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ABSTRACT 
Companies, Communities, Research Labs, and even Governments 
are all competing on publishing structured data in the web in 
many forms such as RDF and XML. Many Datasets are now 
being published and linked together, including Wikipedia, Yago, 
DBLP, IEEE, IBM, Flickr, and US and UK government data. 
Most of these datasets are published in RDF which is a graph-
based data model. However, querying RDF graphs is a major 
problem which has brought the attention of the research 
community. Among the many approaches proposed to tune up the 
performance of queries over data graphs, a number of them 
proposed to summarize RDF graphs for query optimization; 
instead of querying a dataset, queries are executed over the 
summary of the dataset.  In order to summarize a dataset, two well 
known algorithms are being used, namely, Trace Equivalence and 
Bisimilarity. Nevertheless, these are memory based and thus 
suffer from scalability problems because of the limitations 
imposed by the memory. In this paper, we propose disk-based 
versions of those memory-based algorithms and we adapt them to 
RDF data. Our proposed algorithms are experimented on 
relatively large datasets and using different sizes of memory to 
prove that they are indeed disk based. 

Categories and Subject Descriptors 
H.3.4 [Semantic Web], G.2.2 [Graph Theory]: Graph 
Algorithms.  

General Terms 
Algorithms, Performance. 

Keywords 
Semantic/Data Web, WEB 3.0, RDF, Query Optimization, 
Scalability, Trace Equivalence, Bisimilarity. 
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1. INTRODUCTION 
The vision of semantic web as proposed by the World Wide 
Consortium (W3C) is to “create a universal medium for the 
exchange of data” [1]. For this vision to realize, large amounts of 
structured datasets are being published forming a web of 
interlinked structured data [1]. The W3C SWEO community 
project Linking Open Data [2] is playing a lead role in this by 
bringing and linking massive amounts of structured data in the 
web. Examples of structured datasets being published and 
interlinked by the project include Wikipedia, Wikibooks, Yago, 
DBLP bibliography, Wordnet, Geonames, MusicBainz, Freebase 
and many more. Governments are also following the trend of 
publishing structured data in the web. Both the US and the UK 
governments are not only publishing their data in the web but also 
encouraging people to reuse and benefit from it. 
The most widely adopted data model specification for 
representing structured data in the web is RDF (Resource 
Description Framework). RDF syntax is based on XML and 
reflexes simple graph-based data model [1]. RDF represents data 
as triples < , ,  >. For instance, the fact 
that the movie Sicko (2007) is directed by Michael Moore from 
the USA can be represented by the following triples which form a 
directed labeled graph (see Figure 1):  
< M1, name, Sicko > 
< M1, year, 2007 > 
< M1, directedBy, D1 > 
< D1, name, Michael Moore > 
< D1, country, C1 > 
< C1, name, USA > 
 

This way of representing data (RDF) is more elementary than 
databases and XML models, which indeed enables data 
integration and interoperability between systems. However, 
querying RDF data graphs is a major problem that brought the 
attention of the research community [5, 10, 16]. In fact, querying 
such data, which is typically stored in one relational table denoted 
by < , ,  > is of high complexity because traversing a graph 
stored in relational model involves many self-joins of that table. 
More specifically, a query with ()	edges on such a table requires 
( − 1) self joins of that table [12]. 
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Figure 1. An RDF Data graph 

Several solutions were proposed to solve the problem of querying 
RDF. Among these are solutions which propose new methods for 
storing RDF such as Oracle’s Semantic Technology [7], C-Store 
[20, 3], and RDF3X [18]. Other solutions such as Graph-Signature 
Indexing [13] and PIG [22] use a different  methodology; they 
propose to summarize RDF data such that queries are executed on 
the summaries instead of the original data. The latter solutions 
have shown better results in terms of performance and are more 
promising than those which propose alternative methods for 
storing RDF.  
Summarizing data graphs as proposed by Graph-Signature 
Indexing [13] and PIG [22] is done using two well known 
algorithms, namely, Trace Equivalence and Bisimilarity. So far, 
versions of these algorithms were used to summarize relatively 
small XML data graphs [9, 14, 15, 17]. For instance, indexing 
techniques for XML such as DataGuides [9], 1-index [17], A(k)-
index [15], and F&B [4, 14] all use Trace Equivalence and 
Bisimilarity algorithms for summarizing XML data. Also, 
versions of Trace Equivalence and Bisimilarity found in literature 
are memory based, that is, the data graph is loaded into the 
memory and the algorithms are executed there. In other words, 
memory-based versions of Trace Equivalence and Bisimilarity 
found in literature are not scalable due to the limitations imposed 
by the memory so they cannot be used to summarize large data 
graphs.  
The original contribution of this paper is twofold; (i) to propose 
scalable disk-based versions of Trace Equivalence and 
Bisimilarity which can be used to summarize large data graphs 
and (ii) to adapt both algorithms to the RDF data model.   
The remainder of this article is arranged as follows: related work 
on indexing techniques is presented in section 2, our disk-based 
version of Trace Equivalence is discussed in section 3, and 
Bisimilarity in section 4. In section 5, we present an evaluation of 
our proposed algorithms on two relatively large datasets using 
different memory sizes. 
 

