Available online at www.sciencedirect.com

ScienceDirect PI"OCEdiG

Computer Science

i s

.
ELSEVIE Procedia Computer Science 00 (2024) 000-000

www.elsevier.com/locate/procedia

6th International Conference on Al in Computational Linguistics

Alma: Fast Lemmatizer and POS Tagger for Arabic

Mustafa Jarrar™*, Diyam Akra®, Tymaa Hammouda®

“Birzeit University, Birzeit, PO Box 14, West Bank, Palestine

Abstract

We introduce Alma (L;l“), an open-source and state-of-the-art lemmatizer, POS tagger, and root tagger for Arabic, boasting both
high speed and accuracy. Alma relies on a dictionary of morphological solutions ordered by the frequency of these solutions.
This dictionary was developed based on the Qabas lexicographic database. Unlike many Arabic lemmatizers that return a lemma
after stripping diacritics, shadda, and hamza (i.e., ambiguous lemma), Alma retrieves unambiguous lemmas (we called frue
lemmatization). Our POS tagger uses a rich tagset of 39 POS tags. Additionally, our root tagger is the first fully-featured tagger
since it uses Qabas, the largest Arabic lexicographic database. We evaluated Alma lemmatizer and POS tagger using the LDC
Arabic Treebank (ATB) that contains 339, 710 tokens and achieved 87.82%, 92.7% F1 score, respectively. We additionally evaluated
Alma lemmatizer using the Salma corpus (34k tokens) and obtained a 90.48% F1 score. Compared to Farasa, MADAMIRA, and
CAMeL Tools lemmatizers and POS taggers, Alma outperformed all of them in both tasks, excelling in both speed and accuracy.
Alma demonstrated superior processing speed, handling 339k tokens in 10.00. Alma is open-source and publicly available at
(https://sina.birzeit.edu/alma).

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Peer-review under responsibility of the scientific committee of the 6th International Conference on Al in Computational Linguistics,
ACling 2024.

Keywords: Arabic; Arabic Morphology; morphology tagging; Lemma; Lemmatizer; Part of Speech; POS; POS Tagger; Root; Root Tagger;

1. Introduction

This section overviews the basics of morphology tagging in Arabic, especially lemmatization and part-of-speech
(POS) tagging. Lemmatization is the task of determining the lemma of a given word. A lemma (also called canonical
form or citation form) is the dictionary form that is conventionally selected from a set of inflected word forms (typically
share the same core meaning(s) [23, 19]). In Arabic, the verb lemma is conventionally selected to be in the past, singular,
3rd person, and masculine form, and a noun lemma to be in the singular masculine form [23]. For example, _7 katab
is the verb lemma for (.. 530 « 3K 0 955 (5K9), and LW/ falb is the noun lemma for (ol (2l (b (= WW).

Lemmatization is a challenging task because a lemma is conventionally selected from a dictionary rather than being
generated using linguistic rules. Additionally, lemmas are diacritic-sensitive [26]. For example, the lemma &%/ bayata

* Corresponding author. Tel.: +970-2-2982000
E-mail address: mjarrar @birzeit.edu

1877-0509 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 6th International Conference on Al in Computational Linguistics, ACling 2024.

https://sina.birzeit.edu/alma
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 Jarrar et al. / Procedia Computer Science 00 (2024) 000-000

(planned it at night) is not the same as 24/ baytun (house). Additionally, different lemmas may have the same spelling.
For example, there are two lemmas spelled as 23/ baytun , one lemma has the plural -,/ bywt and means (house),
while the other has the plural -}/ abyat and means (verse). Most lexicons distinguish between them by adding an
index, such as (2i1) and (&42).

Parts of speech (POS) represent syntactic categories or “word classes” within a language. In Arabic morphology
[23], words are traditionally classified into three parts of speech: noun ((\:,\), verb (=), and particle (2 ,=), which
is neither a verb nor a noun. POS tagging is particularly challenging because a word can have multiple POS tags.
Additionally, the existence of various Arabic POS tagsets, such as SAMA, CAMeL, Farasa, and Qabas, results in
incomparable outcomes. Root tagging involves identifying the root for each word in a sentence. In Arabic, roots are
usually determined by lexicographers, unlike stems, which are the remaining letters after removing affixes. Furthermore,
words in Arabic may have multiple roots. For example, the word 3.5 has both (¢ » ») and (¢ , 5 _») as roots.

In this paper, we benchmark several Arabic lemmatizers and POS taggers, including MADAMIRA (good accuracy
but slow), Farasa (fast but retrieves ambiguous and undiacritized lemmas), and CAMeL Tools (relatively slow and with
low accuracy). To address these gaps, we introduce Alma, an open-source, fast, and accurate lemmatizer, POS tagger,
and root tagger. Alma relies on a dictionary which we computed based on Qabas [23] and other resources. Alma is
implemented as a module within SinaTools [15], an open-source Python toolkit! for Arabic NLP developed by Sinalab
at Birzeit University.

In summary, the main contributions of this paper are outlined as follows:

1. Benchmarking the accuracy and speed of four POS tagging tools, for category, simplified, and True POS
tagging using the LDC Arabic Treebank (339, 710 tokens).

2. Benchmarking the accuracy and speed of lemmatizers, for full, partial, and non-diacritized lemmas and using
two datasets: the Arabic Treebank, and Salma corpus.

3. Alma: a fast and accurate lemmatizer, POS tagger, and root tagger, outperforming all other tools. It achieved
an F1 score of 92.7% in True POS tagging using the ATB corpus, and 87.82% in T rue lemmatization of the ATB
corpus (as well as 90.48% using the Salma corpus), and with a high speed of lemmatizing 33K tokens per second.

