresh and Pipe
auto-refresh. MashQL maintains for each base or derived source
D a timestamp of its last update RD

T and an auto-refresh time
interval RD

A; and for each query Q a timestamp of its previous
successful execution RQ

T and an auto-refresh interval RQ
A.

Query auto-refresh: Each query will be automatically executed if
its auto-refresh interval expires and one of its inputs is updated.
Let Qi be a query over a set of sources {D1,..,Dm}, and T is a

2 A query with medium size complexity over a large dataset takes one or
few seconds [5].

given time. Qi will be re-executed if (RQi
T + RQi

A)  T and (RQi
T <

RDj
T), where 1  j  m.

Pipe auto-refresh: Each pipe P(D) is automatically refreshed if
RD

A expires. This implies re-executing the chain of queries in this
pipe. Let P(D) be a pipe, D=Qn(D1,..,Dm), and T is a given time. If
(RD

T+RD
A)  T, then each ith query in P(D) is executed if (RQi

T <
RDj

T), where 1  j  m for Qi, and 1  i  n. Queries in P(D) are
executed from the bottom to the topmost, or recursively as
P(P(D1),…,P(Dm)).

As argued in the data warehousing literature [2,24] an efficient
refreshing strategies is the incremental updates, which suggests
that if a base source receives new transactions, only these
transactions are transformed and the affected queries are
refreshed. This strategy is still an open research issue for RDF in
an open world [7], because RDF data and queries are developed
and maintained autonomously by different people.

5. IMPLEMENTATION

First: we have developed an online mashup editor, which will be
publically available next month. Similar to creating feed mashups
in Yahoo Pipes, MashQL users can query and fuse data sources
and the output of their queries can be redirected as input to other
queries. In the background, Oracle 11g is used for storing and
querying RDF. When a user specifies a data source(s) as input, it
is bulk-loaded to the Oracle’s semantic technology tables.
MashQL queries are also translated into Oracle’s SPARQL.
While interacting with the editor to formulate a query, the editor
performs some background queries through AJAX. Each
published query is given a URL. Calling this URL means
executing this query and getting its results back.

Second: We started to also develop a Firefox add-on in order to
allow people develop mashups at the client side. The opened
pages -in the browser tabs- are automatically selected as input
sources, and at the left-side panel a mashup can be created. The
results are rendered by the browser in a new tab. The idea is to
allow web pages that embed RDF triples (i.e., RDFa or
microformats) to be queried and mashed up. For example, one
will be able to compose his publication list from Google Scholar,
DBLP, ACM, and CiteSeer; or, filter all video lectures given by
Berners-Lee from YouTube and VedioLectures. Because the
mentioned web sites do not support RDFa yet, one can mine/distil
the RDF triples, using third party services such as triplr.org,
buzzword.org.uk, wandora.org or Dapper.

6. USE CASES

This is section we present two hypothetical use cases to illustrate
using MashQL for developing data mashups.

6.1 Use case: Retailer

Fnac is a large retailer of cultural and consumer electronics
products. When a new product arrives to Fnac, it has to be entered
to the inventory database. This is usually done by scanning the
barcode on each product, and then manually filling the product
specifications. Furthermore, as Fnac trades in many countries,
their product specifications have to be translated into several
languages. To save time entering and translating information
manually, Fnac decided to reuse the product data specifications
(and their translation) that are produced at the factory side. For
example, suppose Fnac received three packages from Cannon,
Alfred, and IMDB. Fnac would like to scan the barcode of the
received products and then get their specifications directly from
the online catalogues of those suppliers. In Figure 5 we show
samples of online product catalogues of the three suppliers (we
assume they are published in RDFa). Figure 6 illustrates a query
that Fnac built to look up the multilingual titles of three products.
This query is a mashup of three RDF data sources with a user-
input of three barcode numbers. The query takes each of these
barcodes and finds the English and French titles. Notice that Fnac
assumed that short titles provided by Cannon are in English, thus,
they are joined with the other titles that are tagged with "@en".
See the retrieved results in Figure 8. In this same way, a barcode
reader could be connected with user-input module, to retrieve the
specifications (which could be stored at the supplier side) each
time a product is scanned.

http:www.cannon/products/rdf

_:P1 :ShortName “CanScan 4400F”

_:P1 :FullName “Canon CanoScan

 4400F Color Image Scanner”

_:P1 :Producer “Canon”

_:P1 :ShippingWeight> “4 pounds”

_:P1 :Barcode 9780133557022

_:P2 :ShortName “PowerShot SD100”

_:P2 :FullName “Canon PowerShot

 SD10007.1MP Camera 3x Zoom”

