
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2024) 000–000
www.elsevier.com/locate/procedia

,,,

6th International Conference on AI in Computational Linguistics

SinaTools : Open Source Toolkit for Arabic Natural Language
Processing

Tymaa Hammoudaa, Mustafa Jarrara,→, Mohammed Khaliliaa

aBirzeit University, Birzeit, PO Box 14, West Bank, Palestine

Abstract

We introduce SinaTools , an open-source Python package for Arabic natural language processing and understanding. SinaTools is a
unified package allowing people to integrate it into their system workflow, offering solutions for various tasks such as flat and nested
Named Entity Recognition (NER), fully-flagged Word Sense Disambiguation (WSD), Semantic Relatedness, Synonymy Extractions
and Evaluation, Lemmatization, Part-of-speech Tagging, Root Tagging, and additional helper utilities such as corpus processing, text
stripping methods, and diacritic-aware word matching. This paper presents SinaTools and its benchmarking results, demonstrating
that SinaTools outperforms all similar tools on the aforementioned tasks, such as Flat NER (87.33%), Nested NER (89.42%), WSD
(82.63%), Semantic Relatedness (0.49 Spearman rank), Lemmatization (90.5%), POS tagging (97.5%), among others. SinaTools can
be downloaded from (https://sina.birzeit.edu/sinatools).

© 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 6th International Conference on AI in Computational Linguistics,
ACling 2024.

Keywords: Toolkit; Arabic; Named Entity Recognition; Word Sense Disambiguation; Semantic Relatedness; Synonymy Extraction;
Lemmatization; Part-of-speech Tagging; Root tagging; Morphology; NLP; NLU.

1. Introduction

Despite the progress in Arabic NLP [9], there remain a lack of tools and resources that offer solutions for Arabic
NLP and NLU tasks. Developing machine learning tools is crucial in democratizing Arabic NLP, as they allow people
to incorporate machine learning into their workflows with less technical knowledge. The availability of open-source and
advanced AI tools remains limited. Low-code platforms and toolkits can bridge this gap by offering intuitive interfaces
and trained models, making it easier for people in industry, research, and education to tap into the power of NLP to
develop and deploy NLP applications.

→ Corresponding author. Tel.: +970-2-2982000
E-mail address: mjarrar@birzeit.edu

1877-0509 © 2024 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 6th International Conference on AI in Computational Linguistics, ACling 2024.

https://sina.birzeit.edu/sinatools
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 Hammouda et al. / Procedia Computer Science 00 (2024) 000–000

Named �
Entity �

Recognition�

Word Sense �
Disambiguation�

Morphology�
Tagging  �

Synonyms�

Semantic �
Relatedness�

Diacritic-�
Based �

Matching�

Corpora �
Processing�

Utilites�

SinaTools�

Fig. 1: Core modules of SinaTools

As will be discussed in this paper, a handful of tools for Arabic NLP have emerged, each offering rich functionalities
that contribute to the growing ecosystem of Arabic NLP. Notable examples include The Stanford CoreNLP Toolkit
[42], Farasa [10], MADAMIRA [49], CAMeLTools [46], and OCTOPUS [12].

This article presents a new set of tools packaged in SinaTools , an open-source toolkit for Arabic NLP and NLU,
offering state-of-the-art solutions for various semantic-related tasks developed by SinaLab at Birzeit University. Sina-
Tools currently supports flat, nested, and fine-grained Named Entity Recognition (NER), Word Sense Disambiguation
(WSD), Semantic Relatedness, Synonymy Extraction and Evaluation, Lemmatization, Part-of-Speech (POS) tagging,
and root tagging, among others. SinaTools provides a single end-to-end system for these tasks with different interfaces,
including a Command Line Interface (CLI), Software Development Kit (SDK), and Application Programming Interface
(API), as well as Python Jupyter Notebooks. Our goal is to simplify the development and deployment of Arabic NLP
applications. Additionally, this article presents our benchmarking results of similar toolkits on the aforementioned
tasks, demonstrating the superiority of SinaTools over other tools. The main contributions of this article are:

1. Open-source1 and Python-based Arabic toolkit for various NLU tasks, with different interfaces.
2. Benchmarking Arabic NLP toolkits, demonstrating SinaTools benefits and superior performance on all tasks.

This article is structured as follows: Section 2 overviews related work. Section 3 presents the design and implemen-
tation. Section 4 presents all NLU modules. Section 5 concludes the paper and outlines our future work.

2. Related Work

This section overviews different Arabic NLP toolkits, which we also summarize in Table 1. The Stanford CoreNLP
[42] is a general-purpose toolkit, supporting nine languages including Arabic, but its Arabic support is limited to
basic tasks. MADAMIRA [49] is designed for morphological analysis and disambiguation, including lemmatization,
POS tagging, and segmentation. As will be demonstrated later, MADAMIRA is among the top-performing tools in
terms of accuracy. However, it is not open-source, is notably slow, and its functionalities are limited to morphology
tasks. Farasa [10] focuses also on Arabic morphology tasks, mainly lemmatization, POS tagging, and segmentation.
Farasa is designed for speed, offering fast morphological analysis. However, its results are less sophisticated compared
to MADAMIRA. For instance, Farasa’s POS tagger is limited to 20 tags, whereas MADAMIRA supports 40 tags.
Additionally, Farasa’s lemmatizer returns ambiguous lemmas as it removes all diacritics.