 

 
 

Figure 2. The summary of the RDF data graph in Figure 1 

 
2. RELATED WORK 
Several techniques have been proposed in the literature for 
indexing semi-structured data, especially for XML. Among these 
approaches are the DataGuides, 1-index, A(k)-index, and F&B. In 
this section we will briefly investigate each these indexing 
techniques.  
The authors of [9] proposed the DataGuide as a covering index to 
answer queries from this index directly without referring to the 
original graph. The Dataguide is established by extracting all 
possible paths from a data graph. This technique is analogous to 
the problem of obtaining a deterministic automaton from a 
nondeterministic finite automaton. However, this approach relies 
on the graph being rooted (as the case in XML) as opposed to our 
approach that has no such structural constraint on the data. 
Moreover, a node can appear in the extent of more than one index 
node, allowing the index graph to be exponential in the size of the 
data graph at the worst case [17, 14]. On the contrary, the size of 
the index graph in our approach can never be larger than the size 
of the data graph. Further, DataGuides are not adequate for 
complex queries having several regular expressions and variables 
[17]. In practice, this approach becomes very problematic when 
applied to cyclic graphs, as the authors of [9] were unable to 
compute the strong DataGuide on a small subset of the IMDB 
dataset. 
1-indicies proposed by [17] is another example of a covering 
index that covers incoming path queries. In this approach nodes 
having the same set of incoming paths are grouped together to 
obtain the index graph in a way similar to our approach. However, 
it also relies on the data graphs being rooted. Compared to 
DataGuides, the size of the 1-indicies has an upper bound 
dependent on the length of the longest acyclic path. Further, 
because grouping is based on the Bisimulation relationship, we 
can compute the index for a data graph with n nodes and m edges 
in (()) time, using an algorithm proposed by [19]. For 
highly irregular and heterogeneous data graphs, the size of the 1-
index may become very large [17]. To tackle this issue the authors 
of  [17] also proposed the T-index as a variant of the 1-indicies for 
reducing the size of the index. This is done by restricting the class 
of queries that the index supports. The A(k)-index proposed by 
[15] also reduces the size of the index by relaxing the equivalence 
condition, based on the concept of k-bisimilarity in which only 
paths whose length are no longer than k are considered. 
Last of all, the F&B index proposed by [4, 14] group nodes 
having the same set of incoming (Forward) and outgoing 
(Backward) paths together. However, the size of this index can 
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approach the size of the data graph itself, giving a little 
performance gain when evaluating queries on the index instead of 
the original graph. 
Our work in this paper differs from the related work briefed above 
in two issues. Firstly, our focus is on the RDF data model in that 
we adapt both Trace Equivalence and Bisimilarity algorithms to 
the RDF model. Secondly, all of these indexing techniques for 
XML data rely on memory-based versions of Trace Equivalence 
and Bisimilarity which are not scalable and thus cannot be used to 
summarize large datasets. On the contrary, our disk-based 
versions of Trace Equivalence and Bisimilarity are memory-
independent and thus are scalable to very large data graphs.    

3. TRACE EQUIVALENCE 
A data graph can be summarized by combining nodes that have 
exactly the same set of their outgoing paths. The graph shown in  
Figure 1 is summarized by the graph shown in Figure 2. For 
instance, one can notice that M1 and M2 have the same set of paths: 
{(name), 
 (year), 
 (directedBy, name), 
 (directedBy, country, name), 
 (directedBy, country, capital), 
 (directedBy, hasWonPrizeIn, name), 
 (directedBy, hasWonPrizeIn, year), 
 (directedBy, hasWonPrizeIn, location, capital), 
 (directedBy, hasWonPrizeIn, location, name)} 

Therefore, M1 and M2 are grouped together in the same category 
as shown in Figure 2. Also, M3 and M4 have the same set of their 
outgoing paths and therefore they are grouped together. However, 
they are not put into the same category as M1 and M2 because 
they don’t have the same set of paths; both M3 and M4 have an 
extra path: (directedBy, actedIn). 