_:P2 :Producer “Canon”

_:P2 :ShippingWeight> “2 pounds”

_:P2 :Barcode 9781143557532

http://www.alfred.com/books

<:B1> :Type <:Book>

<:B1> :Title “The Prophet”@en

<:B1> :Title “Le prophète”@fr

<:B1> :BCode 8765422097653

<:B1> :Authors “Kahlil Gibran”

<:B1> :ISBN-10 0394404289

<:B3> :Type <:Book>

<:B3> :Title “Alfred Nobel”@en

<:B3> :Title “Alfred Nobel”@fr

<:B3> :BCode 75639898123

<:B3> :Authors “Kenne Fant”

<:B3> :ISBN- 0531123286

http://www.imdb.com/movies

_:1 rdf:Type <:Movie>

_:1 :Title “All about my mother”@en

_:1 :Title “Tout sur ma mère”@fr

_:1 :ProdCode 3248765355133

_:1 :NumberOfDiscs: 1

_:2 rdf:Type <:Movie>

_:2 :Title “Lords of the rings”@en

_:2 :Title “Seigneur des anneaux”@fr

_:2 : ProdCode 4852834058083

_:2 :NumberOfDiscs: 3

Figure 5. Sample of RDF data about products.

Figure 6. A mashup of product titles from different resources.

PREFIX s1: <http:www.cannon/products/rdf>
PREFIX s2: <http://www.alfred.com/books>
PREFIX s3: <http://www.imdb.com/movies>
SELECT ?Barcode ?EnglishTitle ?FrenchTitle
FROM <http:www.cannon/products/rdf>
FROM <http://www.alfred.com/books>
FROM <http://www.imdb.com/movies>
WHERE{
 {{?x s1:Barcode ?Barcode} UNION {?x s2:Bcode ?Barcode}
 UNION {?x s3:Prodcode ?Barcode}}
 FILTER (regex(?Barcode, “9781143557532”) ||
 regex(?Barcode, “8765422097653”) ||
 regex(?Barcode, “3248765355133)”).
{OPTIONAL {?x s1:ShortName ?EnglishTitle}} UNION
{{OPTIONAL {?x s1:Title ?EnglishTitle}} UNION
 {OPTIONAL {?x s2:Title ?EnglishTitle}}
 FILTER (lang(?EnglishName) = ”en”)}
 {{OPTIONAL {?x s1:Title ?FrenchTitle}} UNION
 {OPTIONAL {?x s2:Title ?FrenchTitle}}
 FILTER (lang(?FrenchTitle) = ”fr”)}}

Figure 7. The SPARQL equivalent of Figure 6.

Barcode EnglishTitle FrenchTitle

9781143557532 CanScan 4400F

8765422097653 The Prophet Le prophète

3248765355133 All about my mother Tout sur ma mère

Figure 8. Retrieved product titles.

6.2 Use case: Citations List

Bob would like to compile the list of articles that cited his articles
(excluding what he cited himself). He built a mashup using
MashQL to mix his citations retrieved from both Google Scholar
and CiteSeer, and then filter out the self-citations. First, he
performed a keyword search (“Bob Hacker”) on both Google
Scholar and CiteSeer3. Figure 9 shows a sample of the extracted
RDF triples. Bob’s MashQL query is shown in Figure 10, and its
SPARQL equivalent in Figure 11. In this query, Bob wrote:
retrieve every article that has a title (call it CitingArticle), has an

3 Similar to the previous use case, we assume that both Google
Scholar’s and CiteSeer’s render their search results in RDFa
(i.e. the RDF triples are embedded in HTML), as many
companies started to do nowadays. However, Bob can also use
a third party’s service (e.g. triplify.org) to extract triples from
HTML pages.

author that does not contain "Bob Hacker" or "Hacker B.", and
cites another article that has a title (call it CitedArticle), and has
an author that contains "Bob Hacker" or "Hacker B.". Figure 12
shows the result of this query.

http://scholar.google.com/scholar?q=b

ob+Hacker

<g:3> :Title “Prostate Cancer”

<g:3> :Author “Hacker B.,Hacker A.”

<g:4> :Title “Best and Worst
Lifestyles”

<g:4> :Atuhor “Bob Hacker”

<g:4> :Cites <g:3>

<g:7> :Title “Protein Categories”

<g:7> :Atuhor “Bob Smith”

<g:7> :Cites <g:3>

<g:7> :Cites <g:4>

<g:8> :Title “Cancer Vaccines”

<g:8> :Atuhor “Alice Hacker”

<g:8> :Cites <g:3>

http://www.citeseer.com/search?s=“Bo

b Hacker”

_:1 :Title “Prostate Cancer”

_:1 :Author “Hacker B., Hacker A.”