CAMeLTools [46] is an open-source NLP toolkit providing utilities for pre-processing, morphological modeling,
dialect identification, NER, and sentiment analysis. Although CAMeLTools covers a broad range of tasks, its support
of NLU tasks is limited. For example, its NER module can only detect three flat entity types: PERS, LOC, and ORG.

1 Download page: https://sina.birzeit.edu/sinatools

https://sina.birzeit.edu/
https://sina.birzeit.edu/sinatools


Hammouda et al. / Procedia Computer Science 00 (2024) 000–000 3

OCTOPUS [12] introduces a significant advancement with its AraT5v2 model, specifically designed for Arabic text
generation. Meticulously trained on extensive and diverse datasets, the tools outperform competitive baselines across
various tasks. OCTOPUS supports eight Arabic generation tasks, including summarization, paraphrasing, grammatical
error correction, and question generation, among other generative tasks.

There are other task-specific tools. For example, TURJUMAN [43] is a neural machine translation toolkit that
translates from 20 dialects into MSA using the AraT5 model. AraNet [2] supports various social media tasks, including
age, dialect, gender, emotion, irony, and sentiment prediction. Mazajak [13] focuses on sentiment analysis.

Table 1: Feature comparison of related Arabic NLP tools.

SinaTools CoreNLP Farasa MADAMIRA CamelTools Octopus

Language Python Java Java Java Python Python
Command Line Interface (CLI) ↭ ↭ ↭ ↭ ↭
Application Programming Interface (API) ↭ ↭ ↭ ↭ ↭ ↭
Morphological Modeling ↭ ↭
Morphological Disambiguation ↭ ↭ ↭ ↭
Diacritization ↭ ↭ ↭ ↭
Tokenization/Segmentation/Stemming ↭ ↭ ↭ ↭
Lemmatization ↭ ↭ ↭ ↭
POS Tagging ↭ ↭ ↭ ↭ ↭
Root Tagging ↭
NER 21 tags (flat, nested) 4 tags flat 3 tags flat
WSD ↭
Semantic Relatedness ↭
Sentiment Analysis ↭
Dialect ID ↭
Title Generation ↭
QA ↭
Question Generation ↭
transliteration ↭ ↭ ↭
grammatical error correction ↭
Paraphrase ↭
Summarization ↭
Synonyms Extraction ↭

3. Design and Implementation

3.1. Design

SinaTools is an open-source toolkit consisting of a collection of Python application programming interfaces (APIs)
and their corresponding command-line tools, which encapsulate these APIs. It adheres to these core design principles:

1. Modularity: Each function is encapsulated in its own module, allowing for independent development, testing, and
maintenance. This structure facilitates the seamless addition of new features without impacting existing ones.

2. Extensibility: The architecture is designed to be extensible, enabling users to easily integrate additional tasks or
replace existing components with custom implementations.

3. User-Friendly APIs: SinaTools provides intuitive and consistent APIs that abstract the complexity of underlying
algorithms and data structures. This ensures that users, regardless of their expertise in NLP, can leverage the full
capabilities of the tools with a minimal learning curve.

4. Performance Optimization: The implementation emphasizes efficient processing of large datasets. Large models
and datasets required for various tasks are loaded the first time they are used or through a specific implemented
download command. This approach minimizes load times and ensures efficient memory usage during operations.

3.2. Implementation

SinaTools is implemented in Python 3.10.8 and can be installed via pip install. Python was selected due to its ease of
use and its widespread adoption for NLP and Machine Learning. SinaTools is designed to be compatible with Python
version 3.10 on Linux, macOS, and Windows. Currently, SinaTools provides both an API and a command-line interface



4 Hammouda et al. / Procedia Computer Science 00 (2024) 000–000

for each component, in addition to demo pages. It is important to note that SinaTools is under continuous development,
with ongoing additions of new features and updates to existing ones. This paper reports on the current components, but
updates and new components will be continuously published.