The paper is structured as: Section 2 overviews the related work. Section 3 presents the Alma system. In Section 4,
we detail the experiments conducted and their outcomes. Section 5 concludes the papers and future research.

2. Related Works

Lemmatization and POS tagging tasks were initially tackled using a lexicon-based approach, such as the methods
using BAMA and SAMA [7, 12], functioned by extracting all out-of-context lemmas and POS from a stem database
with affixes compatibility tables. However, this method faces challenges with out-of-vocabulary words and entails
ongoing efforts to expand and update the morphology databases due to the dynamic nature of language.

In addition to the stem-based SAMA database, another valuable resource for lemmatization and POS tagging is
Qabas [23]. Qabas is an open-source lexicographic database encompassing Classical Arabic, Modern Standard Arabic,
dialects, and transliterated foreign words. It encompasses about 59k lemmas and their morphological features such as
spelling variations, root(s), POS, gender, number, person, and voice, as well as semantic information like glosses and
synonyms. Qabas has facilitated the development of tools and resources for synonym extraction [24, 11, 30, 38] and
gloss-context pairs for Word-Sense Disambiguation [2, 36, 1]. Utilizing 110 digitized lexicons [17, 20, 21, 3, 4, 19, 18]
and 12 morphologically annotated corpora [22, 14, 39, 27]. Qabas links about 255,000 of the 297,000 single-word
lemmas and integrates 2.4 million tokens.

Several lemmatizers and POS taggers have been developed based on LDC’s BAMA and SAMA morphology
databases to disambiguate in-context lemmas and POS tags [8]. Notable examples include MADAMIRA [42] and
CALIMA _Star [47]. MADAMIRA leverages the BAMA/SAMA morphological analyzer to obtain a list of all possible
out-of-context lemmas and POS tags for a given word. These analyses are then passed to a feature modeling component

1 SinaTools : https://sina.birzeit.edu/sinatools

https://sina.birzeit.edu/sinatools

Jarrar et al. / Procedia Computer Science 00 (2024) 000-000 3

that utilizes an n-gram language model for lemmatization and a Support Vector Machine (SVM) model for POS tagging.
While MADAMIRA has achieved good accuracy for both tasks, it is considerably slow.

To address the slow performance issue of MADAMIRA, the Farasa lemmatizer [37] was introduced as a frequency-
based alternative. Farasa searches for input words within a dictionary containing lemmas along with their associated
frequencies. Farasa was evaluated against MADAMIRA using the WikiNews dataset, where it demonstrated higher
accuracy for Modern Standard Arabic (MSA), achieving 97.32% compared to MADAMIRA’s 96.61%. However,
this evaluation is problematic because the lemmas retrieved by Farasa are ambiguous, despite the high accuracy
unambiguous lemmas are important in many NLP tasks such as word sense disambiguation as shown in [25].

FARASA POS tagger [9] is not frequency-based like Farasa lemmatizer; it relies on an SVM model trained on
sets of feature vectors for each word for POS tagging. It is evaluated against MADAMIRA on the Wiki-News dataset,
FARASA achieved 96.2% accuracy compared to MADAMIRA’s 95.3%. However, despite its high results, FARASA’s
accuracy may not be considered reliable due to its simplified tagset containing (only 18 tags), which is a reduction
from the original 39 tags in the SAMA tagset. This reduction can lead to inaccurate results, as demonstrated in Section
4. FARASA’s performance is not high when evaluated on the original 39-tagset SAMA dataset.

In the realm of deep-learning-based approaches, deep learning is frequently employed for POS tagging due to its
classification nature, as extensively documented in the literature. Conversely, deep learning approaches are rarely
applied to lemmatization, which conventionally involves selecting a lemma from a lexicon rather than classifying it.
An illustrative example of this approach is Camelira [40] (The disambiguation module of CAMeL Tools [41]), which
utilizes deep learning for POS tagging while adopting a different methodology for lemmatization. Camelira is a recent
lemmatizer and POS tagger that employs a hybrid approach using CamelBert [16], a pre-trained language model and
morphological analyzer. Camelira BERT achieved 98.7% accuracy in POS tagging when evaluated on a blind set from
the Arabic Treebank. However, no precise accuracy is provided for Camelira’s lemmatization in the literature.

In addition, the AlKhalil2 tool [6] retrieves a list of possible lemmas and POS tags based on lemma patterns, while
another version [5] uses a Hidden Markov Model (HMM) to disambiguate the proper lemma from the list retrieved
by AlKhalil2. LemmaTag [32] and the Universal Lemmatizer [28] employ deep learning models to generate lemma
characters. UDPIPE [45, 46] and UDify [31, 33] treat both POS tagging and lemmatization as classification tasks using
pre-trained language models. They generate a set of rules, classify each lemma to a rule using a deep learning classifier,
and then apply the rules in reverse to obtain the lemma.

In the following sections, we evaluate the most commonly used lemmatizers and POS taggers discussed in this
section (MADAMIRA, Farasa, and CAMeL Tools). We evaluate them in terms of speed, accuracy, and level of lemma
ambiguity. We demonstrate in Section 4 that while some of these tools are fast, they often produce inaccurate ambiguous
lemmas. Conversely, others may provide accurate, unambiguous lemmas but are considerably slow.