Generating such summaries is done using the well-known Trace 
Equivalence algorithm which we applied on the graph in Figure 
1. Before delving into the definition of Trace Equivalence and 
the details of the algorithm, it is necessary to formally define the 
directed labeled graph and the vertex-rooted path which lies in 
the core of Trace Equivalence.  

A directed labeled graph (also referred to here by data graph) is 
composed of vertices (nodes) and edges connecting those vertices. 
Labels are associated with all of the nodes and edges. The formal 
definition as proposed by [6] is as follows: 
Definition 1.   Given a finite set of vertex labels  and a finite set 
of edge labels , a directed labeled graph is defined by a triple 
 =< , ,  >, such that: 

•  is a finite set of vertices. 

•  ⊆ 	 ×  is the relation that associates vertices with 
labels, i.e.,  is the set of couples (, ) such that vertex  
has label . 

•  ⊆ 	 ×  ×  is the relation that associates edges with 
labels, i.e.,  is the set of triples (, , ) such that edge 
(, ) has label . From the definition of , we can define 
the set of edges 	as:  = (, )	|	∃, (, , )}. 

Definition (2) below defines the vertex-rooted path and is based 
on Definition (1) of the directed labeled graph.  

Definition 2. A v1-rooted path is defined as a finite tuple of edges 
< (, ), (, ), … , (, ) >, such that, (, ) and 
,  are the same vertex (	 = 1,2, … , ). 

For simplicity, we can write the v1-rooted path as a finite 
tuple of edge labels< , , … ,  >, such that(,  , ) 
(	 = 1,2, … , ).  
Roughly speaking, Trace Equivalence is an equivalence relation 
defined on the set of vertices V, such that two vertices (, ) are 
Trace Equivalent if and only if the set of all -rooted paths is 
equal to the set of all -rooted paths. The more formal definition 
according to [11] is as follows: 
Definition 3. The vertex  trace-dominates the vertex  if for 
every finite -rooted path , there is a -rooted path  such that 
 = . The vertices  and  are trace equivalent, written  ≈  
if  trace-dominates  and  trace-dominates . 
Memory-based Trace Equivalence algorithm can be inferred 
from Definition (3) of Trace Equivalence relation. In literature, 
this definition is often presented as Trace Equivalence algorithm 
for graph summarization because the algorithm is indeed 
directly related to the definition. The algorithm simply suggests 
that we take each node in the graph and find all outgoing paths 
from it. After that, nodes having the same set of paths are 
grouped together. Each group is seen as an equivalent class of 
its members. 
The memory-based version of the algorithm has been used to 
summarize directed labeled graphs, but proved to be 
inefficient if applied to large data graphs because of memory 
limitations. Hence, we introduce a scalable disk-based version 
of the algorithm to reduce large graphs. The idea in our 
version of the algorithm is basically based on the definition of 
Trace Equivalence relation (Definition 3); that is, to generate 
the summary of a graph we first find all possible outgoing 
paths of a node and then group the nodes that have the same 
set of paths together. However, in our disk based version of 
the algorithm a directed labeled graph is represented by a 
< , ,  >	table. So, finding the set of all paths from a node is 
done by continuously performing self-left joins to this table 
until all paths are determined. The number of self-left joins 
required depends on the levels the longest path spans, e.g., if 
the longest path is only two levels only one left join is needed, 
if it is four levels deep (as in our graph in Figure 1) then two 
left joins are needed, and so on. The stopping condition of this 
process is: “when no more left joins possible”, i.e., the longest 
path has been retrieved and further joins do not retrieve any 
additional path.  However, because a self-left join becomes 
more expensive as the table becomes larger, the algorithm 
eliminates the columns that are not needed before performing 
each join. More specifically, the result of the first self-left join 
of the table < , ,  > is the table named 
< , , , , ,  > (self-left join is done on	 = ). 
Before performing the second self-left join we eliminate the 
columns < ,  >	resulting in a reduced table, namely, 
< , , ,  > on which the second self-left join is performed 
resulting in the table < , , , , , , ,  >. Again, 
before performing the third self-left join, columns < ,  > 
are eliminated from this table resulting in the table			<
, , , , ,  > on which the fourth self-left join is 
performed. This elimination is done in the same manner for all 
remaining self-left joins. In addition, the algorithm checks for 
possible loops in the graph before performing the self-left join 