4. SinaTools Modules

4.1. Morphology Module

This module is an implementation2 of the Alma (!"#$%) morphology tagger presented in [22], which consists of
three sub-modules: (1) lemmatizer (2) POS tagger, and (3) root tagger. These sub-modules utilize a pre-computed
memory, consisting of a dictionary containing many wordforms and their morphological solutions. This dictionary is
implemented as a Python hashmap, simplifying the lemmatization, POS, and root tagging tasks into straightforward
lookup operations. Each entry in the dictionary is a key-value pair, where the key is a wordform and the value is its
corresponding morphological solution. A morphological solution consists of a <lemma, POS , root>, and the frequency
of this solution. The Alma dictionary is frequency-based. We have gathered a large collection of word forms and their
morphological solutions from lexicographic resources developed at SinaLab. Using these, we calculated the frequency
of each solution (see [22]). The primary resource for building Alma is the Qabas lexicographic data graph [30], which
includes about 58k lemmas linked with lemmas in the Arabic Ontology [21, 19], 110 Arabic lexicons [20, 23, 24, 5],
and other annotated corpora and resources [45, 35, 15, 28, 27, 26, 18]. The Alma dictionary retains the most frequent
solution on the top (i.e., default) solution. For example, the wordform (&' ( )* /d

¯
hb ) can be a noun and a verb. However,

as the verb form is more common, SinaTools consistently tags it as a verb, regardless of the context. Although this
method is simple and out-of-context, our evaluations show that it is more accurate and significantly faster than others.

Table 2: Benchmarking Arabic lemmatizers and POS taggers using the ATB and Salma datasets

Tool

Lemmatization
exact match
(F1-Score)

Lemmatization
without Numbers

(F1-Score)

POS
40 tags

(F1-Score)

POS
3 tags

(F1-Score)

Speed
(seconds)

ATB Salma ATB Salma ATB ATB ATB Salma
MADAMIRA 84.2% 85.5% 88.3% 86.6% 82.3% 97.5% 1661.3 388.57
CamelTools - - 80.9% 81.7% 82.7% 98.6% 13080.2 646.06
Farasa - - - - 62.4% 94.3% 33.22 15.07
SinaTools 87.8% 90.5% 91.5% 91.2% 92.7% 97.5% 11.34 1.19

Evaluation: Table 2 presents the benchmarking results of lemmatization and POS tagging for four tools. We used
two datasets: (1) the LDC’s Arabic TreeBank (ATB) [38], which includes 339, 710 tokens with their morphological
annotations, and (2) the Salma dataset [33], a more recent corpus containing 34, 253 tokens with their morphological
and semantic annotations. For lemmatization, we compared the results of all tools in two scenarios: (i) with the exact
spelling of the lemmas, and (ii) after removing numbers from lemmas. Farasa’s results did not match in either case, as
it provides ambiguous undiacritized lemmas. For POS tagging, we evaluated the tools using the (i) full set of 40 tags
and (ii) a set of 18 tags (see details in [22]). For speed benchmarking, we conducted four runs for each tool on the
same machine (24 CPU, 47G Memory, CentOS, 1.3T size) under identical experimental conditions. Excluding the first
run, we averaged the speeds of the remaining three runs. SinaTools outperformed the other systems in both speed and
accuracy across the two corpora. More detailed experimentation and comparisons of the four tools are reported in [22].

Out-of-Vocabulary: As SinaTools relies on a dictionary, it cannot provide solutions for wordforms not included in
its dictionary. However, our benchmarking showed that out-of-vocabulary (OOV) instances are not a significant issue.
To address OOV cases, SinaTools integrates a fine-tuned BERT model for POS tagging, ensuring robust performance
even when encountering words not present in the dictionary (See [22]).

2 Demo page (Alma): https://sina.birzeit.edu/alma

https://sina.birzeit.edu/alma


Hammouda et al. / Procedia Computer Science 00 (2024) 000–000 5

4.2. Named Entity Recognition Module

This module3 is based on a BERT model that fine-tuned with our Wojood datasets [32]. The module supports flat,
nested, and fine-grain entity types. Since Wojood has 21 entity types, our model includes 21 classification layers, one
layer for each entity type. Each layer classifies the token into one of three classes, C = {I,O, B}. As illustrated in Figure
2, each classifier is an expert in one entity type, which will output one of the three labels in C for each token.

Transformer Model 

Classifier (ORG) Classifier (LOC)

مصرفيالدخلضریبةبتخفیضتقومالاقتصادوزارة

BIOOOOOO

Classifier (PERS)

OOOOOOOO

Classifier (GPE)

OOOOOOOB

Fig. 2: SinaTools NER model

Evaluation: We benchmarked and compared our NER module with CamelTools on three datasets. Table 3 summa-
rizes the results. Wojood test set, which covers MSA, Palestinian, and Lebanese dialects, on which SinaTools is trained
[32]. WojoodGaza provided in subtask-3 in the WojoodNER 2024 shared task [29]. This dataset contains 50k tokens
recently collected from five news domains (politics, law, economy, finance, health) related to the Israeli War on Gaza,
and annotated using the 21 Wojood tags. Politics, a second out-of-domain dataset and contains 12, 712 tokens that we
collected from Aljazeera news articles two years ago. We note that CamelTools can detect three types of entities only
(PERS, LOC, and ORG).