3. Alma System and Memory

This section introduces our Alma system and how its memory was constructed. The main idea of Alma is to
simplify the morphological tagging process (lemmatization, POS tagging, and root tagging) by moving the complexity
from the morphological tagger itself to the construction of its memory. Unlike typical morphological taggers, which
analyze words in context to predict their lemmas and POS, Alma streamlines this complexity through pre-computed
morphological tagging memory, simplifying the process into a straightforward lookup operation. By doing this, we
achieved a remarkably fast lemmatization and POS tagging, and yet outperform all existing tools in terms of accuracy.
For example, as shown in Tables 1 and 2, Alma was able to lemmatize the Arabic Tree Bank corpus (340K tokens)
in 10 seconds with 87.82% accuracy, while MADAMIRA took 1710 seconds with 84.18% accuracy. The Alma’s
morphological tagging memory, system, and tagging algorithms are described in the following sections.

3.1. Alma’s Memory

Alma’s memory is a table that we pre-computed and used inside Alma as a lookup table. Alma’s memory contains a
large number of word forms and their possible morphological solutions. For each word, we collected its morphological
solutions and stored them ordered by frequency. A morphological solution consists of a (lemma, POS, and root), and

4 Jarrar et al. / Procedia Computer Science 00 (2024) 000-000

the frequency of this solution. We implemented this table as a Dictionary (i.e., hashmap) in Python, where the key of
the dictionary is the wordform, and the value is a set of morphological solutions ordered by frequency (See Figure 1).

[{"Word Form": "<,

"Solutions": [{"lemma":"3 <", "pos":"NOUN", “root”; “< s <", "frequency": 3 {"lemma":"1 <", "pos":"NOUN", “root”; ‘< ¢s <",
"frequency": } {'lemma":"4 <", "pos":"NOUN", “root”: “< s <", "frequency":9654}, {"lemma":"1 <", "pos":"PV", “root”: ‘< s &',
"frequency”: Y

{"Word Form": "J>",
"Solutions": [{"lemma":"1 J>", "pos":"NOUN_PROP", “root": “J1 J <", "frequency":null} I},
{"Word Form": "aal",

"Solutions": [{"lemma":"1 ala", "pos":"NOUN", “root”: “» J ¢”, "frequency": }, {"lemma":"1 &, "pos":"NOUN", “root™: “a J ",
"frequency™: 304} 1]

Fig. 1: Alma Memory: example of three wordforms and their solutions

Corpora Collection Augmentation

Collect diacritized Lemmatize and POStagthe Collect wordforms and their ~ Generate word forms from
corpora: Shamela (1B), corpora then disambiguate. corresponding lemmas from SAMA, and store those forms
110 Lexicons (2.4 M) Store disambiguated solutions Qabas used in Arabic

Fig. 2: Alma Memory Construction Methodology

Constructing Alma’s memory and computing its frequencies was carried out through these phases (See Figure 2):

First Phase (Corpora Collection): We collected two corpora: the Shamela [44] is a collection of books, and the
150 lexicons [20] digitized by the Sinal.ab at Birzeit University. These lexicons consist of about 2.4 million tokens.
About 110 of these lexicons were mapped and integrated with Qabas [23], an open-source Arabic lexicon containing
59k lemmas. Both Shamela and the 150 lexicons are in diacritized forms of MSA and Classical Arabic.

Second Phase (Morphological Analysis and Disambiguation): Each word in the collected corpora was lemmatized
and POS-tagged using the SAMA analyzer [35]. The SAMA analyzer provided all potential solutions for each word,
including lemma, POS, diacritized form, and gloss, without disambiguation. To disambiguate the SAMA solutions,
we employed the following strategy: (i) we calculated the frequency of each diacritized form in each SAMA solution
based on its occurrence in the collected corpora. (ii) we attempted to find a match between one of the diacritized forms
of SAMA solutions and the analyzed diacritized word. This process involved multiple attempts. Initially, if there was a
single match, it was stored as a new entry in Alma’s memory. In the case of multiple matches, the most frequent one
was selected and stored as a new entry in Alma’s memory and ignored the others. In the case of no match, we stripped
the last diacritic, made another matching attempt to find a match, and stored it in Alma’s memory.

Third Phase (Collecting Wordfroms from Lexicons): This phase focuses on leveraging the Qabas lexicographic
graph to gather an extensive collection of wordforms and their corresponding lemmas. As previously mentioned, the
59k lemmas in Qabas have been manually mapped to 298k lemmas across 110 lexicons. This mapping creates a rich
Arabic lexicographic graph, enriched further by the inclusion of various wordforms and morphological features. We
have gathered these wordforms, both diacritized and undiacritized, along with their POS, root and Qabas lemmas, and
integrated them into Alma’s memory. However, these solutions are integrated into Alma’s memory with null frequency.

Fourth Phase (Augmentation): To enhance Alma’s memory with words and solutions that were not discovered in
the previous phases, we utilized a morphology generator. Specifically, we employed ALMOR [13] to generate word
forms from the SAMA database [35]. To ensure that only forms used in Arabic were selected from the generated
forms, we employed the Abu-ElKhair corpus [10], which contains 1.5 billion tokens. If the generated form was used in
the Arabic language, we then checked if it had only one solution and did not appear in our collected corpora. If all
conditions were met (i.e., used in Arabic, had one solution, and did not appear in our collected corpora), we added it as
a new entry with a single solution and a null frequency into Alma’s memory.

All SAMA lemmas in phases 2 and 4 are replaced with Qabas lemmas, which is straightforward [23].

