
10

Diacritic-Based Matching of Arabic Words

MUSTAFA JARRAR, Birzeit University, Palestine

FADI ZARAKET, American University, Lebanon

RAMI ASIA and HAMZEH AMAYREH, Birzeit University, Palestine

Words in Arabic consist of letters and short vowel symbols called diacritics inscribed atop regular letters.

Changing diacritics may change the syntax and semantics of a word; turning it into another. This results in

difficulties when comparing words based solely on string matching. Typically, Arabic NLP applications resort

to morphological analysis to battle ambiguity originating from this and other challenges. In this article, we

introduce three alternative algorithms to compare two words with possibly different diacritics. We propose

the Subsume knowledge-based algorithm, the Imply rule-based algorithm, and the Alike machine-learning-

based algorithm. We evaluated the soundness, completeness, and accuracy of the algorithms against a large

dataset of 86,886 word pairs. Our evaluation shows that the accuracy of Subsume (100%), Imply (99.32%), and

Alike (99.53%). Although accurate, Subsume was able to judge only 75% of the data. Both Subsume and Imply

are sound, while Alike is not. We demonstrate the utility of the algorithms using a real-life use case – in

lemma disambiguation and in linking hundreds of Arabic dictionaries.

CCS Concepts: • Computing methodologies → Natural language processing; Phonology/

morphology; Language resources;

Additional Key Words and Phrases: Arabic, diacritics, disambiguation

ACM Reference format:

Mustafa Jarrar, Fadi Zaraket, Rami Asia, and Hamzeh Amayreh. 2018. Diacritic-Based Matching of Arabic

Words. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 18, 2, Article 10 (December 2018), 21 pages.

https://doi.org/10.1145/3242177

1 INTRODUCTION

Diacritics are distinguishing features of the Arabic language. Arabic words consist of both let-
ters and diacritics. Changing the diacritics may change the semantics of a word. The problem
is that most Arabic text is typically written without diacritics, which makes it highly ambigu-
ous. Although several approaches have recently been proposed to automatically restore diacritics
to Arabic text (i.e., words in context), there exist no novel solutions to treat words without the
context. People either fully ignore diacritics, or sensitively consider and treat them as different
characters. This makes string-matching techniques problematic if used in Arabic. For example, it

This research was partially funded by Birzeit University (VerbMesh project, funded by BZU research committee), partially

by Google’s Faculty Research Award to Mustafa Jarrar and partially by grants from the Lebanese National Council for

Scientific Research to Fadi Zaraket.

Authors’ addresses: M. Jarrar, R. Asia, and H. Amayreh, Computer Science Department, Birzeit University, 1 Almarj St.,

Ramallah, West Bank 627, Palestine; emails: {mustafajarrar, rami.t.asia}@gmail.com, hamayreh@hotmail.com; F. Zaraket,

American University of Beirut, 1107 Riad El-Solh St. Beirut 2020, Lebanon; email: fadizaraket@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

2375-4699/2018/12-ART10 $15.00

https://doi.org/10.1145/3242177

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

https://doi.org/10.1145/3242177
mailto:permissions@acm.org
https://doi.org/10.1145/3242177

10:2 M. Jarrar et al.

Table 1. Basic Diacritic Table in Buckwalter

Diacritic Name Diacritic Diacritic BW Example

Fatha (short a) a (rasama) drew

Dhamma (short o) u (sunobulap) spike (of grain)
Kasra (short y) i (sihAm) arrows
Sukoon (silent vowel) o (siEor) price
Shadda (stress mark) ∼ (had∼ad) threatened
Tanween-fatha F (abadAF) never
Tanween-dhamma N (kalamuN) pen
Tanween-kasra K ($aEobIK) people

is difficult to automatically compare words, or to calculate a distance metric between words such

as , , , , or , especially when the context is not pro-
vided. Diacritic-based comparison framework is important in many basic application scenarios,
such as searching in MS Word or using conditions in MS Excel, Google Sheets, SQL queries, and
many others. As will be illustrated in the real-life use case on dictionary integration presented
later in this article, we found it very challenging to link and map between dictionary entries, due
to different diacritization of these entries.
Diacritics in Arabic have two main roles: (i) they provide a phonetic guide, to help readers

recite/articulate the text correctly, and (ii) they disambiguate the intended meaning of otherwise
ambiguous words. Table 1 shows a list of the most used diacritics of the Modern Standard Arabic
(MSA). The fatha and kasra diacritics show as accents above and below the corresponding letter
and indicate short “a” and “i” vowels, respectively. The dhamma diacritic shows as an accent with
a small circle and denotes a short “o” vowel. A sukoon shows a small circle atop and denotes a
silent diacritic-sound on the letter. A shadda is a gemination marker seen above a letter. It denotes
stressing the letter such that the letter is pronounced twice: first as a silent letter and second with
a non-sukoon diacritic. A tanween diacritic is an indefiniteness mark and shows as a double fatha,
kasra, or dhamma diacritic. It denotes the letter spelled with the marked diacritic followed by a
silent “n” diacritic-sound.
It is common practice for Arabs to write without diacritics, which makes Arabic text highly

ambiguous (Attia 2008). Ambiguity refers to the fact that the morphological, syntactic, or seman-
tic analysis of one word may lead to several possible word matches. That is, two words with the
same non-diacritic letters, but with different and possibly omitted diacritic characters, are not nec-
essarily the same. While morphological analysis is key in current automated analysis techniques
for Arabic text (i.e., words in context), it is known also that morphological ambiguity is still a
“notorious” problem for the Arabic language (Kiraz 1998; Attia 2008).

The results of Debili et al. (2002), cited in Boujelben et al. (2008), state that non-diacritized words
exhibit 8.7 syntactical ambiguity on the average, which drops to 5.6 for diacritized words. For
instance, the word (jzr) has different interpretations when it is not diacritized; e.g. (jazar)

means carrots, (juzur) means islands, and (jazr) means the fallback of the tide. The word
(jazara) is a past tense verb meaning “butchered.”

The use of diacritics for disambiguation is not restricted to human readers. It applies also to
automated tools such as morphological analyzers. Some morphological analyzers (Attia 2008;
Kammoun et al. 2010) use partial diacritics to resolve ambiguity, e.g., they filter solutions that are
inconsistent with diacritics available in the input text.
Essential to the process of disambiguation is the comparison of two Arabic words with the

same sequence of non-diacritic letters, but with different diacritics. A simple string comparison

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:3

of two Arabic words such as word (jzr) and (jazar) returns a negative result due to the
two additional diacritics, while readers identify them as the same word in a sentence if that is
the appropriate meaning. In analogy with the Latin Alphabet languages, one may imagine the
challenges that arise when removing vowels from existing words.
Research exists and uses sophisticated techniques to (1) promote the use of existing diacritics

for automated understanding of Arabic text (Attia 2008; Boujelben et al. 2008; Debili et al. 2002;
Vergyri and Kirchhoff 2004; Alqrainy et al. 2008), (2) restore diacritics to non-diacriticized words
(Zitouni and Sarikaya 2009; Bahanshal and Al-Khalifa 2012; Khorsheed 2013; Habash et al. 2007;
Hattab and Hussain 2012; Rashwan et al. 2011; Roth et al. 2008; Said et al. 2013; Mohamed
et al. 2014; Darwish et al. 2017), and (3) include diacritics in corpora (Attia 2008; Beesley 2001;
Buckwalter 2002; Kammoun et al. 2010; Kulick et al. 2010). We review and comment on this
related work in Section 2. To the best of our knowledge, no work exists that attempts to improve
the accuracy of comparing two Arabic words with the same non-diacritic letters. Most existing
NLP tools and applications typically ignore diacritics in searching and matching of Arabic words
due to the complexity of handling them.
In practice, readers may Google these two different Arabic words: (jazarun) means carrots,

and (juzurun) means islands to get the same set of results; which illustrates that diacritics are
not taken into account by Google. Bing, Yahoo, Facebook, and Twitter are other examples of search
engines that ignore diacritics in the search process; diacritics are obviously removed during the
indexing and query-parsing phases. MicrosoftWord provides a partial treatment of diacritics when
searching a document, but Google Docs, Google Sheets, and Google Contacts, as well as Microsoft
Excel, provide problematic support when treating diacritics. They use exact string-matching by