Table 3: Evaluation of SinaTools NER module (F1-Score)

Dataset Tool Flat (3 tags) Flat (21 tags) Nested (21 tags)

Wojood CamelTools 45.85% - -
SinaTools 66.40% 87.33% 89.42%

WojoodGaza CamelTools 29.72% - -
SinaTools 67.27% 55.72% 62.68%

Politics CamelTools 54.00% - -
SinaTools 69.00% 68.00% 74.00%

4.3. Word Sense Disambiguation Module

This module is an implementation of a novel end-to-end semantic analyzer called Salma (!+,-)4. Figure 3 illustrates
our system architecture, as a pipeline of components: Tokenizer, Lemmatizer, POS Tagger, NER, Target Sense
Verification (TSV), and two sense inventories. Given an input sentence, the WSD module conducts semantic analysis,
which includes disambiguating single-word and multi-word expressions, and tagging named entities.

Example: Input (./01 23
)4 5 )678% 9:;' <3./ )= )>;3 )? )@9;<' AB9?9< *CD9;94E% 9FG% )GH / Ministry of Economy is reducing income tax in Egypt).

Output: (1) named entities (*CD9;94E% 9FG% )GH/Ministry of Economy)ORG and (./01/Egypt)GPE; (2) multi-word expressions

senses (5 )678% 9:;' <3./ )=/income tax) I
5 J)6 K*

I9:K;' <3.K/
K)=; and (3) single-word senses (AB9?9</is)6- KAC

K94, ( )>;3 )? )@9;<'/reducing)2-
I)>;3 )?K

J)LM
K9N.

The WSD system consists of a pipeline of the following sub-processes:

3 Demo page (Wojood): https://sina.birzeit.edu/wojood
4 Demo page (Salma): https://sina.birzeit.edu/salma

https://ontology.birzeit.edu/lexicalconcept/349001534
https://ontology.birzeit.edu/lexicalconcept/303046074
https://ontology.birzeit.edu/lexicalconcept/303015225
https://sina.birzeit.edu/wojood
https://sina.birzeit.edu/salma


6 Hammouda et al. / Procedia Computer Science 00 (2024) 000–000

NER

Tokenizer

Sense inventory  
Mul�-words

Retrieve senses 
for n-grams

Found?

No senses 
found

GlossBERT

 (n-1) 

Ranked senses

Merged results from NER for
phrases without senses and

senses for phrases with senses

Generate n-gram
(start with n=5)

Fig. 3: SinaTools end-to-end WSD (Salma)

Phase 1 (n-gram tokenization): we first generate n-grams from the input text for all 2 ↑ n ↑ 5. The n-grams will be
used in later phases to query the sense inventory.
Phase 2 (Lemmatization): Each token in a given n-gram is lemmatized using the SinaTools Lemmatizer.
Phase 3 (Multi-word WSD): At this phase we retrieve senses for multi-word expressions such as (5 )6* 9:;' <3./ )=/income
tax) and ( 9:OP3;'Q 9: );-/leap year). SinaTools includes a dictionary of such expressions that we collected from our 150
lexicons [23], storing each multi-word expression with its glosses. This dictionary serves as our multi-word sense
inventory. For each lemmatized multi-word expression (i.e., n-gram, where 2 ↑ n ↑ 5), we perform a lookup in the
sense inventory, starting with n = 5. If a sense is not found, we reduce n by 1 and attempt the retrieval again. For
example, (5 )6* 9:;' <3./ )=/income tax) has two glosses (i.e., senses) in the sense inventory. The senses along with the original
input sentence are sent to the TSV module for disambiguation (Phase 6).
Phase 4 (NER): As no need to sense-disambiguate all n-grams (e.g., text spans such as (./01/Egypt) and
(*CD9;94E% 9FG% )GH/Ministry of Economy) are proper nouns), the NER module tags each span with entity types.
Phase 5 (single-word WSD): All tokens that were not sense-disambiguated or NER-tagged in the previous steps will
undergo an additional step. We disambiguate them as single words (uni-grams). For instance, in the example above,
three uni-grams need to be single-word disambiguated: (AB9?9</is), ( )>;3 )? )@9;<'/reducing), and (23

)4/in). The glosses of these
uni-grams are retrieved from the single-word sense inventory and sent to the TSV module for disambiguation (Phase 6).
Phase 6 (Target Sense Verification (TSV)): We implemented the TSV approach proposed in [33], which is a core
step in the WSD pipeline. Given a pair of sentences (context and gloss), TSV calculates the Positive and Negative
probabilities to classify whether this pair is True or False, indicating whether the gloss is the correct sense used in
the context based on the higher probability. Thus, for a word w in context C, and all w glosses gi ↓ G, we generate
a set of pairs {(C, g1),(C, g2),..., (C, gm)}. These pairs are sent to the TSV model for evaluation. The pair with the
highest Positive probability is considered the target sense. We fine-tuned the TSV model using AraBERT V2 [7] and
the ArabGlossBERT dataset (167k pairs) [3]. We experimented with an augmented dataset [40] but it did not enhance
the results. We also addressed WSD using the WiC model [4] but the performance was bad.