3.2. Alma’s System Description

This section describes how Alma works (see Algorithm 1), which goes through these steps: (1) exact-match-search,
(2) cleaning-search-again-loop, (3) out-of-vocabulary-lemmatization, (4) out-of-vocabulary-POS-tagging, and (5)
out-of-vocabulary-root-tagging.

https://sina.birzeit.edu/

Jarrar et al. / Procedia Computer Science 00 (2024) 000-000 5

Algorithm 1 Alma algorithm

Require: Sentence
Words « tokinze_sentence_into_words
for word in Words do
solution = Lookup_most_frequent_solution_from_dict(word, dict)
if no_solution_found then
five_norm_steps = [Remove_AL, Replace_h_t,Remove_ diacritics, Remove_ shadda]
for norm_step in five_norm_steps do
norm-word = apply_norm_step
solution = Lookup_most_frequent_solution_from_dict(norm_word, dict)
end for
if no_solution_found then
Return word_0
end if
end if
end for

When a user inputs a word to be tagged, Alma does the following:

1. Exact-Match-Search: Alma initially checks if the input exists in its memory. If there is an exact match, Alma
retrieves the most frequent lemma and its corresponding POS tag. If not found, it goes to the next phase.

2. Stripping-Search-Again-Loop: in this phase, Alma sequentially applies several steps to the input word, including
(1) removing prefixes like (J!) (e.g., ws\.Jl becomes w:l..), (2) replacing final (o) with (5) (e.g., «l.), (3) unifying Alef
variants, (4) removing diacritics (e.g., «.l..), and (5) shadda. After each normalization step, Alma searches its memory
again. If none of these steps yield a match, the word is considered out-of-vocabulary (OOV).

3. Out-of-Vocabulary-Lemma: if a word is not found (e.g., _.!;/Trump), Alma handles this by appending a ’_0”
suffix to the word to denote its OOV (i.e., (e.g., 0_c.!;/Trump_0). As discussed in Section 4.4, such OOV cases are
typically rare, less than 1%. We plan to continuously add such cases to Alma’s memory.

4. Out-of-Vocabulary POS: If a word is not found, Alma tries to predict its POS using a BERT model that we
fine-tuned using the Arabic Treebank. As shown in Table 3, this model achieved 98.1% F1-score when evaluated on a
blind set of ATB and 94.66% when evaluated on Salma as a test set. We tested the integration of this model with Alma
in two scenarios. First, when Alma encounters an OOV word in a sentence, it uses the model to predict all remaining
words in the sentence, as detailed in row (ALMA+BERT) in Table 3. In the second scenario, Alma uses the model to
predict only the OOV word, as detailed in row (ALMA+BERT(OOV)) in Table 3.

5. Out-of-Vocabulary Root: if a word is not found, Alma considers the wordform itself as root, for example, the
root of culyis (¢, 1,).

4. Evaluation

This section benchmarks the accuracy and speed of four tools using two datasets. We used the default settings in all
tools for lemmatization and POS tagging, without changing any configuration Farasa: we used the jar file found at
(https://farasa.qcri.org/POS/), with the parameter (~lemma true) for lemmatization. MADAMIRA: we used the jar file
(MADAMIRA-release-20190603-2.1) found at (https://inventions.techventures.columbia.edu/downloads); its default
configuration includes Aramorph (almor — msa — r13) database, see Pasha et al. [43]. CAMeL Tools: we used the
disambiguation module, which leverages Camelira (see section 4.2 in Obeid et al. [40]). The disambiguation process
invokes the disambiguate method from the MSA pretrained model which is part of BERT Un factoredDisambiguator.
We evaluated each token, in context, in both datasets using each of the four tools. The reported accuracy excluded digits
and punctuation.

6 Jarrar et al. / Procedia Computer Science 00 (2024) 000-000

4.1. Benchmarking Datasets

We selected two datasets for benchmarking, the Arabic TreeBank (ATB) and the Salma corpus, especially as these
datasets are MSA and utilize diacritized SAMA lemmas [12]. The LDC’s Arabic Treebank (ATB) [34] was compiled
from news wires between 2001 and 2011. The corpus is tokenized and annotated with features like lemma, POS,
segmentation, and gloss. We used Part 3 V3.2, which contains 339, 710 tokens, including 32, 135 verbs, 202,377
nouns, and 105, 198 particles. It has 13,03 1unique lemmas (10, 602 nouns, 2,229 verbs, and 214 particles). The Salma
dataset [25] was recently collected from MSA media sources, between 2021 and 2023. The corpus is tokenized and
annotated with various features including lemmas and POS. Salma contains 34, 253 tokens, including 2, 763 verbs,
19, 030 nouns, and 12,460 particles. It has 3, 875 unique lemmas (2, 904 nouns, 677 verbs, and 294 particles). Using
Salma for benchmarking is important because some tools, including MADAMIRA and CAMeL Tools, are trained on
ATB; thus their benchmarking with ATB may not reflect real-world performance.

4.2. Lemmatization Benchmarking

4.2.1. Benchmarking Methodology

Our lemmatization benchmarking methodology comprises five types of lemmatizations: True, Ambiguous, Ambigu-
ous undiacritized, Loose, and Baggy. To illustrate these variations, the word (=w/ byt) has four possible lemmas {1 -4,
3 o4, 4 o4, 1 =&}, each referring to a different lexeme (i.e., different set of inflections). For example, the lemma (1 ~%)
refers to the proper noun "Beit”, (3) refers to (= sy <) meaning “house”, (4 ~i) refers (=\.i -y) meaning “verse”,
and (1 ~%) refers to the verb with meaning "housing”. Notice that the first three lemmas have the same spelling except
the digits. Notice also that if digits, diacritics, and Shadda are removed, the four lemmas would have the same spelling.

Since both corpora use SAMA lemmas but lemmatizers produce different lemma spellings, comparing them is
challenging. MADAMIRA retrieves SAMA lemmas, and Alma lemmas are mapped into SAMA lemmas, making them
comparable. However, lemmas in CAMeL Tools very close to SAMA lemmas without digits. Farasa drops digits,
diacritics, Shadda, and Hamza. To compare the four tools, we conducted the following lemmatization scenarios:

(1) True Lemmatization: is the exact matching of lemmas, as appeared in both corpora (i.e., SAMA lemmas).