_:2 :Title “Protocols in Molecular
Biology”

_:2 :Atuhor “Bob Hacker”

_:2 :ArticleCited _:1

_:3 :Title “Cancer Vaccines”

_:3 :Atuhor “Eve Lee, Bob Hacker”

_:4 :Title “Overview about Systems
Biology”

_:4 :Atuhor “Tom Lara”

_:4 :ArticleCited _:1

_:4 :ArticleCited _:2

Figure 9. Sample of RDF data about Bob’s articles.

Figure 10. A mashup of citation from different sites.

PREFIX s1: http://scholar.google.com/scholar?q=bob+Hacker
PREFIX s2: http://www.citeseer.com/search?s=“Bob Hacker
SELECT CitingArticle? ?CitedArticle
From <http://scholar.google.com/scholar?q=bob+Hacker>
From <http://www.citeseer.com/search?s=“Bob Hacker”>
WHERE {
 {{?X1 s1:Title ?CitingArticle} UNION
 {?X1 s2:Title ?CitingArticle}}
 {{?X1 s1:Author ?X2} UNION {?X1 s2:Author ?X2}}
 {{?X1 s1:Cites ?X3} UNION {?X1 s2:ArticleCited ?X3}}
 {{?X3 S1:Title ?CitedArticle} UNION
 {?X3 S2:Title ?CitedArticle}
 {{?X3 s1:Author ?X4} UNION {?X3 s2:Author ?X4}}
 FILTER (regex(?X2,”^Bob Hacker”)||regex(?X2,”^Hacker
B.”))}
 FILTER Not(regex(?X4,”^Bob Hacker”) ||
 regex(?X4,”^Hacker B.”)) }

Figure 11. The SPARQL equivalent of Figure 10.

CitingArticle CitedArticle

Protein Categories Prostate Cancer

Protein Categories Best and Worst Lifestyles

Cancer Vaccines Prostate Cancer

Overview about Systems Biology Prostate Cancer

Overview about Systems Biology Protocols in Molecular Biology

Figure 12. The query results.

6.3 Use case: Job Seeking

Bob has a PhD in bioinformatics. He is looking for a full-time,
well paid, and research-oriented job in some European countries.
He spent an enormous amount of time searching different job
portals, each time trying many keywords and filters. Instead, Bob
used MashQL to find the job that meets his specific preferences.
Figure 13 shows Bob’s queries on Google Base and on
Jobs.ac.uk. First, he visited Google Base and performed a
keyword search (bioinformatics OR "computational biology" OR
"systems biology" OR e-health); he copied the link of the
retrieved results from Google (which are in rendered in RDFa)
into the RDFInput module; and then created a MashQL query on
these results. He performed a similar task to query Jobs.ac.uk.
The third MashQL module in Figure 13, mixes the results of the
above two queries and filters them based on location preferences
(provided in the UserInput module). The SPRQAL equivalent to
Bob’s MashQL query is shown in Figure 14.

Figure 13. Bob’s mashup of jobs.

CONSTRUCT *
WHERE {?Job :JobIndustry ?X1;
 :Type ?X2;
 :Currency ?X3;
 :Salary ?X4.
FILTER(?X1=“Education”||
 ?X1=“HealthCare”)
FILTER(?X2=“Full-Time”||
 ?X2=“Fulltime”)||
 ?X2=“Contract”)
FILTER(?X3=“^Euro”||
 ?X3=“^€”)
FILTER(?X4>=75000||
 ?X4<=120000)}

CONSTRUCT *
WHERE {
?Job :Category ?X1;
 :Role ?X2;
 :SalaryCurrency ?X3;
 :SalaryLower ?X4.
FILTER (?X1=“Health” ||
 ?X1=“BioSciences”)
FILTER(?X2=“Research\Academic
)
FILTER (?X3 = “UKP”)
FILTER (?X4 > 50000) }

SELECT ?Job
WHERE {
 ?Job :Location ?X1
 FILTER (?X1=“^UK” || ?X1=“^Belgium”)||?X1 = “^Germany”)
 || ?X1=“^Austria”)|| ?X1=“^Holland”))}

Figure 14. The SPARQL equivalent of Figure 13.

7. DISCUSSION AND FUTURE
DIRECTIONS

This article proposed a language that allows people to query and
mash up structured data without any prior knowledge about the
schema, structure, vocabulary, or technical details of this data.
Not only non-IT experts can use MashQL, but professionals can
also use it to build advanced queries.