Evaluation: As SinaTools is the first tool for Arabic WSD, we computed its baseline using the Salma corpus [33],
the only available Arabic sense-annotated corpus. Salma is only annotated with NER and single-word expressions, but
we extend its annotations to include multi-word expressions. Table 4 shows that SinaTools achieves an overall WSD
performance of 82.63% accuracy. It’s important to note that calculating the accuracy of the single-word WSD is not
straightforward because a word might have multiple correct senses in Salma, and whether the accuracy should include
words with single senses. Thus, we refer the reader to [33] for more details. It is also worth noting that Salma was used
in the ArabicNLU Shared Task [36], where the best-performing system on single-word WSD achieved 77.8% [50].

4.4. Semantic Relatedness Module

This task is useful in NLP for many scenarios such as evaluating sentence representations [8], document summariza-
tion, and question answering. Given two sentences, the semantic relatedness task aims to assess the degree of association



Hammouda et al. / Procedia Computer Science 00 (2024) 000–000 7

Table 4: Evaluation of SinaTools WSD module

Tokens Count Span Count Accuracy

NER (6 types) 4,389 2,728 85.31%
Multi-word WSD 2,100 519 88.92%
Single-word WSD 27, 764 27, 764 81.73%
Overall (Micro average) 34, 253 82.63%

between two sentences across various dimensions, including meaning, underlying concepts, domain-specificity, topic
overlap, or viewpoint alignment [1]. SinaTools supports MSA semantic relatedness, which represents our participation
[41] in the SemRel Shared Task [48], where we achieved the top rank. Unlike the lexical overlap (using dice coefficient)
proposed in [47], we extracted the mean-pooling embeddings of the sentences from BERT-based model, then employed
cosine similarity as an unsupervised technique to calculate the sentence-pair scores. We evaluated our method using the
595 sentence-pairs test set provided in the SemEval-2024 Task 1 on Semantic Textual Relatedness for African and
Asian Languages [48]. Table 5 shows that we outperformed the baseline. We used Spearman rank correlation coefficient,
the official evaluation metric used in the shared task, which captures the level to which the system predictions align
with the human judgments of the test pairs.

Table 5: Performance of Semantic Relatedness of SinaTools on the SemEval-2024 Task

Test
Pairs

Spearman
Baseline SinaTools

595 0.42 0.49↔

4.5. Synonyms Module

Arabic is low-resourced in terms of synonymy resources and tools [44, 31, 17]. SinaTools includes an implementation
of the synonymy extraction and evaluation5 algorithm introduced in [14], which was also tested in extracting Welsh
synonyms [37]. The algorithm is designed to extract synonyms from mono and multilingual lexicons. It leverages
synonymy and translation pairs from these resources to generate a synonymy graph, where nodes involved in cyclic
paths are deemed synonyms. The extracted synonyms are assigned fuzzy values to indicate their degree of belonging to
the synonym set. The algorithm is evaluated using the Arabic WordNet, achieving 98.7% accuracy at 3rd level and 92%
at 4th level. We utilized about 100 mono and bilingual lexicons [23], including the Arabic Ontology [21, 19], Qabas
[30], 40 ALECSO lexicons, 11 from the Arabic Academy, WordNet, and others. These resources were used to compute
two synonymy graphs: a 2nd level graph (75MB) and a 3rd level graph (1.1GB). SinaTools features two main methods:
(i) SynExtract for synonym extraction, and (ii) SynEval for synonym evaluation. The S ynExtract method allows users
to give one or more terms as input and retrieve their synonyms (See example 1). Each synonym is given a fuzzy value.
The more terms are provided in the input the better the accuracy. The S ynEval method enables users to input a set of
terms and receive a fuzzy score for each term, reflecting its synonymy strength (See example 2). In both methods, users
can choose between the faster 2nd level graph or the richer but slower 3rd level graph.

Example 1: the function S ynExtract( 9R<3.S , .TU), returns {V,O1 61%, 5;3P'- 50%, W' X )Y 23%, 9ZC94 )G 20%, 9:[- 15% , ...}
Example 2: the function S ynEval( 9R<3.S , .TU, V,O1), returns {V,O1 70%, .TU 50%, 9R<3.S 30%}.