(2) Ambiguous Lemmatization: is the True lemmatization after removing digits. For example, the four lemmas
shown in the previous example would be two lemmas after removing digits, as {-&, «%}.

(3) Ambiguous undiacritized lemmatization: is the True lemmatization after removing digits and all diacritics
except Shadda. The four lemmas shown in the previous example would be two lemmas, as {cw, =%}.

(4) Loose lemmatization (stripped): is the True lemmatization after removing digits, all diacritics including Shadda.
The four lemmas shown in the previous example would be one lemma, as {-w}.

(5) Baggy lemmatization (stripped and normalized): is the True lemmatization after removing digits, diacritics,
Shadda, as well as normalizing all Hamza forms. That is, the three Hamza forms (1, |, 1) are normalized into Alf (1),

e.g., the lemmas { .4/, .1} would be one lemma {:u1}.

4.2.2. Lemmatization Benchmarking Results

Table 1 shows that Alma outperforms all other tools on the Salma evaluation and on the True and Ambiguous
lemmatization for ATB. Although MADAMIRA outperforms Alma in the last three ATB experiments, we believe this
is because MADAMIRA was trained on ATB (see [42]).

4.2.3. Speed Benchmarking

We evaluated the lemmatization speed of the four tools on the same machine (24 CPU, 47G Memory, CentOS, size
1.3T) using the same setup (reading input from a file and writing output to a file). The experiment was repeated six
times, excluding the first run to account for the initial memory loading time of some tools. This is especially true for
CAMeL Tools, which loads a BERT model into memory, unlike other tools that don’t rely on neural models. That
is, the reading and writing of input/output files were considered, while the initial model loading time was not. Table
2 shows the averages and standard deviations. The results indicate that Alma is significantly faster than the others,
processing 34K tokens per second. This speed is attributed to ALMA’s architecture, which uses a Python dictionary for
fast memory access and processing.

Jarrar et al. / Procedia Computer Science 00 (2024) 000-000 7

Table 1: Evaluation of four lemmatizers using two datasets

Experiment ATB SALMA
Expl: True Lemmatization (Exact Match)

ALMA 87.82% 90.48 %
MADAMIRA 84.18% 85.53%
CAMeL Tools - -
Farasa - -

Exp2: Ambiguous lemmatization (without Numbers)

ALMA 91.50% 91.17%
MADAMIRA 88.35% 86.60%
CAMeL Tools 80.88% 81.73%
Farasa - -

Exp3: Ambiguous undiacritized lemmatization

ALMA 93.25% 93.40%
MADAMIRA 96.08 % 93.24%
CAMeL Tools 90.65% 90.83%
Farasa 68.92% 70.78%
Exp4: Loose Lemmatization (striped)

ALMA 94.42% 94.97 %
MADAMIRA 96.73% 94.48%
CAMeL Tools 93.64% 93.29%
Farasa 86.73% 91.28%
Exp5: Baggy lemmatization (striped and normalized)

ALMA 95.01% 95.88 %
MADAMIRA 96.94% 94.55%
CAMeL Tools 94.81% 94.73%
Farasa 94.86% 95.33%

Table 2: Lemmatization speed with standard deviation (seconds) calculated after six runs excluding the first run.

Experiment ATB SALMA Speed
(seconds) (seconds) (tokens per second)
ALMA 10 *! 1= 33,997
MADAMIRA 1710 =% 370 =4 180
CAMeL Tools 14,398 * 1234 677 =28 25
Farasa 35%2 14 %2 7632

4.3. POS Tagging Benchmarking

4.3.1. Benchmarking Methodology

Benchmarking POS taggers is challenging as they use different tagsets. Specifically, Alma and MADAMIRA use the
SAMA tagset (39 tags). CAMeL Tools uses these 39 tags but with different naming [29]. However, Farasa uses a tagset
of 18 tags [9]. For example, (ik..) is NOUN_PROP for MADAMIRA, and NOUN for Farasa, and (_s.) is IV for all
taggers but it is V for Farasa. To address this problem, we defined three types of POS tagging scenarios:

1. True POS tagging: We use the full 39 tags used in the ATB . We only normalize tag names. For example, we
normalize "PRON_REL” in CAMeL Tools into "REL_PRON”.

2. Simplified POS tagging: We map the tagsets of all tools into a simplified tagset of 13 tags. For example, we
mapped {NOUN, NOUN_PROP, NOUN_QUANT, NOUN_NUM, NUM} into NOUN. See the table in the appendix.

8 Jarrar et al. / Procedia Computer Science 00 (2024) 000-000

3. POS Category tagging: We categorize the tagsets of all tools into three tags {NOUN, VERB, FUNC_WORD}.

4.3.2. POS Benchmarking Results

We evaluated all POS taggers, and evaluated Alma, with and without the use of the BERT model that we fine-tuned
earlier (see Section 3.2). As shown in Table 3, Alma alone (without the use of any BERT model) outperformed all tools
in True and Simplified POS tagging. Additionally, Alma with BERT outperformed all tools in all settings.

Table 3: Evaluation of Alma POS tagging accuracy compared with different morphological analyzers

ATB
True POS POS Simplified POS Category
Alma 92.7% 93.1% 97.5%
Alma +BERT 98.2% 98.6 % 99.5%
Alma +BERT(OOV) 92.7% 93.1% 97.6%
BERT 98.1% 98.6% 99.5%
MADAMIRA 82.3% 90.8% 97.5%
CAMeL Tools 82.7% 91.9% 98.6%
Farasa 62.4% 84.9% 94.3%

4.4. Discussion and Error Analysis
In this section, we will discuss the cases where Alma produced the wrong lemmatization and POS tagging.