MashQL supports all constructs of the W3C standard SPARQL,
except the “NAMED GRAPH” construct, which is introduced for
advanced use, i.e. switching between different graphs within same
query. To be close to user needs and intuition, we defined new
constructs (e.g. OneOf, union “\”, Without, Any, reverse “~”, and
others). The constructs are not directly supported in SPARQL, but
emulated. We plan to include aggregation and grouping functions;
especially as they are supported by Oracle’s SPARQL.

Yet, MashQL does not support inferencing constructs (such as
SubClass, or SubProperty), which are useful indeed for data
fusion. As these constructs are expensive to compute (thus lead to
bad interactivity of MashQL), we plan replace the Oracle’s
semantic technology that we are currently using as an RDF store,
with an RDF index that we are developing, for speedy OWL
inferencing.

We have downloaded most of the public RDF sources, on which
our MashQL editor will be deployed online next month. Not only
people will benefit from this, but we will also have the
opportunity to better evaluate the usability of MashQL and its
contribution to linking and fusing more data bottom-up.

Acknowledgement

We are indebted to Dr. George Pallis, Dr. Demetris Zeinalipour,
and other colleagues for their valuable comments and feedback
on the early drafts of this paper. This research is partially
supported by the SEARCHiN project (FP6-042467, Marie Curie
Actions).

REFERENCES

1 Athanasis N, Christophides V, Kotzinos D: Generating On the
Fly Queries for the Semantic Web. ISWC (2004)

2 Abiteboul S, Duschkal O: Complexity of Answering Queries
Using Materialized Views. ACM SIGACT-SIGMOD-
SIGART. (1998)

3 Bizer C, Heath T, Berners-Lee T:Linked Data: Principles and
State of the Art. WWW (2008)

4 Bloesch A, Halpin, T: Conceptual Queries using ConQuer–II.
(1997)

5 Chong E, Das S, Eadon G, Srinivasan J: An efficient SQL-
based RDF querying scheme. VLDB (2005)

6 Czejdo B, and Elmasri R, and Rusinkiewicz M, and Embley D:
An algebraic language for graphical query formulation using
an EER model. Computer Science conference. ACM. (1987)

7 Deng Y, Hung E, Subrahmanian VS: Maintaining RDF views.
Tech. Rep CS-TR-4612 University of Maryland. 2004

8 Ennals R, Garofalakis M: MashMaker: mashups for the
masses. SIGMOD Conference 2007:

9 Goldman R, Widom J: DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.
VLDB (1997)

10 Hofstede A, Proper H, and Weide T: Computer Supported
Query Formulation in an Evolving Context. Australasian DB
Conf. (1995)

11 http://demo.openlinksw.com/isparql (Feb. 2009)

12 Jarrar M, Dikaiakos: MashQL: A Query-by-Diagram Topping
SPARQL. Proceedings of ONISW'08 workshop. (2008).

13 Jarrar M, Dikaiakos M: A query-by-diagram language
(MashQL). Technical Article TAR200805. University of
Cyprus, 2008. ttp://www.cs.ucy.ac.cy/~mjarrar/JD08.pdf

14 Kaufmann E, Bernstein A: How Useful Are Natural Language
Interfaces to the Semantic Web for Casual End-Users. ISWC
(2007)

15 Li Y, Yang H, Jagadish H: NaLIX: An interactive natural
language interface for querying XML. SIGMOD (2005)

16 Popescu A, Etzioni O, Kautz H: Towards a theory of natural
language interfaces to databases. 8th Con on Intelligent user
interfaces. (2003)

17 Parent C, Spaccapietra S: About Complex Entities, Complex
Objects and Object-Oriented Data Models. Info. System
Concepts(1989)

18 http://rdfweb.org/people/damian/RDFAuthor (Jan. 2009)

19 Russell A, Smart R, Braines D, Shadbolt R.: NITELIGHT: A
Graphical Tool for Semantic Query Construction. The
Semantic Web User Interaction Workshop. (2008)

20 http://esw.w3.org/topic/SPARQL/Extensions? (Feb. 2009)

21 http://www.topquadrant.com/sparqlmotion (Feb. 2009)

22 Tummarello G, Polleres A, Morbidoni C: Who the FOAF
knows Alice? A needed step toward Semantic Web Pipes.
ISWC WS. (2007)

23 Zloof M: Query-by-Example:a Data Base Language. IBM
Systems Journal, 16(4). (1977)

24 Zhuge Y, Garcia-Molina H, Hammer J, Widom J: View
Maintenance in a Warehousing Environment. SIGMOD (1995)