4.6. Other Modules and Tools

In addition to its core functionalities, SinaTools includes a variety of utility modules designed for text processing
capabilities. The Sentence Splitter module offers the capability to segment text into sentences, with the flexibility to
specify separators (e.g., periods, question marks, exclamation marks, and line breaks), thereby accommodating varied
text structures. Notably, this feature selectively incorporates chosen separators while disregarding unselected ones,

5 Demo Page (Synonymy) : https://sina.birzeit.edu/synonyms

https://sina.birzeit.edu/synonyms


8 Hammouda et al. / Procedia Computer Science 00 (2024) 000–000

thereby enhancing the precision of text segmentation. The Diacritic-Based Matching of Arabic Words module6

compares two Arabic words to find out whether they are the same, taking into account their partial or full diacratizition
[34]. For example, the two words ( K

5\
K)4 /faωla ,5 K\ )4 /fωal ) are compatible and the ( K

5\
K)4 /faωla , K

5\ )4K /fiωla ) are not. The
Text Duplicate Removal module employs cosine similarity to eliminate redundant sentences from input text under
a similarity threshold, which is useful for corpora pre-processing. The Arabic Jaccard module computes union,
intersection, and similarity metrics between sets of Arabic words, taking into account partial diacritization. Moreover,
the Arabic Diacritic Removal (arStrip) module designed to cleanse Arabic words by selectively removing diacritics,
shaddah, digits, alif, and special characters, according to user-specified parameters. Lastly, the Transliteration

Module facilitates seamless conversion between Arabic and Buckwalter transliteration schemas, thereby ensuring
interoperability across different linguistic representations.

5. Conclusions and Future Work

We presented SinaTools , an open-source Python package for Arabic NLP, offering solutions for various tasks such
as NER, WSD, semantic relatedness, synonymy extraction and evaluation, lemmatization, POS tagging, among others.
Our benchmarking results highlight that SinaTools consistently outperforms similar tools across all tasks.

Looking ahead, we plan to expand SinaTools by incorporating additional Arabic NLU modules. These enhancements
will focus on areas currently underserved by existing tools, such as intent detection [25, 39], relationship extraction [6],
detection of hate speech [16], bias and propaganda [11, 51], among others.

References

[1] Abdalla, M., Vishnubhotla, K., Mohammad, S.M., 2023. What Makes Sentences Semantically Related? A textual relatedness Dataset and
Empirical Study, in: Proceedings of EACL 2023, ACL. pp. 782–796.

[2] Abdul-Mageed, M., Zhang, C., Hashemi, A., et al., 2020. AraNet: A Deep Learning Toolkit for Arabic Social Media, in: OSACT, pp. 16–23.
[3] Al-Hajj, M., Jarrar, M., 2021a. ArabGlossBERT: Fine-Tuning BERT on Context-Gloss Pairs for WSD., in: Proceedings of the International

Conference on Recent Advances in Natural Language Processing (RANLP 2021), INCOMA Ltd., Online. pp. 40–48.
[4] Al-Hajj, M., Jarrar, M., 2021b. LU-BZU at SemEval-2021 Task 2: Word2Vec and Lemma2vec Performance in Arabic Word-in-Context

Disambiguation., in: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), ACL, Online. pp. 748–755.
[5] Alhafi, D., Deik, A., Jarrar, M., 2019. Usability evaluation of lexicographic e-services, in: The 2019 IEEE/ACS 16th International Conference

on Computer Systems and Applications (AICCSA), IEE. pp. 1–7.
[6] Aljabari, A., Duaibes, L., Jarrar, M., Khalilia, M., 2024. Event-Arguments Extraction Corpus and Modeling using BERT for Arabic, in:

Proceedings of ArabicNLP’2024, ACL, Bangkok, Thailand.
[7] Antoun, W., Baly, F., Hajj, H., 2020. AraBERT: Transformer-based Model for Arabic Language Understanding, in: OSACT, pp. 9–15.
[8] Asaadi, S., Mohammad, S.M., Kiritchenko, S., 2019. Big BiRD: A Large, Fine-grained, Bigram Relatedness Dataset for Examining Semantic

Composition, in: Proceedings of the NAACL-HLT, ACL. pp. 505–516.
[9] Darwish, K., Habash, N., Abbas, M., Al-Khalifa, H., Al-Natsheh, H.T., Bouamor, H., Bouzoubaa, K., Cavalli-Sforza, V., El-Beltagy, S.R.,

El-Hajj, W., Jarrar, M., Mubarak, H., 2021. A Panoramic Survey of Natural Language Processing in the Arab Worlds. Com. ACM 64, 72–81.
[10] Darwish, K., Mubarak, H., 2016. Farasa: A New Fast and Accurate Arabic Word Segmenter, in: Proceedings of LREC, pp. 1070–1074.
[11] Duaibes, L., Jaber, A., Jarrar, M., Qadi, A., Qandeel, M., 2024. Sina at FigNews 2024: Multilingual Datasets Annotated with Bias and

Propaganda, in: Proceedings of ArabicNLP’2024, ACL, Bangkok, Thailand.
[12] Elmadany, A., Nagoudi, E.M.B., Abdul-Mageed, M., 2023. Octopus: A Multitask Model and Toolkit for Arabic Natural Language Generation .
[13] Farha, I.A., Magdy, W., 2019. Mazajak: An Online Arabic Sentiment Analyser, in: Proceedings of WANLP Workshop, pp. 192–198.
[14] Ghanem, S., Jarrar, M., Jarrar, R., Bounhas, I., 2023. A Benchmark and Scoring Algorithm for Enriching Arabic Synonyms, in: Proceedings of

the 12th International Global Wordnet Conference (GWC2023), Global Wordnet Association. pp. 215–222.
[15] Haff, K.E., Jarrar, M., Hammouda, T., Zaraket, F., 2022. Curras + Baladi: Towards a Levantine Corpus, in: Proceedings of the International