considering diacritics sensitively as different characters, e.g., and its variant with amissing
dhamma in the middle do not match.
The importance of treating and ignoring diacritics vary from one application scenario to an-

other. It might be less harmful if diacritics are ignored in Internet search engines, as it only causes
more irrelevant results to be retrieved (i.e., less precision). However, it is more challenging to
treat diacritics when applying filters, as in Excel and Sheets, or when writing conditions in data-
base queries. Other important challenges appear also when parsing and disambiguating fully or
lightly-diacritized text. As we shall illustrate in the dictionary integration use case in Section 7,
basic matching between dictionary entries, in order to map between these entries, is found to be
a challenging difficult task, due to different diacritization of these entries.
To sum up, existing Arabic NLP tools either fully ignore diacritics, or sensitively consider and

treat them as different characters; and there are no existing methods to smartly compare between
diacritized Arabic words.
In this article, we present a novel treatment for diacritic-aware Arabic word matching. We pro-

pose three alternative algorithms that compare two words with similar letters and possibly dif-
ferent diacritics, and study their accuracy. First, we propose the Subsume algorithm, which is a
knowledge-based algorithm that uses amorphological analyzer in the background to checkwhether
word w1 morphologically subsumes word w2. It computes a score metric that measures how much
w1 is a morphological replacement of w2. Second, we propose the Alike algorithm, which is a
machine-learning based algorithm, that uses a decision tree to classify a pair of words into “same”
or “different.” Third, we propose the Imply algorithm, which is a rule-based algorithm that de-
termines an implication relationship (i.e., whether word w1 implies word w2), and computes the
distance and conflicts between them based on a distance-map tuned over a long domain experience.
We evaluated the three algorithms against a large dataset that consists of 86,886 distinct

word pairs. The dataset was constructed by collecting 35,201 distinct words from several Arabic
dictionaries. Each word was then paired with potentially similar words generated from the SAMA

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:4 M. Jarrar et al.

3.1 database that the ALMOR analyzer proposed to be potentially the same word. A linguist was
employed to judge whether each pair is the “same” or “different,” as explained in Section 6.1. This
dataset was used to evaluate the accuracy as well as the soundness and completeness of the three
algorithms.
Our evaluation in Section 6, shows the accuracy of Subsume (100%), Imply (99.32%), and Alike

(99.53%). Although Subsume was accurate, it was incomplete (i.e., was able to judge only 75% of
the data). Both Subsume and Imply are sound (i.e., their judgment of whether a pair of words is the
same, was always correct). This is not the case for Alike; although it was highly accurate and com-
plete (returned results for all pairs), there were cases judged to be “same” that are really “different.”
Using the notions of soundness and completeness, formally defined in Section 6, is important to
compare between the algorithms and to know whether to always trust their judgment or not.
A real-life use case is used to demonstrate the utility of the algorithms.We used the algorithms to

integrate and link hundreds of Arabic dictionaries—by matching entries (i.e., verb lemmas) found
across these dictionaries. We illustrated that basic string-matching techniques alone did not suffice
to match dictionary entries. This is because these entries were partially or non-diacritized, and
morphological analyzers were unable to help in disambiguating them.
In Sections 7 and 8, we inspect the utility of the metrics provided by the algorithms. In particular,

Section 8 inspects the utility of the metrics in an automated clustering application. We analyzed
a dataset of pairs of words and their distance metrics according to the Subsume and Imply algo-
rithms and performed k-means clustering.We then inspected the generated clusters for insight.We
observed that pairs in the same cluster shared common structural characteristics which is strong
evidence of the utility of the distance metrics.
The rest of this article proceeds as follows: In Section 2, we overview others’ work and discuss

how it relates to our proposed solutions. We present and discuss the Subsume, Alike, and Imply
algorithms in Sections 3, 4, and 5, respectively. In Section 6, we present the experimental setup and
discuss our evaluation results. Then we discuss the utility of our work for practical case studies in
Sections 7 and 8. Finally, we conclude and discuss future work in Section 9.

2 RELATEDWORK

We first review related work that stresses the importance of considering diacritics for automated
comprehension of Arabic text and for ambiguity reduction (Attia 2008; Boujelben et al. 2008;
Debili et al. 2002; Vergyri and Kirchhoff 2004; Alqrainy et al. 2008). Then we review works that
attempt to restore diacritics to Arabic text (Bahanshal and Al-Khalifa 2012; Khorsheed 2013;
Habash et al. 2007; Hattab and Hussain 2012; Rashwan et al. 2011; Roth et al. 2008; Said et al.
2013). Then we review morphological resources that include diacritic information (Attia 2008;
Beesley 2001; Buckwalter 2002; Kammoun et al. 2010; Kulick et al. 2010).

Diacritics and Disambiguation. Several studies attested to the high ambiguity of un-vocalized
text and the power of diacritics in ambiguity reduction. Programs that automatically add diacritics
to Arabic text exist in the software industry, such as Sakhr and RDI. However, these commercial
products are closed source. They use morphological analysis and syntax analysis to predict the
diacritics. The work in Vergyri and Kirchhoff (2004) automatically adds diacritics for transcriptions
of spoken Arabic text and employs existing acoustic information to predict the diacritics. The
work in Attia (2008) introduces an ambiguity-controlled morphological analyzer that employs
a rule-based system and finite state machines. It found that some insignificant diacritics can be
ignored, and it illustrates how diacritics might be used to filter vocalized solutions, especially for
morphological analyzers.
Both Vergyri and Kirchhoff (2004) and Attia (2008) quote from Debili et al. (2002) that a dictio-

nary word with no diacritics has on average 2.9 different possible vocalizations and that a sample

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:5

text of 23 thousand words exhibited 11.6 different diacritic assignments per word on average. The
same source reports that 74% of Arabic words have more than one possible vocalization. It also
reports an average of 8.7 syntactical ambiguity for un-vocalized words, which drops to 5.6 for
vocalized words. This is evidence of the role of diacritics in disambiguation of word forms, and
that ignoring diacritics on Arabic words increases their polysemy, especially if no context (e.g.,
sentences) is used to help disambiguate them. We shall come back to this issue in Section 7, in
which we further illustrated the challenges we faced with lemma disambiguation in the dictionary
integration use case.
The work in Boujelben et al. (2008) presents problems in DECORA-1 related to detection and

correction of agreement errors in Arabic text. They introduced an enhancement, DECORA-2, that
considers diacritics to help resolve the problems, and showed an improvement of about 10% over
MSWord. They claimed that most Arabic text omits diacritics, fewArabic teaching books have par-
tial diacritics, and only the Quran and teaching books for early stages are fully vocalized. Studies
in Boujelben et al. (2008) show that an Arabic word usually has six varying vocalizations.

The work in Alqrainy et al. (2008) takes an Arabic word, checks it against preset vocalization
templates and returns the POS tags of the word. The approach works for a set of verbs and nouns
and is reported to decrease ambiguity when diacritics that vocalize the last character of the pat-
tern exist. This is evidence of both the utility of diacritics in disambiguation of POS tags and the
importance of where to place the diacritic within the word.
Nevertheless, the study in Seraye (2004) concludes that the presence of diacritics affects reading

speed negatively while increasing text comprehension only when diacritics play a role in disam-
biguation. It advises that writers must provide diacritics economically when needed for disam-
biguation of the intended meaning.

Diacritic Restoration. The vast majority of work on Arabic diacritics is concerned with restor-
ing diacritics to Arabic text (Bahanshal and Al-Khalifa 2012; Khorsheed 2013; Habash et al. 2007;
Hattab and Hussain 2012; Rashwan et al. 2011; Roth et al. 2008; Said et al. 2013).