4.4.1. Lemmatization Error Analysis

The number of tokens that Alma did not lemmatize correctly is 34466 in ATB and 2679 in Salma. We categorize
these lemmatization errors into three categories and present statistics about each category (see Table 4). About 60.7%
of the errors are Ambiguous lemmatization and mostly with noun. It is also notable that the OOV errors are marginal.

Ambiguous Lemmatization: In this type of error, both the wrong lemma and the correct lemma are considered
lemmas for the input word, but in different contexts. The wrong lemma retrieved by Alma is because it is more frequent.
Examples of this category include Alma retrieving (1 «s\..) which refers to "politics’, while the correct lemma is (2
l.) which refers to "policy’. Another example is Alma retrieving (1 2 442) which refers to *Saudi’ people, while
the correct lemma is (1 €s,4:) which refers to *Saudi Arabia’. Another example is Alma retrieving (1 <) which is
used for emphasis, while the correct lemma is (1 $<J) which is used as a conjunction. The error in this category can be
considered partially incorrect since Alma retrieved an ambiguous lemma.

Wrong Lemmatization: The lemma retrieved by Alma is completely wrong. This is mostly because the corpora are
not diacritized, and therefore Al/ma cannot match them with any diacritized disambiguated entry in its memory. As a
result, Alma resorts to non-diacritized entries that contain multiple solutions and selects the most common one. For
example, consider the word (e4) in Salma, which refers to *understanding’ was lemmatized with the lemma (1 .4)
meaning “and them,” since it is more frequent.

Out_of_vocabulary Lemmatization: A/ma failed to retrieve a lemma for words not found in its memory, using the
exact match or after applying all the normalization steps (discussed in Section 3.2). In such cases, Alma appends a ”_0”
suffix to the word and retrieves it to indicate the absence of a lemma.

4.4.2. POS Error Analysis

Alma (without BERT) made 20, 676 POS tagging mistakes in ATB. Table 5 presents the percentage of each type of
mistake. More than half of the POS mistakes are General POS errors. This means that Alma can retrieve the correct
POS category in most cases. The OOV errors are few.

General POS: As discussed in section 4.3, the 39 tags are categorized into 13 simplified POS tags which are also
categorized into 3 categories. For example, ADJ is a type of NOUN. The General POS error means that Alma could not
determine the exact POS tag but it was able to determine its upper POS. For example, the word -\l is tagged as ADJ
by Alma, while the correct POS is NOUN.

Jarrar et al. / Procedia Computer Science 00 (2024) 000-000 9

Table 4: Statistics about the lemmatization errors

Error ATB Salma

Category Noun Verb Particle All ‘ Noun Verb Particle All
Ambiguous 39.29!3501 9.7%%% 11.9%077 60.7 %2997 36%°7 7.0%"* 18.0%*° 61.2%"%%
Wrong 23.8%%2%8 6.5%%%% 8.9%3063 39.29% 1345 20.6%%7 11.7%3' 6.4%'" 38.7 %1046
(010)% 0.10 %% 0.009%? 0.02%* 0.13%4 0.18%° 0.04%' - 0.22%°

Wrong POS: Alma could not tag a word with its specific POS. For instance, the word (_.1) is assigned the IV by
Alma, while the correct is ADJ_COMP.

Out of Vocabulary: Alma fails to retrieve a POS for a word because the word is not found either in its exact match
or after applying all the normalization steps in Alma’s memory.

Table 5: Statistics about the POS tagging errors

ATB
Noun Verb Particle All
General POS | 48.49%!9012 4.5%8 6.2%'281 58.99,12172
Wrong POS 14.29%%33 14.9%%7 11.8%** 40.9%3%*
(010)% 0.22%% 0.03%" 0.02%° 0.29%%°

5. Conclusions and Future works

In this paper, we introduce Alma, a fast and accurate Arabic lemmatizer, POS tagger, and root tagger. Alma is built
upon a large memory that contains both diacritized and non-diacritized Arabic words along with their lemmas, POS,
root and frequencies. We benchmarked Alma and compared it with other tools, including MADAMIRA, Farasa, and
CAMeL Tools, using the Salma and ATB corpora under various experimental configurations. Our results demonstrate
that Alma outperforms all existing systems in both speed and accuracy. In the future, we aim to further enhance Alma
by enlarging its memory and improving its algorithm. We also plan to extend Alma to support Arabic dialects.