Conference on Language Resources and Evaluation (LREC 2022), Marseille, France.
[16] Hamad, N., Jarrar, M., Khalilia, M., Nashif, N., 2023. Offensive Hebrew Corpus and Detection using BERT, in: Proceedings of the 20th

ACS/IEEE AICCSA, IEEE.
[17] Helou, M.A., Palmonari, M., Jarrar, M., 2016. Effectiveness of automatic translations for cross-lingual ontology mapping. Journal of Artificial

Intelligence Research 55, 165–208.
[18] Jarrar, M., 2008. Towards Effectiveness and Transparency in e-Business Transactions, An Ontology for Customer Complaint Management. IGI

Global. chapter 7. pp. 127–149.

6 Demo Page (Diacritic-Based Matching) : https://sina.birzeit.edu/resources/Implication.html

https://sina.birzeit.edu/resources/Implication.html


Hammouda et al. / Procedia Computer Science 00 (2024) 000–000 9

[19] Jarrar, M., 2011. Building a formal arabic ontology (invited paper), in: Proceedings of the Experts Meeting on Arabic Ontologies and Semantic
Networks, ALECSO, Arab League.

[20] Jarrar, M., 2020. Digitization of Arabic Lexicons. UAE Ministry of Culture and Youth. pp. 214–217.
[21] Jarrar, M., 2021. The Arabic Ontology - An Arabic Wordnet with Ontologically Clean Content. Applied Ontology Journal 16, 1–26.
[22] Jarrar, M., Akra, D., Hammouda, T., 2024a. ALMA: Fast Lemmatizer and POS Tagger for Arabic, in: Proceedings of the 2024 AI in

Computational Linguistics (ACLING 2024), ELSEVIER, Dubai.
[23] Jarrar, M., Amayreh, H., 2019. An arabic-multilingual database with a lexicographic search engine, in: The 24th International Conference on

Applications of Natural Language to Information Systems (NLDB 2019), Springer. pp. 234–246.
[24] Jarrar, M., Amayreh, H., McCrae, J.P., 2019. Representing arabic lexicons in lemon - a preliminary study, in: The 2nd Conference on Language,

Data and Knowledge (LDK 2019), CEUR Workshop Proceedings. pp. 29–33.
[25] Jarrar, M., Birim, A., Khalilia, M., Erden, M., Ghanem, S., 2023a. ArBanking77: Intent Detection Neural Model and a New Dataset in Modern

and Dialectical Arabic, in: Proceedings of ArabicNLP, Part of the EMNLP 2023, ACL. pp. 276–287.
[26] Jarrar, M., Deik, A., Faraj, B., 2011. Ontology-based data and process governance framework -the case of e-government interoperability in

palestine, in: Proceedings of the IFIP International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA’11), pp. 83–98.
[27] Jarrar, M., Habash, N., Akra, D., Zalmout, N., 2014. Building a corpus for palestinian arabic: a preliminary study, in: Proceedings of the EMNLP

2014, Workshop on Arabic Natural Language, ACL. pp. 18–27.
[28] Jarrar, M., Habash, N., Alrimawi, F., Akra, D., Zalmout, N., 2017. Curras: An annotated corpus for the palestinian arabic dialect. Journal

Language Resources and Evaluation 51, 745–775.
[29] Jarrar, M., Hamad, N., Khalilia, M., Talafha, B., Elmadany, A., Abdul-Mageed, M., 2024b. WojoodNER 2024: The Second Arabic Named

Entity Recognition Shared Task, in: Proceedings of ArabicNLP’2024, ACL, Bangkok, Thailand.
[30] Jarrar, M., Hammouda, T.H., 2024. Qabas: An Open-Source Arabic Lexicographic Database, in: Proceedings of LREC-COLING 2024, ELRA

and ICCL, Torino, Italy. pp. 13363–13370.
[31] Jarrar, M., Karajah, E., Khalifa, M., Shaalan, K., 2021. Extracting Synonyms from Bilingual Dictionaries, in: Proceedings of the 11th

International Global Wordnet Conference (GWC2021), Global Wordnet Association. pp. 215–222.
[32] Jarrar, M., Khalilia, M., Ghanem, S., 2022. Wojood: Nested Arabic Named Entity Corpus and Recognition using BERT, in: Proceedings of the

International Conference on Language Resources and Evaluation (LREC 2022), Marseille, France.
[33] Jarrar, M., Malaysha, S., Hammouda, T., Khalilia, M., 2023b. SALMA: Arabic Sense-annotated Corpus and WSD Benchmarks, in: Proceedings

of ArabicNLP, Part of the EMNLP 2023, ACL. pp. 359–369.
[34] Jarrar, M., Zaraket, F., Asia, R., Amayreh, H., 2018. Diacritic-based matching of arabic words. ACM Asian and Low-Resource Language