Among other morphological disambiguation tasks, the work in Roth et al. (2008) explores two
diacritics related tasks: DiacFull and DiacPart. DiacFull restores diacritics to all letters of the word
and DiacPart restores them to all letters except the final letter. The work uses a linear optimization
technique to select the best diacritization of the given word. They confirm two important hypothe-
ses: (1) the use of lexemic features (e.g., POS, gender, number and others) help in determining the
best diacritics, (2) tuning the parameters of the optimization algorithm to the task at hand helps
the disambiguation task. In our work, we manually fine-tuned weights that characterize an arbi-
trary distance between diacritics to reduce comparison errors and we arrived at a similar result to
hypothesis (1).
The work in Habash (2007) is a follow-on to Roth et al. (2008). It adds diacritics to words in

context of morphological disambiguation and tokenization.
The work in Zitouni and Sarikaya (2009) proposed the use of a maximum entropy framework

for restoring diacritics, which allows combining diverse sources, such as lexical, segment-based,
and POS features. This approach was compared later with another approach proposed by Belinkov
and Glass (2015) who claim that diacritic restoration can be achieved without relying on external
sources other than diacritized text. They use recurrent neural networks to predict diacritics. They
claim that this approach outperforms the state-of-the-art methods.
The work in Rashwan et al. (2011) describes a commercial product by RDI to automate diacriti-

zation of Arabic text. It uses a stochastic process to decide the most likely diacritic map. Since the
map is not necessarily grammatically correct and the word in question may be out of the vocabu-
lary, a second stochastic process uses more features of the word including morphological features
to select the most likely compatible solution out of a set of diacritic-based feature factorizations.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:6 M. Jarrar et al.

This work is evidence of howmuch partial diacritics can reduce sophisticated work needed later to
disambiguate the Arabic text. With our Subsume and Imply algorithms one can infer the diacritic
that most reduces ambiguity and use it.
Thework in Khorsheed (2013) presents a system for Arabic language diacritization usingHidden

Markov Models (HMMs). It represents each diacritic with an HMM and uses the context of the
whole text to concatenate the HMM decisions and produce the final diacritic sequence.
The work in Said et al. (2013) presents a hybrid system for Arabic diacritization based on rules

and data driven techniques. It uses morphological features and out of vocabulary elimination tech-
niques to reduce the solutions. They do better than (Habash et al. 2007; Roth et al. 2008; Rashwan
et al. 2011) by an absolute margin of 1.1% and still make an 11.4 full diacritization word error rate.
This is evidence of how complex and sophisticated the diacritization process is.
The work in Hattab and Hussain (2012) presents a system to diacritize Arabic text automat-

ically using a statistical language model and morpho-syntactical language models. The work in
Bahanshal and Al-Khalifa (2012) presents an evaluation of three commercial Arabic diacritization
systems using fully diacritized text from the Quran and short poems from the period of the advent
of Islam.
A different system for automatic diacritic restoration of Arabic texts was proposed byMohamed

et al. (2014). They proposed a hybrid approach which combines morphological analysis and hidden
Markov. This approach differs from other hybrid approaches to linguistic and statistical models.
It uses the Alkhalil analyzer with a lexical database containing the most frequent words in Arabic
language.
The work in Darwish et al. (2017) presents a recent state-of-the-art and publicly available Arabic

diacritizer. A Viterbi decoder was used for word-level diacritization with back-offs to stems and
morphological patterns. The authors illustrated better results compared with the work in Belinkov
and Glass (2015) and Habash et al. (2007), and with work in Rashwan et al. (2011) if case-ending is
considered.
For more in-depth related work on Arabic diacritization, Azmi and Almajed (2015) presents a

comprehensive survey. Compared with our work, the above approaches aim at restoring diacritics
to Arabic text, while our goal in this article is to provide a framework for comparing and matching
between Arabic words. Nevertheless, both kinds of approaches contribute to resolving the ambi-
guity and the challenges imposed due to missing diacritics in Arabic.

Existing Morphological Resources with Diacritics. In addition to automatic diacritization tools,
previous work includes tools that disambiguate based on input diacritics. Analyzers such as
Buckwalter (2002) and SAMA in Kulick et al. (2010), contain the diacritization of lexicon entries
in addition to other annotations. However, they ignore the partial diacritics in the analysis
phase and the analysis makes little benefit from lexicon vocalizations. MORPHO3 in Attia (2008),
Arabic Xerox in Beesley (2001), and MORPH2 in Kammoun et al. (2010) are other examples of
morphological analyzers with the same capability. They later filter morphological solutions based
on their consistency with the existing partial diacritics.
To summarize, we find that the vast majority of work discussing the challenges imposed due to

missing diacritics is evidence of the utility of our work. Sophisticated and advanced technologies,
coupled with advanced expert rules used to automate diacritization, lack in accuracy and make
significant errors (11.4%). Morphological analyzers avoid partial diacritics in analysis and defer to
interested NLP applications the task of filtering out inappropriate interpretations.
In conclusion, we are the first to approach the diacritic placement problem as a word-to-word

comparison problem. Leveraging our algorithms, NLP tools can reduce ambiguity by placing the
diacritics that matter. Users at the entry level also can be encouraged to introduce the minimal
number of diacritics that matter to reduce ambiguity.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:7

Table 2. Three Morphological Solutions for

Meaning Transliteration Suffix Stem Prefix
Did he praise them? aAhamidahum
Their Ahmad aAhmadahum
The best of them aAhmadahum

3 THE SUBSUME ALGORITHM

The Subsume algorithm takes two Arabic words w1 and w2 and returns a score between 0 and 1
that denotes how much w1 can morphologically subsume w2. The algorithm uses a morphological
analyzer to compute the morphological distance. Before presenting how the algorithm works, we
define the following notions:

Definition 1 (Morpheme). A morpheme is the smallest unit of morphological structure of a given
word. For Arabic, a morpheme is either an affix or a stem. The affix is either a prefix or a suffix. The
stem could be a root or an inflection of the root. A word is the concatenation of connecting prefix,
stem and suffix morphemes where the prefix and the suffix could be empty strings. Morpheme
connectivity is a predefined relation. For example, the prefix ya connects to the stem l’b (play)
to form the word yal’b (is playing). Each morpheme, whether inflectional or not, is associated
with morphological features such as part of speech (POS), transliteration, lemma and gloss.

Definition 2 (Morphological Analysis). The morphological analysis of a given word w is the set of
all possible morpheme concatenations that form w. A word may have more than one morpholog-
ical solution and one solution may have more than one set of features associated with it. Table 2

illustrates three different solutions for the word (Ahmdhm). The first solution differs from
the other two in diacritics, morpheme segmentation and translation. The other two agree in dia-
critics and morpheme segmentation, however they differ in meaning.

Definition 3 (Morphology Subsume Relation). We say word w1 morphologically subsumes word
w2 if the morphological analysis of w1 returns a set of solutions including the set of solutions

returned by the morphological analysis of w2. For example, the words without diacritics, or

with one fatha on the first letter, morphologically subsumes and .

Definition 4 (Morphology Distance Metric). The morphological distance metric between two
words w1 and w2 measures how much w1 can morphologically disambiguate w2. If w1 and w2

fully match in diacritized and non-diacritized characters, then the distance is 1; which denotes
similarity. If w1 and w2 have different non-diacritic characters, then the metric is 0; which is the
maximum distance and the words are deemed different. In case the words have the same non- di-
acritized characters, the metric is calculated as |M2 −M1Minus |/|M2 | where M1 and M2 are the
sets of morphological solutions of w1 and w2, respectively, M1Minus is the complement of M1 in
M, and |M| denotes the cardinality of M. Intuitively, the distance is a ratio measure of how many
solutions of M2 can be eliminated by the diacritics of M1.

3.1 Description of the Subsume Algorithm

The Subsume algorithm (see SubsumeMetric in Figure 1) first makes use of a diacritic consistency
algorithm isDiacriticConsistent shown in Figure 2.
Algorithm isDiacriticConsistent takes two words and makes sure the sequence of non-

diacritic letters is an exact match and the partial diacritics included in the two words are

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:8 M. Jarrar et al.

Fig. 1. SubsumeMetric Algorithm. Fig. 2. isDiacriticConsistent Algorithm.

Table 3. Morphological Solutions for

Transliteration Semantics POS

bun∼ Coffee NOUN
bin/ben Name of a person (like Benjamin) NOUN_PROP
Bin Son Noun

bin+na They (female plural) appear VERB_PERFECT+ PVSUFF_SUBJ:3F
bi+n with Noon (name of a person) PREP+NOUN_PROP

consistent. Two diacritics are considered consistent if they are not conflicting diacritics. For

example, the partially diacritized words and are diacritic-consistent as there is no conflict
in diacritic assignment between them. However, the partially diacritized words and are
not diacritic consistent since the fatha and the kasra on the third letter are conflicting.