because the existence of a loop would cause the algorithm to 
run indefinitely. The detection of the loop is done by checking 
the condition “ = ” for each row before performing the join 
and isolating the rows that satisfy this condition by copying 
them into a different table. After performing all required self-
left joins and retrieving all paths, these rows are returned to 
the table.    
However, it is worth mentioning that using Trace Equivalence is 
expensive; the process of testing the trace equivalence of two 
vertices in a directed labeled graph is known to be PSPACE 
complete [11]. It is not in the scope of this paper to improve the 
complexity of this process.  
The algorithm is presented formally in Figure 3 using Relational 
Algebra notation. 
Algorithm 1: Trace Equivalence (G) 
Input: A graph  (three-tuple table,< , ,  >). 
Output: Summarized Graph  ′  
Begin 
1.    = (	)		 
2.   While (no more left joins possible) do   
3.       For each row in  
4.             if  =  
5.                Copy row to table  
6.                Delete row from   
7.         	, ,,,…,,		 		⋈.. 		 	 // self left join 
8.   End While 
9.   Insert into R all rows from R. 
10.   ℎ, ,(,…,)	()  
11.  ℎ = All distinct (PATH) in ℎ 
12.  For each (PATH) in pathID assign a unique number   
13.   , .,.ℎ	 ⋈.. 	ℎ 
14.  (, ,(),		()) 
15.  Generate graph summarization from	.  
End 

Figure 3. The disk-based Trace Equivalence algorithm 
 

4. BISIMILARITY 
The idea of using Bisimilarity for graph summarization was 
proposed as an improvement to tackle the complexity of the Trace 
Equivalence Algorithm. Bisimilarity algorithm produces summaries 
that are Trace Equivalent. However, these summaries are in fact 
approximations. In other words, the complexity of Bisimilarity 
algorithm is ( log) for a graph with  vertices and  edges 
[11, 17] which is indeed a significant improvement on Trace 
Equivalence. However, Bisimilarity does not catch/summarize all 
cases, that is, some cases that are Trace Equivalent are skipped and 
not discovered by Bisimilarity. Again, as in section 2, we first 
present the well-known memory based algorithm for computing 
Bisimilarity (shown in Figure 4) and the definition of the 
Bisimilarity relation (given in Definition 4), then, we introduce our 
disk-based version of the algorithm.  
Roughly speaking, Bisimulation in directed labeled graphs is an 
equivalence relation defined on a set of vertices , such that two 
vertices (, ) are Bisimilar if and only if the set of edge-labels 
of  is equal to the set of edge-labels of	. Also all nodes ’, ’ 
in the set of triples (, ’, ), (, ’, )} must be Bisimilar. This 
equivalence relation is written as		 ≈ . Compared to Trace 
Equivalence, Bisimilarity relation is finer than Trace 

Equivalence, that is  	 ≈  implies 	 ≈  [8, 11]. The formal 
definition is given in Definition (4) below. 
Definition 4. Given a directed labeled graph G=<V,rV,rE> as in 
Definition (1), two vertices	(, ) ∈  are bisimilar if and only if: 
1. For all set of tuples 

< (, , ), (, , ),… , (, , ) >∈  there 
exists < (, , ), (, , ),… , (, , ) >∈  
such that  	= 	 		( = 1,2,… , ). 

2. Conversely, for all set of tuples 
< (, , ), (, , ),… , (, , ) >∈   there 
exists < (, , ), (, , ), … , (, , ) >∈  such 
that  	= 	 		( = 1,2, … , ). 

3. The set of vertices (, )		( = 1,2, … , ) are also 
bisimilar. 
 

procedure compute_bisim(G) 
begin 
1. Q and X are each a list of node-sets 
2. Q = partition  by label 
3. X = (a copy of) Q 
4. while  (true) do 
5.    for each x in X do //stabilize Q w.r.t X 
6.       compute Succ(x) 
7.       for each q in Q do // split 
8.            replace q by q ∩ Succ(x) and q − Succ(x) 
9.    if there was no split then 
10.      break 
11.  X = (a copy of) Q 
End 

Figure 4. The memory-based Bisimilarity algorithm 
 

The Bisimilarity algorithm was used in the literature to summarize 
data graphs. In particular, several researchers used it to summarize 
XML graphs using several different techniques, such as 1-index 
[17], a(k)-index [15], and F&B [4,14]. 
 However, RDF is more complex than XML in several ways. 
First of all, RDF data in its nature forms a graph, which means 
there is no single root for the data, whereas XML is tree 
structured, such that for every XML document there is only one 
single root for the data. Moreover, this tree structure implies the 
fact that every node in the graph has only one parent, and that 
for every node there is only one unique path that this node can 
be reached from. Conversely, in RDF the same node may be 
accessed via several paths, and through different nodes. Second, 
RDF may contain loops or cycles that should be taken in 
consideration when computing the structural summaries, 
compared to XML in which the summarization process is 
straightforward. These differences between XML and RDF 
impose the need to adapt the bisimilarity algorithm to become 
consistent with graph-based data. We will now demonstrate the 
basic ideas in the memory-based bisimilarity algorithm, and then 
we will discuss our disk-based version of the algorithm and its 
adaptation for large RDF graphs. 
Compared to the Trace Equivalence algorithm, the Bisimilarity 
algorithm shown in Figure 4 creates graph summaries in an 
iterative process, such that in each iteration we group nodes up 
to a certain number of levels. Basically, the Bisimilarity 
algorithm produces a summarized graph in two steps. First, it 
groups the nodes based on the edge labels (or predicates in case 
of RDF). Second, these groups go through a number of 
iterations to split the nodes that conflict with the Bisimulation 
Equivalence relation, until no more splitting can be done. In 