Information Processing 18, 10:1–10:21.
[35] Jarrar, M., Zaraket, F., Hammouda, T., Alavi, D.M., Waahlisch, M., 2023c. Lisan: Yemeni, Irqi, Libyan, and Sudanese Arabic Dialect Copora

with Morphological Annotations, in: Proceedings of the 20th ACS/IEEE AICCSA, IEEE.
[36] Khalilia, M., Malaysha, S., Suwaileh, R., Jarrar, M., Aljabari, A., Elsayed, T., Zitouni, I., 2024. ArabicNLU 2024: The First Arabic Natural

Language Understanding Shared Task, in: Proceedings of ArabicNLP’2024, ACL, Bangkok, Thailand.
[37] Khallaf, N., Arfon, E., El-Haj, M., Morris, J., Knight, D., Rayson, P., Jarrar, T.H.M., 2023. Open-source thesaurus development for under-

resourced languages: a welsh case study, in: The 4th Conference on Language, Data and Knowledge (LDK2023).
[38] Maamouri, M., Bies, A., Kulick, S., Krouna, S., Gaddeche, F., Zaghouani, W., 2010. Arabic Treebank: Part 3 V 3.2 LDC2010T08. LDC.
[39] Malaysha, S., El-Haj, M., Ezzini, S., Khalilia, M., Jarrar, M., Nasser, S., Berrada, I., Bouamor, H., 2024a. AraFinNLP 2024: The First Arabic

Financial NLP Shared Task, in: Proceedings of ArabicNLP’2024, ACL, Bangkok, Thailand.
[40] Malaysha, S., Jarrar, M., Khalilia, M., 2023. Context-Gloss Augmentation for Improving Arabic Target Sense Verification, in: Proceedings of

the 12th International Global Wordnet Conference (GWC2023), Global Wordnet Association.
[41] Malaysha, S., Jarrar, M., Khalilia, M., 2024b. NLU-STR at SemEval-2024 Task 1: Generative-based Augmentation and Encoder-based Scoring

for Semantic Textual Relatedness, in: Proceedings of the SemEval 2024 Shared Task 1 (Semantic Relatedness), ACL.
[42] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D., 2014. The Stanford CoreNLP Natural Language Processing

Toolkit, in: Proceedings of ACL, pp. 55–60.
[43] Nagoudi, E.M.B., Elmadany, A., Abdul-Mageed, M., 2022. TURJUMAN: A Public Toolkit for Neural Arabic Machine Translation .
[44] Naser-Karajah, E., Arman, N., Jarrar, M., 2021. Current Trends and Approaches in Synonyms Extraction: Potential Adaptation to Arabic, in:

Proceedings of the 2021 International Conference on Information Technology (ICIT), IEEE, Amman, Jordan. pp. 428–434.
[45] Nayouf, A., Jarrar, M., zaraket, F., Hammouda, T., Kurdy, M.B., 2023. Nâbra: Syrian Arabic Dialects with Morphological Annotations, in:

Proceedings of ArabicNLP, Part of the EMNLP 2023, ACL. pp. 12–23.
[46] Obeid, O., Zalmout, N., Khalifa, S., Taji, D., Oudah, M., Alhafni, B., Inoue, G., Eryani, F., Erdmann, A., Habash, N., 2020. CAMeL tools: An

open source python toolkit for Arabic natural language processing, in: Proceedings of LERC, pp. 7022–7032.
[47] Ousidhoum, N., Muhammad, S.H., 2024. SemRel2024: A Collection of Semantic Textual Relatedness Datasets for 14 Languages.
[48] Ousidhoum, N., Muhammad, S.H., Abdalla, M., 2024. SemEval-2024 Task 1: Semantic Textual Relatedness for African and Asian Languages,

in: Proceedings of SemEval, ACL.
[49] Pasha, A., Al-Badrashiny, M., Diab, M.T., El Kholy, A., Eskander, R., Habash, N., Pooleery, M., Rambow, O., Roth, R., 2014. MADAMIRA: A

Fast, Comprehensive Tool for Morphological Analysis and Disambiguation of Arabic, in: LREC, pp. 1094–1101.
[50] Rajpoot, P.K., Jindal, A.K., Parikh, A., 2024. Upaya at ArabicNLU Shared-Task: Arabic Lexical Disambiguation using Large Language Models,

in: Proceedings of ArabicNLP, Part of ACL 2024.
[51] Zaghouani, W., Jarrar, M., Habash, N., Bouamor, H., Zitouni, I., Diab, M., El-Beltagy, S., AbuOdeh, M., 2024. The FIGNEWS Shared Task on

News Media Narratives, in: Proceedings of ArabicNLP’2024, ACL, Bangkok, Thailand.