If isDiacriticConsistent returns false, the Subsume algorithm reports that the two words are
distinct by returning a score of 0. Otherwise, the Subsume algorithm uses amorphological analyzer
to compute the morphological solutions M1 and M2 of w1 and w2, respectively. It also computes
M, the morphological solutions of w, the undiacritized form of w1 and w2. The Subsume algorithm
computes M1Minus, the complement of M1 in M, or intuitively the solutions that are eliminated
due to the diacritics in w1. Then, the algorithm computes M12 by subtracting M1Minus from M2.
Intuitively, this is the set of solutions that would have been eliminated fromM2 by the diacritics of
w1. The metric (| M2 −M1Minus | / |M2|) finally computes and returns the ratio of the eliminated
solutions to the solutions of w2.

Example. To compute the morphological distance between w1 () and w2 (), we first run the
morphological analyzer to retrieve the solutions of the undiacritized word (w). Table 3 shows
five different morphological solutions (|M| = 5) of (w). Notice that the same word with a kasra
on the first letter (w1) has four solutions (|M1| = 4); and that the same word with a shadda on
the second letter (w2) has two solutions (|M2| = 2). Now, the set M1Minus has only one element

. The set M12 eliminates and has consequently one solution .

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:9

Consequently, SubsumeMetric(,) returns 0.5 and SubsumeMetric(,) returns 0.25. Intu-
itively, sincew1 () andw2 () are diacritic consistent and have no conflicting diacritics, the kasra
onw1 implies half the solutions ofw2 while the shadda ofw2 implies one fourth the solutions ofw1.

The result of the Subsume algorithm is a score denoting how much word w1 is a morphological
replacement of word w2.
As will be discussed in Section 6, although this algorithm is sound and its accuracy is 100%, it

was unable to judge 25% of the evaluation dataset. This is due to the missing knowledge in the
lexicon used by the morphological analyzer (SAMA 3.1).

4 THE ALIKE MACHINE-LEARNING-BASED ALGORITHM

This section illustrates the use of supervised machine learning algorithms to compare between
Arabic words. As explained in Section 6, we prepared and used a large dataset (86,886 pairs of
words) classified by a linguist whether the pairs are the same or different.
We tried to extract and use many types of features related to comparing the diacritic characters

to each other and the non-diacritic characters to each other. The features also include diacritic
positioning and cardinality. Table 4 includes a list of the features that we found most useful to

include in our feature vector with an example on each for the words pair: (Salubu,
Sal∼aba). We used the Information Gain algorithm (which measures the possible drop in entropy
of the nodes in each level) to preprocess the features and select the most important ones among
them. We passed the top five selected features as input to the decision-tree-based classifier.
The decision-tree algorithm (Version C5.0, implemented in R “C50” package) was used as a

classifier (Quinlan 1993). We progressively tried the pre-processing and the training with 30%, up
to 70% of the data set in increments of 10%. A decision tree defines predicates that split the values
of each feature into several branches. Then it orders the features in a manner to minimize the size
of the tree and thus minimize branching in the classifier. The root of the tree is the feature with
the highest order and the leaves of the tree are the decisions. Each decision is characterized with
a decision support count and a local error estimation.
We validated the computed decision-tree classifier across a fixed subset of the remaining dataset

correspondingly. As will be discussed in Section 6, this decision-tree-based classifier algorithm
achieved above 99% precision and recall. Table 5 shows the top 5 features according to the Infor-
mation Gain algorithm. The most important feature is whether the shadda diacritics were different
across the two words. The second most important feature is whether the concatenation of the first
three diacritics differed or not (D13). The conflict in non-diacritic characters was the third most
important feature. The D36A and D36B come next in importance and are variations of the con-
catenation of the third to sixth characters from w1 and w2.
We passed the top five features to the decision-tree algorithm and we trained with 30%, 40%,

50%, 60%, and 70% of the data set. These subsets were randomly selected using R’s runif function,
which is the most commonmethod used to simulate independent uniform random numbers. Then,
we obtained decision-tree classifiers similar to the one in Figure 3. We validated the classifiers on
the same fixed subset of 30% and obtained consistently an accuracy of more than 99% as shown
in Figure 4.

5 THE IMPLY ALGORITHM

This section presents the Imply algorithm, which is a rule-based algorithm fine-tuned by language
experts during several years of experience and use. This algorithm does not only judge whether
two words are the same, but it also identifies which word implies the other and the distance be-
tween words, among other outputs. Before delving into the details of how the algorithm works,
we present a few definitions.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:10 M. Jarrar et al.

Table 4. Important Features Used in the Alike Machine-Learning Algorithm

Feature
Vector

Feature Name Feature Description Example
(Sal∼aba,
Salubu)

f1 W1NoOfLetters Number of letters in w1 3

f2 W2NoOfLetters Number of letters in w2 3

f3 D12A Concatenation of the diacritics on the first two letters of w1 and
w2(D11+D12+D21+D22)

a∼aau

f4 D36A Concatenation of the diacritics on the rest of letters (letters 3 to
6)(D13+D14+D15+D16+D23+D24+D25+D26)

a_____u_____

f5 D12B Concatenation of the diacritics on the first two letters of w1 and
w2(D11+D21+D12+D22)

aa∼au

f6 D36B Concatenation of the diacritics on the rest of letters (letters 3 to
6)(D13+D23+D14+D24+D15+D25+D16+D26)

au_____________

f7 D13 Concatenation of diacritics from w1 and w2 between indices 1 and 3
(D11+D21+D12+D22+D13+D23)

aa∼auau

f8 D46 Concatenation of diacritics from w1 and w2 between indices 4 and 6
(D14+D24+D15+D25+D16+D26)

_ (no diacritics)

f9 D1 Concatenation of the diacritics on letter 1 in w1 and w2 (D11+D21) aa

f10 D2 Concatenation of the diacritics on letter 2 in w1 and w2 (D12+D22) ∼au
f11 D3 Concatenation of the diacritics on letter 3 in w1 and w2 (D13+D23) au

f12 D4 Concatenation of the diacritics on letter 4 in w1 and w2 (D14+D24) __

f13 D5 Concatenation of the diacritics on letter 5 in w1 and w2 (D15+D25) __

f14 D6 Concatenation of the diacritics on letter 6 in w1 and w2 (D16+D26) __

f15 D7 Concatenation of the diacritics on letter 7 in w1 and w2 (D17+D27) __

f16 Duplicate-12 Flag=1 if 1st and 2nd letters are the same in either w1 or w2, 0 otherwise 0

f17 Duplicate-23 Flag=1 if 2nd and 3rd letters are the same in either w1 or w2, 0 otherwise 0

f18 Duplicate-34 Flag=1 if 3rd and 4th letters are the same in either w1 or w2, 0 otherwise 0

f19 Duplicate-24 Flag=1 if 2nd and 4th letters are the same in either w1 or w2, 0 otherwise 0

f20 NonDiacriticConflict Flag=0 if there is a conflict in letters between w1 and w2,1 otherwise 0

f21 ShaddaDifferent Flag=1 if there is shadda conflict between w1 and w2, 0 otherwise 1

f22 Alef_flag Flag set to 1 if first letter is Allef ,ا) ,أ ,آ (إ in both words, 0 otherwise 0

f23 Li_Shadda Flag set to 1 if the diacritic of the ith letter is shadda and 0 otherwise 1 (for i=2)

Table 5. Top Five Important Features with the Information Gain Metric

Partial data set
Feature 30% 40% 50% 60% 70%
ShaddaDifferent 0.479 0.478 0.475 0.474 0.473
D13 0.339 0.338 0.335 0.337 0.332
NonDiacriticConflict 0.304 0.307 0.304 0.304 0.303
D36A 0.219 0.218 0.214 0.215 0.214
D36B 0.219 0.217 0.214 0.215 0.214

Definition 5 (Implication Relation).Given twoArabic wordsw1 andw2, an implication relationship

denotes that w1 implies w2 iff both words have the same letters and every letter in w1 has the same
order and same (or fewer) diacritics as the corresponding letter in w2. For example, the word ()
implies (). If both w1 implies w2 and w2 implies w1, then the two words are called compatible;
otherwise, in case of no implication, i.e., in case of letters or diacritics conflicts, then the two words

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:11

Fig. 3. Decision-tree classifier. Fig. 4. Accuracy with varying training data

set.