References

[1] Al-Hajj, M., Jarrar, M., 2021a. ArabGlossBERT: Fine-Tuning BERT on Context-Gloss Pairs for WSD., in: Proceedings of the International
Conference on Recent Advances in Natural Language Processing (RANLP 2021), INCOMA Ltd., Online. pp. 40-48.
[2] Al-Hajj, M., Jarrar, M., 2021b. LU-BZU at SemEval-2021 Task 2: Word2Vec and Lemma2vec Performance in Arabic Word-in-Context
Disambiguation., in: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), ACL, Online. pp. 748-755.
[3] Alhafi, D., Deik, A., Jarrar, M., 2019. Usability evaluation of lexicographic e-services, in: The 2019 IEEE/ACS 16th International Conference
on Computer Systems and Applications (AICCSA), IEE. pp. 1-7.
[4] Amayreh, H., Dwaikat, M., Jarrar, M., 2019. Lexicon digitization-a framework for structuring, normalizing and cleaning lexical entries.
Technical Report, Birzeit University .
[5] Boudchiche, M., Mazroui, A., 2019. A hybrid approach for arabic lemmatization. International Journal of Speech Technology .
[6] Boudchiche, M., Mazroui, A., Bebah, M.O.A.O., Lakhouaja, A., Boudlal, A., 2017. Alkhalil morpho sys 2: A robust arabic morpho-syntactic
analyzer. Journal of King Saud University - Computer and Information Sciences , 141-146.
[7] Buckwalter, T., 2004. Buckwalter arabic morphological analyzer version 2.0. (LDC2004L02) .
[8] Darwish, K., Habash, N., Abbas, M., Al-Khalifa, H., Al-Natsheh, H.T., Bouamor, H., Bouzoubaa, K., Cavalli-Sforza, V., El-Beltagy, S.R.,
El-Hajj, W., Jarrar, M., Mubarak, H., 2021. A Panoramic Survey of Natural Language Processing in the Arab Worlds. Com. ACM 64, 72-81.
[9] Darwish, K., Mubarak, H., Abdelali, A., Eldesouki, M., 2017. Arabic pos tagging: Don’t abandon feature engineering just yet. WANLP .
[10] El-Khair, I.A., 2016. 1.5 billion words arabic corpus.
[11] Ghanem, S., Jarrar, M., Jarrar, R., Bounhas, I., 2023. A Benchmark and Scoring Algorithm for Enriching Arabic Synonyms, in: Proceedings of
the 12th International Global Wordnet Conference (GWC2023), Global Wordnet Association. pp. 215-222.

10
[12]
[13]

[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]
[41]

[42]
[43]
[44]
[45]
[46]

[47]

Jarrar et al. / Procedia Computer Science 00 (2024) 000-000

Graff, D., Maamouri, M., Bouziri, B., Krouna, S., Kulick, S., Buckwalter, T., 2010. Standard arabic morphological analyzer(sama)
v3.1(1dc2010101) .

Habash, N., 2007. Arabic morphological representations for machine translation, in: Arabic computational morphology: Knowledge-based and
empirical methods, Springer. pp. 263-285.

Haff, K.E., Jarrar, M., Hammouda, T., Zaraket, F., 2022. Curras + Baladi: Towards a Levantine Corpus, in: LREC 2022, Marseille, France.
Hammouda, T., Jarrar, M., Khalilia, M., 2024. SinaTools: Open Source Toolkit for Arabic Natural Language Understanding, in: Proceedings of
the 2024 Al in Computational Linguistics (ACLING 2024), ELSEVIER, Dubai.

Inoue, G., Khalifa, S., Habash, N., 2022. Morphosyntactic tagging with pre-trained language models for arabic and its dialects. Findings of the
Association for Computational Linguistics: ACL 2022 .

Jarrar, M., 2011. Building a formal arabic ontology (invited paper), in: Proceedings of the Experts Meeting on Arabic Ontologies and Semantic
Networks, ALECSO, Arab League.

Jarrar, M., 2020. Digitization of Arabic Lexicons. UAE Ministry of Culture and Youth. pp. 214-217.

Jarrar, M., 2021. The Arabic Ontology - An Arabic Wordnet with Ontologically Clean Content. Applied Ontology Journal 16, 1-26.

Jarrar, M., Amayreh, H., 2019. An arabic-multilingual database with a lexicographic search engine, in: The 24th International Conference on
Applications of Natural Language to Information Systems (NLDB 2019), Springer. pp. 234-246.

Jarrar, M., Amayreh, H., McCrae, J.P., 2019. Representing arabic lexicons in lemon - a preliminary study, in: The 2nd Conference on Language,
Data and Knowledge (LDK 2019), CEUR Workshop Proceedings. pp. 29-33.

Jarrar, M., Habash, N., Alrimawi, F., Akra, D., Zalmout, N., 2017. Curras: An annotated corpus for the palestinian arabic dialect. Journal
Language Resources and Evaluation 51, 745-775.

Jarrar, M., Hammouda, T.H., 2024. Qabas: An Open-Source Arabic Lexicographic Database, in: Proceedings of LREC-COLING 2024, ELRA
and ICCL, Torino, Italy. pp. 13363-13370.

Jarrar, M., Karajah, E., Khalifa, M., Shaalan, K., 2021. Extracting Synonyms from Bilingual Dictionaries, in: Proceedings of the 11th
International Global Wordnet Conference (GWC2021), Global Wordnet Association. pp. 215-222.

Jarrar, M., Malaysha, S., Hammouda, T., Khalilia, M., 2023a. SALMA: Arabic Sense-annotated Corpus and WSD Benchmarks, in: Proceedings
of ArabicNLP, Part of the EMNLP 2023, ACL. pp. 359-369.

Jarrar, M., Zaraket, F., Asia, R., Amayreh, H., 2018. Diacritic-based matching of arabic words. ACM Asian and Low-Resource Language
Information Processing 18, 10:1-10:21.

Jarrar, M., Zaraket, F., Hammouda, T., Alavi, D.M., Waahlisch, M., 2023b. Lisan: Yemeni, Irqi, Libyan, and Sudanese Arabic Dialect Copora
with Morphological Annotations, in: Proceedings of the 20th ACS/IEEE AICCSA, IEEE.

Kanerva, J., Ginter, F., Salakoski, T., 2021. Universal lemmatizer: A sequence-to-sequence model for lemmatizing universal dependencies
treebanks. Natural Language Engineering 27, 545-574.

Khalifa, S., Habash, N., Eryani, F., Obeid, O., Abdulrahim, D., Kaabi, M.A., 2018. A morphologically annotated corpus of emirati arabic.
LREC 2018 .