Table 6. Implication Directions with Examples

Implication Direction Meaning
Example
w1 w2

-2 Incompatible-letters
-1 Incompatible-diacritics
0 Compatible-imply each other
1 Compatible-w1 implies w2

2 Compatible-w2 implies w1

3 Compatible-exactly equal

Table 7. Diacritic Pair Distance Map

Fatha Dhamma Kasra Sukoon Fathatan Kasratan Dhammatan Shadda Hamza

No Diacritic 1 1 1 0 1 1 1 1 1

Fatha 0 1 1 1 1 1 1 15 15

Dhamma 1 0 1 1 1 1 1 15 15

Kasra 1 1 0 1 1 1 1 15 15

Sukoon 1 1 1 0 1 1 1 15 15

Fathatan 1 1 1 1 0 1 1 15 15

Kasratan 1 1 1 1 1 0 1 15 15

Dhammatan 1 1 1 1 1 1 0 15 15

Shadda 15 15 15 15 15 15 15 0 15

Hamza 15 15 15 15 15 15 15 15 0

are incompatible. Table 6 illustrates these cases. Notice that the implication relation concerns the
sets of diacritics of words w1 and w2, unlike the subsume relation which reasons about the sets of
morphological solutions (words) of w1 and w2.

Definition 6 (Distance Map). A distance map denotes a matrix of all possible pairs of Arabic
diacritics and a distance value between them (see Table 7). A distance map tuple <d1, d2, delta>
denotes the two diacritics by d1 and d2 and the distance score by delta. As will be discussed later, the
Imply algorithm uses this distance map to calculate the distance between two words. For example,
the distance between the diacritics fatha and kasra is 1. When the shadda or hamza appears as

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:12 M. Jarrar et al.

Fig. 5. Implication Example.

either d1 or d2, and the compared diacritic is different, the distance equates 15 (but it can also equal
4 depending on which letter has the diacritic, as will be explained later). That is, the distance of 1
indicates a difference in one diacritic; but it becomes 15 (in case of shadda and hamza difference)
to indicate that this is most probably another word, as the addition of shadda or hamza changes
the semantics of a word in most cases. The number 15 was selected as we did not find any word in
Arabic with more than 14 diacritics on it (see our use case in Section 7). The maximum difference
if shadda and hamza were not involved was found to be 8. In other words, if the total number of
diacritic differences between two words is more than 14, then we know for sure that either shadda
or hamza, or both are involved. Others are not.

Definition 7 (Conflicting Diacritics). Two diacritics are called conflicting diacritics if they are dis-
tinct and appear on the same character of a given word. That is, given words w1 and w2, for a pair
of diacritics d1 and d2, where d1 is located in w1 at the corresponding position (letter) of d2 in w2,
if d1 does not equal d2, then d1 and d2 are conflicting diacritics and w1 is incompatible with w2.

Definition 8 (Words Matching). The matching between two words is defined as a tuple: <w1, w2,

implication direction, distance, conflicts, verdict>. w1 and w2 are the two words to be compared;
the implication direction is a number denoting the relationship between the two words (shown in
Table 6); the distance denotes the overall similarity of the diacritization between the two words,
which we compute based on the distance map; the conflict denotes the number of conflicting dia-
critics between the two words; finally, the verdict takes one of the values: “Same”, or “Different”,
to state whether w1 and w2 are matching.

5.1 Description of Imply Algorithm

The Imply algorithm takes two words as input and produces the matching tuple defined by Defi-
nition 8. For each input word, Imply generates two arrays, one for the letters (each letter receiving
a cell) and one for diacritics (each diacritic in a cell). The words are then checked to find if they
contain the same letters. If so, then for each pair of corresponding letters, an implication value and
a distance is assigned. Figure 5 illustrates an example of comparing () and ().

Implication between letter pairs is determined as follows: if both letters have exactly the same
diacritics (see Table 6), a direction-score of 3 is assigned to the corresponding position in the im-
plication array. If the pair has conflicting diacritics, a direction-score of -1 is assigned to the pair
in the array’s corresponding position. If both letters have same diacritics, then a direction-score
of 3 is assigned. If the first letter in the pair is missing a diacritic that is present on the second
letter, then an implication direction-score of 1 is assigned to the pair in the array’s corresponding
position. If the second letter in the pair is missing a diacritic that is present on the first letter, an
implication direction-score of 2 is assigned to the pair in the array’s corresponding position. That
is, at this stage we only determine the implication direction between letters.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:13

Implication between two words is determined as follows: Once an implication value is assigned
for each pair of letters, the implication array is observed. First, the algorithm returns an overall
implication value of -2 and quits if the two words have different letters. Otherwise, if all entries
in the implication array contain 3 (i.e., same diacritics in all letters), then an overall implication
direction 3 is returned. If all entries in the array contain 1 or 3, then an overall implication direc-
tion 1 is returned, i.e., w1 implies w2. If all entries contain either 2 or 3, then an overall implication
direction 2 is returned, i.e., w2 implies w1. If all entries contain either 1 or 2, then an overall impli-
cation direction 0 is returned, meaning the words imply each other. If there exists at least one -1
entry, then an overall implication of -1 is returned, i.e., incompatible diacritics.
The implication distance between two words is determined as follows: While generating the im-

plication array, the algorithm loops through the diacritic arrays. For each pair of diacritics, the
algorithm returns a distance from the distance map (in Table 7) and adds it to the overall dis-
tance value. For example, the implication distance between the two words shown in Figure 5 is 2.
This is because there are two letters with fatha in the first word but not in the second, and the
fatha-NoDiacritic is given distance 1 in the distance map.
The number of conflicts between two words is determined as follows: The algorithm runs through

the diacritics array and counts how many times -1 appears in the array. The algorithm does not
calculate conflicts in case the two words have different letters.

5.2 Special Cases and Fine-Tuning

This section presents some important special cases used to fine-tune the Imply algorithm. We
learned these special cases and how to handle them through intensive manual comparisons and
investigations between similar words in our dataset.
Diacritics on the last letter of a word are a special case, as differences in diacritization do not

change the meaning of the word. Considering this, the algorithm neglects the diacritics on the last
letter of the words being compared.
The shadda is also special. We use different weights for calculating word distance based on the

position of shadda in a word. When on the first letter of a word, the distance of a pair including
the shadda is 4 if the diacritics are not the same, as people tend to ignore shadda in the beginning
of a word most the time, e.g., should be . In the case of shadda on any other letter in the
middle of a word, this distance increases to 15.
This distance changes because the shadda plays a much larger role when found in the middle

of the word, as opposed to the beginning. When on the first letter of a word (which is a rare case),
it does not singlehandedly determine whether two words are the same, whereas it can certainly
determine whether two words are the same or not when found in the middle of a word.
The hamza is similar to that of the shadda. When found atop the first letter of a word, it is

considered a diacritic rather than a letter (e.g.,). As found in the case of the shadda, when
the hamza is on the first letter of a word, the distance of the diacritic pair is 4 if the diacritics are
not the same. In all other cases, the hamza is considered a letter and treated as such. In other words,
the hamza is treated as and considered a letter only when it appears after the first letter in a word.
The sukoon is a peculiar case. This is because it carries no sound. Because of this, it is usually

neglected in writing, where a non-diacritized letter in a fully diacritized text is usually interpreted
as a letter diacritized with a sukoon. As a result, in the Diacritic Map, the sukoon has a weight of 0
(i.e., considered no distance) in two cases: (i) sukoon-sukoon, and (ii) sukoon-NoDiacritic. Otherwise,
in case the corresponding letter is diacritized with a diacritic other than the sukoon, it behaves like
any other diacritic and a weight is given, as shown in Table 5.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:14 M. Jarrar et al.

Aswill be explained next in the section, the Imply algorithm is always sound, as it always returns
correct decisions. We established soundness by iterating many times over the dataset and refining
for the non-deterministic results after each iteration. The refinement was based on input from a
linguistic expert who carefully evaluated whether all critical cases are valid results, and what the
correct result should have been. The refinement included changes to Distance Map entries and
modifications of the special cases, while developing the algorithm.
The linguistic rules implemented in Imply also play a vital role in determining the weights

within the Diacritic Map. Especially in the cases of the shadda and hamza, the heavy weights of
the diacritics were largely influenced by the linguistic properties these diacritics have.

6 EVALUATION AND DISCUSSION

This section presents the evaluation of the three algorithms, whether they are sound and complete,
as well as their precision, recall, and F-measure, which we experimented over a large dataset of
about 87,000 pairs of words. First, we define the notion of soundness and completeness, then we
present our dataset, and discuss the results.

Definition 9 (Soundness). As known in logic (Jarrar and Heymans 2008), we define the soundness
of our algorithms as whether the “Same” results of the algorithm are correct or not. That is, if the
algorithm judges two words to be the same, and this answer is always correct then the algorithm is
called sound. If a single case is judged by an algorithm as “Same” but is actually “Different,” then the
algorithm is not sound. As will be described later, this measure is important for some application
scenarios as we need to know whether to always trust the algorithm’s judgment or not.

Definition 10 (Completeness). As is also known in logic, we define the completeness of our al-
gorithms as whether the algorithm is always able to judge whether two words are the same. If
so, then the algorithm is called complete. If a single case cannot be judged by the algorithm, then
the algorithm is not complete. Note that an algorithm might be sound but not complete—able to
correctly judge some, but not all cases.
The accuracy degree for each algorithm is also evaluated using the standard measures of preci-

sion, recall, and F-measure.

6.1 Experiment Setup

To evaluate the algorithms using the above measures, we needed to prepare a large dataset of pairs
of words. We collected 35,201 distinct Arabic words extracted from 38 different dictionaries. We
then used the ALMOR morphological analyzer (Habash et al. 2007) to retrieve possible matches of
the collected 35,201 words. The retrieved matching words by ALMOR generated 86,886 word-pairs
to compare.
The dictionaries we collected are at different levels of diacritization. For instance, the Al-Waseet,

the Modern Arabic, Alghani Azaher, and Al-Maany, are each filled with highly diacritized verbs.
Dictionaries of medium-level diacritization included, for example, the Biological Lexicon of Biol-
ogy and Agricultural Sciences, the Dictionary of Economic Terms, and the Dictionary of Statistics,
among others. Dictionaries providing no diacritics on their words include the Hydrology Glossary,
the Lexicon of Chemicals and Pharmaceuticals, the Lexicon of Education and Psychology, and the
Historical and Geological Lexicon. A high level of diacritization entails that all or most diacritics
of a word are written on the word. A medium level of diacritization provides a word with few
diacritics present on the word. Selecting dictionaries with different levels of diacritization is im-
portant for our experiment as this provides a granular scope of the performance and extent of the
capabilities of our algorithms.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:15

Table 8. Sample of the Dictionaries Experimented on

No Dictionary
Diacritization

Level
Words
Used

Word Pairs
Generated

1 Al-Ramooz High 8,734 19,296

2 Al-Waseet Verbs High 8,033 17,721

3 Al-Ma`any High 4,351 9,750

4 Scientific &Technical Terms High 2,263 4,527

5 Pharmaceutical Dictionary None 572 1,211

6 Nubian Dictionary None 561 1,175

Table 9. Returned Classification

Same Different Total

Manual

classification

Same 18146 0 18146
86886

Different 0 68740 68740

Subsume
Same 17103 0 17103

86886Different 0 48643 48643
No-Answer 20097 1043 21140

Imply
Same 17554 592 18146

86886
Different 0 68740 68740

Alike
Same 5363 97 5460

26066
Different 25 20581 20606

Table 10. Evaluation

Sound Complete Precision Recall F-measure Accuracy

Subsume Yes No (only 75%) 100% 100% 100% 100%
Imply Yes Yes 96.74% 100% 98.34% 99.32%
Alike No (by 0.1%) Yes 98.22% 99.54% 98.88% 99.53%

The collected words (without removing diacritics) were run through the ALMOR analyzer
using the SAMA 3.0 database. ALMOR produced highly diacritized words that were similar (in
appearance and spelling) to the input words, as will be explained in Section 7. For each input
word (of the 35,201 words), ALMOR returned a fully diacritized word that is possibly the same
word as the input word. That is, the output of this process is a set of pairs where the first word is
highly diacritized, partially diacritized, or not diacritized, and the second word, from ALMOR, is
fully diacritized. In this process, after giving ALMOR our 35,201 words, it produced 86,886 distinct
pairs of words. A sample of the dictionaries and the number of pairs that we were able to retrieve
from each dictionary is presented in Table 8.
The 86,886 pairs of words were given to a linguist to manually classify them as “Same” or “Dif-

ferent.” We then ran the three algorithms and evaluated the results.

6.2 Results

Running the three algorithms returned the results in Table 9. For example, out of the total 18146
“same” pairs in the dataset, the Imply algorithm succeeded in judging 17554 of them as “same”
while judging the remaining 592 as “different.” Table 10 shows a comparative evaluation of the
three algorithms.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:16 M. Jarrar et al.

Table 11. Sample of Lemma Reduction

No Dictionary Verbs Initial Pairs Correct Pairs

1 Al-Ramooz Verbs 9,866 19,296 4,575

2 Al-Waseet Verbs 8,731 17,721 4,766

3 Al-Ma`any 4,425 9,750 2,504

4 Al-Mustalahat 7,021 4,523 915

5 Pharmaceutical Dictionary 1,101 1,211 316

6 Nubian Dictionary 1,118 1,175 299

6.3 Discussion and Synthesis

The Subsume algorithm is sound and accurate but incomplete. The soundness was accomplished as
all the pairs that were judged as “same” where really “same.” It is also accurate as its precision and
recall were 100%. However, as expected, Subsume is incomplete as it was unable to judge a large
number of pairs (24.33% of the dataset). This is because the database used by the morphological
analyzer (SAMA 3.1) is not complete.
The Imply algorithm is sound, complete, and highly accurate (99.32%). Its soundness is accom-

plished as all “same” pairs were judged correctly. This is also evident from its 100% recall. The
completeness of the algorithm is accomplished as it was able to judge all pairs of words.

Special Case: We found 592 pairs (3.23% of the dataset) that were classified as different by the

Imply algorithm, pairs like (), (), (); while being classified as same by the
Subsume algorithm. After verifying these cases, we found that they are “different” according to
Arabic diacritization (because of strong shadda difference); Nevertheless, since there is no other
way to diacritize them, the Subsume algorithm (and our linguist expert) decided them to be the
same. In other words, the absence of shadda in the first word is a critical difference, but there
is no other possibility in Arabic to spell the word without shadda. This is why it was judged as
“different” by Imply, but as “same” by Subsume given the background knowledge of Arabic.
The Alike algorithm is not sound, but complete and highly accurate (99.52%). Its accuracy is

similar to the Imply algorithm. However, there are 25 pairs (0.1% of the test dataset) that are “dif-
ferent” but Alike classified them as “same.” Although this is not a high number, it illustrates that
Alike is not sound and cannot be fully trusted in the case of sensitive applications (as in Jarrar
(2006, 2011)).

Predictability: Unlike Alike, the Imply and Subsume algorithms are predictable. This is because
their judgment can be tracked and explained, and thus it is easier to decide which algorithm to
use given applications’ sensitivity and requirements. This is not the case for Alike, since it is based
on Entropy Statistics—the frequency of information produced by a source of data. It is worth not-
ing that both the Imply and the Alike algorithms are computationally cheaper than the Subsume
algorithm since they do not require access and background search in any database.

Measuring Distance: The distancemap used in the Imply algorithmwas very useful in calculating
a distance measure between words, which reflects the difference degree between words diacritiza-
tion. However, the distance provided by Subsume reflects only how much a word morphologically
disambiguates the other. Providing a distance measure using the Alike is complicated as it needs
developing an additional model that solely calculates the distance between a pair of words without
doing any classification into “same” or “different.”