Khallaf, N., Arfon, E., El-Haj, M., Morris, J., Knight, D., Rayson, P., Jarrar, T.H.M., 2023. Open-source thesaurus development for under-
resourced languages: a welsh case study, in: The 4th Conference on Language, Data and Knowledge (LDK2023).

Kondratyuk, D., 2019. Cross-lingual lemmatization and morphology tagging with two-stage multilingual bert fine-tuning, in: Proceedings of the
16th workshop on computational research in phonetics, phonology, and morphology, pp. 12-18.

Kondratyuk, D., Gavenciak, T., Straka, M., Hajic, J., 2018. Lemmatag: Jointly tagging and lemmatizing for morphologically rich languages with
brnns. EMNLP 2018 .

Kondratyuk, D., Straka, M., 2019. 75 languages, 1 model: Parsing universal dependencies universally, in: EMNLP-IJCNLP.

Maamouri, M., Bies, A., Kulick, S., Krouna, S., Gaddeche, F., Zaghouani, W., 2010a. Arabic treebank: Part 3 v 3. (LDC2010TO08) .
Maamouri, M., Graff, D., Bouziri, B., Krouna, S., Bies, A., Kulick, S., 2010b. Standard arabic morphological analyzer(sama) v3.1(1dc2010101) .
Malaysha, S., Jarrar, M., Khalilia, M., 2023. Context-Gloss Augmentation for Improving Arabic Target Sense Verification, in: GWC2023.
Mubarak, H., 2018. Build fast and accurate lemmatization for arabic. LREC 2018 .

Naser-Karajah, E., Arman, N., Jarrar, M., 2021. Current Trends and Approaches in Synonyms Extraction: Potential Adaptation to Arabic, in:
Proceedings of the 2021 International Conference on Information Technology (ICIT), IEEE, Amman, Jordan. pp. 428—434.

Nayouf, A., Jarrar, M., zaraket, F., Hammouda, T., Kurdy, M.B., 2023. Nabra: Syrian Arabic Dialects with Morphological Annotations, in:
Proceedings of ArabicNLP, Part of the EMNLP 2023, ACL. pp. 12-23.

Obeid, O., Inoue, G., Habash, N., 2022. Camelira: An arabic multi-dialect morphological disambiguator, in: EMNLP-Demos, pp. 319-326.
Obeid, O., Zalmout, N., Khalifa, S., Taji, D., Oudah, M., Alhafni, B., Inoue, G., Eryani, F., Erdmann, A., Habash, N., 2020. Camel tools: An
open source python toolkit for arabic natural language processing, in: Proceedings of the twelfth LREC, pp. 7022-7032.

Pasha, A., Al-Badrashiny, M., Diab, M., El Kholy, A., Eskander, R., Habash, N., Pooleery, M., Rambow, O., Roth, R.M., 2014. Madamira: A
fast, comprehensive tool for morphological analysis and disambiguation of arabic, in: LREC 2014, pp. 1094-1101.

Pasha, A., Al-Badrashiny, M., Diab, M., Habash, N., Pooleery, M., Rambow, O., Roth, R., 2019. Madamira v2.1 user manual.

Shamela Website, . https://shamela.ws/. Accessed: 2023-01-01.

Straka, M., 2018. Udpipe 2.0 prototype at conll 2018 ud shared task, in: CoNLL 2018, pp. 197-207.

Straka, M., Strakovd, J., Hajic, J., 2019. Evaluating contextualized embeddings on 54 languages in pos tagging. Lemmatization and Dependency
Parsing. .

Taji, D., Khalifa, S., Obeid, O., Eryani, F., Habash, N., 2018. An arabic morphological analyzer and generator with copious features, in:
Proceedings of the fifteenth workshop on computational research in phonetics, phonology, and morphology, pp. 140-150.

https://shamela.ws/

Jarrar et al. / Procedia Computer Science 00 (2024) 000-000 11

Appendix A. POS Tagging Benchmarking

Table A.6: Categorization and mapping between POS tagsets. The (SAMA-based) means that is used in (Alma, MADAMIRA, and Camel). Some
Camel tags have slightly different names that we unified in this table

POS Category POS Simplified POS

NOUN (All)
NOUN_PROP (SAMA-based)
NOUN NOUN_QUANT (SAMA-based)
NOUN_NUM (SAMA-based)
NOUN NUM (Farasa)
ADIJ (ALL)
ADJ_COMP (SAMA-based)
ADJ_NUM (SAMA-based)
IV (SAMA-based)
PV (SAMA-based)
CV (SAMA-based)
V (Farasa)
VERB Verb IV_PASS (SAMA-based)
PV_PASS (SAMA-based)
PSEUDO_VERB (SAMA-based)
VERB (SAMA-based)
Verb * (MADAMIRA and Camel, with IV,PV Aspects/Passive, Active Voice)
ADV (All)
Adverb INTERROG_ADV (SAMA-based)
REL_ADV (SAMA-based)
pron (All)
FUNC_WORD DEM_PRON (SAMA-based)
Pronoun EXCLAM_PRON (SAMA-based)
INTERROG_PRON (SAMA-based)
REL_PRON (SAMA-based)
PART (All)
DET (SAMA-based)
FOCUS_PART (SAMA-based)
FUT_PART (SAMA-based)
Particle INTERROG_PART (SAMA-based)
NEG_PART (SAMA-based)
RESTRIC_PART (SAMA-based)
VERB_PART (SAMA-based)
VOC_PART (SAMA-based)

ADJ

Conjunction CONJ (AID
SUB_CONJ (SAMA-based)
Preposition prep
Interjection interj
Abbreviation abbrev

Foreign Foreign