Hybrid Approach: Combining the three algorithms to work together and synthesizing their re-
sults improve their overall performance. Since the Alike algorithm is not predictable, as it is not

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:17

sound (returns “same” but might be “different”) it cannot be combined with the other algorithms.
Nevertheless, the Subsume and the Imply algorithms can be combined as follows: (i) ask the Imply
algorithm—if it returns “Same,” then it is the “Same”; if not, then (ii) ask the Subsume algorithm—if
the returned morphological distance is 0, then it is “Same.” The intuition behind this hybrid ap-
proach is that we trust the judgment of the Imply algorithm, except when it says “different” but the
morphological distance is 0 (by the Subsume algorithm). As explained in the special cases above,
there are 592 pairs (among the 86K) that are judged as “different” by Imply because of shadda dif-
ference, but since there are no other possibilities in Arabic to spell them without shadda they are
judged as “Same” (with morphological distance of 0) by Subsume.
Nevertheless, although combining these two algorithms will improve their overall performance,

the computational complexity of their combination will also be higher. That is, since the Imply is
already highly accurate (99.32%), the little improvement at the price of a higher computational cost
is possible but might not be needed for most applications. In our dictionary integration use case
(see next section), we preferred to use the Imply alone because of the high sensitivity of linking a
huge number of dictionaries entries.
In the following section, we present a use case in which we used the Imply algorithm to match

and link lemmas across dictionaries.

7 USE CASE (LEMMA DISAMBIGUATION AND DICTIONARY INTEGRATION)

This section presents a use case to demonstrate the utility of our algorithms. In our VerbMesh
project, we aim to integrate dictionary entries of about 150 Arabic dictionaries that we collected
and digitized at Birzeit University. At this stage, we are concerned with linking and integrating
verb entries across dictionaries—in order to build a large graph of Arabic verbs and link it with
Arabic Ontology (Jarrar 2011) and other sources (Abuaiadah et al. 2017; Jarrar et al. 2011, 2014,
2016). The major challenge we faced in this task is that basic string-matching techniques alone do
not suffice to match and link two verbs. This is because same verbs across dictionaries (i) might be
diacritized differently and (ii) may comewith different linguistic properties, which lead to incorrect
and undesired matching. Our approach to tackle these issues was to use the notion of lemma to
match between verbs. Verbs having the same lemma are considered same entries. In other words,
same verbs across dictionaries are linked with their lemmas, although they might be diacritized
differently.
To assign a lemma to each verb in every dictionary, we used the ALMOR morpholog-

ical analyzer, utilizing the SAMA 3.1 database. Nevertheless, another major challenge we
faced using this approach was that ALMOR returned too many lemmas for each dictio-
nary entry. For example, ALMOR returns 13 different lemmas for the entry , which are

{ }. Another example is the undia-
critized word , for which ALMOR produced { }. This is because ALMOR takes a word
as input, segments it, and uses the stem to find other words with a similar stem and their lem-
mas. As a result, multiple lemmas are returned for each ALMOR’s word input. Therefore, a further
disambiguation of lemmas was needed, which is where our algorithm plays an essential role.
By using the Imply algorithm, after ALMOR’s lemmatization, we were able to filter and disam-

biguate the lemmas provided by ALMOR and keep only the correct lemmas. Taking each verb-
lemma pair as input, our algorithms decided whether each pair had an implication relationship.
For instance, after lemmatizing the 8,731 verbs found in Al-Waseet (No. 2 in Table 9), 17,721 word
pairs were returned by ALMOR -among them incorrect lemmas. After using our matching algo-
rithm to filter out those incorrect lemmas (i.e., with different incompatible diacritics), we were
able to reduce the number of matching pairs to 4,766 correctly matched pairs. In the case of the

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:18 M. Jarrar et al.

Fig. 6. k-means clustering (k = 5) based on Imply distance and Morph distance.

Al-Ramooz dictionary (No. 1), which includes 9,866 verbs, ALMOR returned 19,296 different pairs
of words. After running the resulting pairs through the Imply algorithm, we were left with 4,575
correctly matched pairs.
Table 9 provides a sample of the dictionaries we matched, which provide evidence of not only

the algorithm’s success but also of the added utility when used on top of other programs such
as morphological analyzers. On the average, the amount of word pairs originally proposed by
ALMOR were reduced by 74.8% using the Imply algorithm. The remaining 25.2% of the word pairs
were all pairs that are certain matches. This ensures the words being linked are, with certainty, the
same words under the same lexeme. That is, the matching algorithm can be used with ALMOR or
MADA in order to provide further filtration of the analysis and bring more desired results.

8 SYNTHESIS (UTILITY OF DISTANCES)

We evaluated the utility and meaning of the proposed distance metrics using unsupervised ma-
chine learning. We used the k-means clustering algorithm that partitions n vectors into k disjoint
clusters, such that each vector belongs to the cluster with the nearest mean. We provided the
k-means algorithm, which we implemented using R, with a set of word pairs with the distance
metrics as part of the vector. Intuitively, we expect the resulting clusters to be meaningful in case
our proposed metrics indeed possessed a utility to separate the words. The pairs we provided to
the k-means clustering algorithm are Arabic words of similar letters and different diacritics.
We performed k-means clustering using the imply distance alone, the morphological distance

alone, and both distances. We repeated the clustering with the number of non-diacritic letters in
the word as an additional input feature. The unsupervised training over the word-pairs dataset
(18,145 pairs) returned meaningful clusters indeed, which illustrates an evidence of the utility of
the metrics we presented in previous sections.
Figure 6 reports on the results of the k = 5 clustering using both metrics (Imply and Morph

distances) and with the number of letters in a word. Figure 7 illustrates the number of pairs in
each of the five clusters, grouped by the number of letters in each word. The x-axis shows the
morph distance from 0.0 to 1.0, where 0.0 means that the pair is a perfect match and 1.0 means
that the pair is different. Some pairs had words with no morphological solutions and thus they
show in the No-Results bin. The y-axis shows the Imply distance where a score of 0 denotes a
perfect match and scores of 15 and above denotes a different pair of words.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:19

Fig. 7. Frequency of the 5-means clustering (grouped by number of letters in words).

Cluster 1 contains 1,186 pairs, among the total of the 18,145 pairs. Most words in this cluster
are with more than 5 letters, and their Imply distance ranges from 3 to 6. There are no important
correlations between the Imply and Morph distances in this cluster, however, there are only a few
cases with Morph distance 0 and Imply distance above 4. All of these cases started with variants of
Hamza but considered “Same” indeed. Furthermore, we found that all words in this cluster either
started with Hamza or were continuous present tense derivation verbs that started with the ta ()
prefix.
Cluster 2 contained 11,505 pairs. Interestingly, although all words in this cluster are with com-

patible shadda, except few cases with a madda, the extreme majority of them are with Morph
distance 1 and Imply distance 0 to 3. That is, both distance metrics are confirming the decisions
of each other. Both shadda and madda denote a stress of the letter that implies another letter. The
rest either had shadda, had madda, differed only in one diacritic present in a word and missing in
another, or followed one of fa3ala, tafa3al, istaf3al and if3alala derivation patterns.

Cluster 3 contained 973 pairs that are very close according to the Imply distance but had no
Morph distance results. That is, these are words that are not found in the LDC’s SAMA mor-
phological database, thus have no Morph distance, but their Imply distance is between 0 and 2.
This case illustrates further the usefulness of the Imply distance in deciding whether to words are
“Same” though unknown to the morphological analyzer.
Cluster 4 has 3,889 pairs with an Imply distance 2 and variant morphological distance. Upon

inspection, these are (1) 60% of the pairs have Morph distance 1, which means that both metrics
agree; (2) words with high difference in the count of diacritics so the implication from the word
with fewer diacritics to the one with more diacritics returns a positive answer while the morpho-
logical solutions are much higher; and (3) words that are with similar number of diacritics, yet they
are morphologically rich such that the morphological metric differs. That is, such morphologically
rich words mean that many different solutions are retrieved in the morphological analyses phase
when the diacritics were removed.
Cluster 5 has 592 pairs of words and illustrates an interesting finding by the k-means algo-

rithm. These are indeed the special cases we reported in Section 6.3, with Imply distance +15 (be-
cause of strong shadda difference) and with Imply distance 1 (according to the knowledge-based

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

10:20 M. Jarrar et al.

morphological analyses). This is why they were classified as “Different” by the Imply algorithm
and “Same” by the Subsume algorithm. As explained in Section 6.3, though the absence of shadda is
a critical (e.g., in), but, since there are no other possibilities in Arabic to spell such words
without shadda, they were considered “Same,” given the used morphological background database
of Arabic.
The use of this unsupervised k-mean clustering was able to reveal meaningful clusters indeed.

Clusters 3 and 5 illustrate the border cases of our distance metrics; respectively, the case of no
Morph distances but found to be very similar pairs by low Imply distance, and the case of high
Imply distance but found to be the same by the Morph distance of 1. The other three clusters
illustrate that both distance metrics confirm each other as discussed above. Also, as discussed in
Section 6 and confirmed in this section, the Imply distance is a reliable metric and a framework for
Arabic words matching. The case where this metric returned “Different” pairs, in cluster 5, are not
critical, not only because they are typically rare, but also they are problematic for linguists too,
see Section 6.3.

9 CONCLUSION AND FUTURE WORK

We presented three algorithms that compare between Arabic words. The Imply algorithm encodes
expert knowledge in a set of expert rules and reports an implication direction, an implication mea-
sure and a matching verdict. The Subsume algorithm computes the morphological subsumption
relation of one word with respect to the other, based on background knowledge. The Alike algo-
rithm uses machine learning to classify words as same or different. We evaluated the algorithms,
and experiments showed that all of them are highly accurate. We also compared between the algo-
rithms based on their soundness, completeness and predictability. Finally, we illustrated the utility
and the need for our algorithms in a dictionary integration scenario.
Future plans for the presented algorithms include further testing with an even larger dataset

than the 86,886 pairs used and usingword forms such as nouns and adjectives. Using larger datasets
for learning will allow for even more accurate results, especially for the Alike algorithm. Also
planned, is the expansion of the algorithms to include taking multi-word phrases as input and
returning sets of words considered equal.

ACKNOWLEDGMENTS

The authors are very thankful to Mohamad Dwaikat, Faeq Alrimawi, and Reema Taha for helping
in partial implementation and in the manual evaluation of the results. Finally, the authors would
like to thank the anonymous reviewers for their valuable and significant comments that helped
improve the article.

REFERENCES

Diab Abuaiadah, Dileep Rajendran, and Mustafa Jarrar. 2017. Clustering Arabic tweets for sentiment analysis. IEEE/ACS

14th International Conference on Computer Systems and Applications.

Shihadeh Alqrainy, Hasan AlSerhan, and Aladdin Ayesh. 2008. Pattern-based algorithm for part-of-speech tagging Arabic

text. Proceedings of ICCES, 119–124.

Mohammed Attia. 2008. Handling Arabic Morphological and Syntactic Ambiguity within the LFG Framework with a View to

Machine Translation. Ph.D. Dissertation. University of Manchester.

A. M. Azmi and R. S. Almajed. 2015. A survey of automatic Arabic diacritization techniques. Natural Language Engineering,

21, 3 (2015) 477–495.

Alia Bahanshal and Hend Al-Khalifa. 2012. A first approach to the evaluation of Arabic diacritization systems. Proceedings

of ICDIM, 155–158.

Kenneth Beesley. 2001. Finite-state morphological analysis and generation of Arabic at Xerox research: Status and plans.

In ACL Workshop on Arabic Language Processing: Status and Perspective 1, 1–8.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

Diacritic-Based Matching of Arabic Words 10:21

Y. Belinkov and J. Glass. 2015. Arabic diacritization with recurrent neural networks. In Proceedings of the 2015 Conference

on Empirical Methods in Natural Language Processing.

Makram Boujelben, Chafik Aloulou, and Lamia Hadrich Belguith. 2008. Toward a robust detection/correction system for

the agreement errors in non-voweled arabic texts. In Proceedings of ACIT 2008.

Tim Buckwalter. 2002. Buckwalter {Arabic} morphological analyzer version 1.0. LDC catalog number LDC2002L49, Technical

Report.

Kareem Darwish, Hamdy Mubarak, and A. Abdelali. 2017. Arabic diacritization: Stats, rules, and hacks. In Proceedings of

the 3rd Arabic Natural Language Processing Workshop, 9–17.

Fathi Debili, Hadhémi Achour, and E. Souissi. 2002. De l’étiquetage grammatical à la voyellation automatique de l’arabe.

Technical Report.

Nizar Habash. 2007. Arabic morphological representations for machine translation. book chapter. In Arabic Computational

Morphology. Springer, 263—285.

Nizar Habash, Owen Rambow, and Ryan Roth. 2007. MADA+ TOKAN: A toolkit for Arabic tokenization, diacritization,

morphological disambiguation, POS tagging, stemming and lemmatization. In Proceedings of MEDAR’09.

Abdullah Hattab and Abdulameer Hussain. 2012. Hybrid statistical and morpho-syntactical Arabic language diacritizing

system. International Journal of Academic Research, 4, 4.

Mustafa Jarrar, Nizar Habash, Faeq Alrimawi, Diyam Akra, and Nasser Zalmout. 2016. Curras: An annotated corpus for

the palestinian arabic dialect. Journal Language Resources and Evaluation. 51, 3 (2016) 745–775.

Mustafa Jarrar, Nizar Habash, Diyam Akra, and Nasser Zalmout. 2014. Building a corpus for Palestinian arabic: A prelimi-

nary study. The EMNLP Workshop on Arabic Natural Language Processing. ACL.

Mustafa Jarrar. 2011. Building a formal Arabic ontology. In Proceedings of the Experts Meeting on Arabic Ontologies and

Semantic Networks. ALESCO, Arab League.

Mustafa Jarrar, Anton Deik, and Bilal Faraj. 2011. Ontology-based data and process governance framework -the case of

e-government interoperability in Palestine. The IFIP International Symposium on Data-Driven Process Discovery and

Analysis.

Mustafa Jarrar. 2006. Towards the notion of gloss, and the adoption of linguistic resources in formal ontology engineering.

The 15th International World Wide Web Conference. ACM Press.

Mustafa Jarrar and Stijn Heymans. 2008. Towards pattern-based reasoning for friendly ontology debugging. Journal of

Artificial Intelligence Tools 17, 4, 2008.

Nouha Chaâben Kammoun, Lamia Hadrich Belguith, and Abdelmajid Ben Hamadou. 2010. The MORPH2 new version:

A robust morphological analyzer for Arabic texts. JADT 2010: 10th International Conference on Statistical Analysis of

Textual Data.

Mohammad Khorsheed. 2013. An HMM-based system to diacritize Arabic text. Journal of Software Engineering and Appli-

cations 5, 124.

George Anton Kiraz. 1998. Arabic computational morphology in the west. In Proceedings of the 6th International Conference

and Exhibition on Multi-lingual Computing, 3–5.

Seth Kulick, Ann Bies, and Mohamed Maamouri. 2010. Consistent and flexible integration of morphological annotation in

the Arabic treebank. In Proceedings of LREC’2010.

B. Mohamed, A. Chennoufi, A. Mazroui, and A. Lakhouaja. 2014. Hybrid approaches for the automatic vowelization of

Arabic texts. Natural Language Computing. 3, 4.

J. R. Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers.

Mohsen Rashwan, Mohamed Al-Badrashiny, Mohamed Attia, Sherif Abdou, and Ahmed Rafea. 2011. A stochastic Arabic

diacritizer based on a hybrid of factorized and unfactorized textual features. IEEE Transactions on Audio, Speech, and

Language Processing 19, 1 (2011) 166–175.

Ryan Roth, Owen Rambow, Nizar Habash, Mona Diab, and Cynthia Rudin. 2008. Arabic morphological tagging, diacritiza-

tion, and lemmatization using lexeme models and feature ranking. The 46th Annual Meeting of the ACL: Short Papers,

ACL, 117–120.

Ahmed Said, Mohamed El-Sharqwi, Achraf Chalabi, and Eslam Kamal. 2013. A hybrid approach for Arabic diacritization.

International Conference on Application of Natural Language to Information Systems. Springer Berlin, 53–64.

Abdullah Seraye. 2004. The Role of Short Vowels and Context in the Reading of Arabic, Comprehension and Word Recognition

of Highly Skilled Readers. Ph.D. Thesis. University of Pittsburgh.

Dimitra Vergyri and Katrin Kirchhoff. 2004. Automatic diacritization of Arabic for acoustic modeling in speech recognition.

In Proceedings of the Workshop on Computational Approaches to Arabic Script-Based Languages. ACL, 66–73.

I. Zitouni, and R. Sarikaya. 2009. Arabic diacritic restoration approach based onmaximum entropymodels.Computer Speech

& Language 23, 3 (2009).

Received January 2018; revised May 2018; accepted July 2018

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 18, No. 2, Article 10. Publication date: December 2018.