other word, after grouping the nodes with the same set of edge 
labels into categories, each group is taken alone and the 
successors of the nodes in the group are tested for Bisimilarity 
(this is done by checking the category of the successor node). 
Nodes whose successors fail the test are split from the group. 
For example, when applying Bisimilarity algorithm on the graph 
in Figure 1, one can notice that {M1, M2, M3, M4} have the 
same edge labels, {year, name, directedBy}. Hence, initially, 
these nodes are grouped in the same category. However, when 
their successors are tested for Bisimilarity, the algorithm reveals 
that the successor of M1, and M2 {D1} does not fall in the same 
category as the successor of M3 {D2} and M4 {D3}, thus we 
split the group {M1, M2, M3, M4} into {M1, M2} and {M3, 
M4}. This process typically goes over and over again until no 
more splitting is possible, that is, until the graph is stable. Figure 
2 sketches the summarized graph in which one can notice how 
M1 and M2 are mapped to the same group, while M3 and M4 
are mapped to another group. It is worth mentioning, that in our 
simple example, both Bisimilarity and Trace Equivalence 
algorithms resulted in the same summary. However, this is not 
always the case as clarified earlier. 
In our disk-based version of the Bisimilarity algorithm, shown 
in Figure 5, our main focus was to propose an algorithm that is 
(i) disk based, and (ii) adapted to work on graph-based data such 
as RDF. 

Algorithm 2: Bisimilarity (G) 
Input: A Graph  (three-tuple table, <S,P,O>) 
Output: summarized Graph ´. 
Begin 
1.     T0 = (Copy of)  
2.     T1 = all distinct (P) in T0 
3.     For each (P) in T1 assign a unique number 
4.           Update (P) in T0 with the corresponding unique number in T1 
5.            1, ,(),			()  
6.     WHILE (R1 not stable)  
7.            , .,.,..  ⋈.	.  ⋈.	. 	 

8.           2, 
,(),			()			

∩ ,				()()
  

9.           R1 = (copy of) R2 
10.   END WHILE 
11.   Generate graph summarization from R1 
END 

Figure 5. The disk-based Bisimilarity algorithm. 
 

In the memory-based version of Bisimilarity algorithm 
traversing all nodes to create groups of equivalent classes is 
expensive. Besides, testing successor nodes for Bisimilarity in a 
group of  nodes has the complexity of	(), whereas our 
disk-based version of the algorithm suggests a new way to 
create equivalent classes of Bisimilar nodes that has a 
complexity of	().  
The initial grouping of nodes with similar outgoing predicates 
was done by assigning to each distinct predicate (P) a unique 
hash value. Then, we group all the nodes by the subject (S) and 
the sum of all its predicates hash value. Therefore, subjects that 
end up having the same summation belong to the same group. 
For example in Figure 1, let’s suppose that the outcome of the 
hash function for predicates {Country, name, hasWonPrizeIn, 
actedIn} was {1, 2, 3, 4} respectively. Computing the sum of 
predicates for {D1, D2, D3} yields {6, 10, 10} respectively. 
This means that D1 have a different set of predicates as opposed 

to each of D2, and D3 which have the same set of predicates and 
therefore they are grouped together. Likewise, determining 
whether the successors of two nodes fall in the same category is 
done using the same idea. For all the subjects in the graph, we 
find their successors, and then we compute the sum of the 
subject category and a hash value of the sum of all its 
successors’ category together. Then, we group them by the 
subject. In this way, subjects in each group are split according to 
their successors’ categories. In general, this step is repeated  times, 
until the table stabilizes, with  corresponding to the longest acyclic 
path in the graph. 
As mentioned earlier, because of the fact that the summaries 
created by the Bisimilarity algorithm are approximations, the size 
of the summary created is usually larger than the summary 
produced by the Trace Equivalence algorithm. This issue was not 
discussed in XML summarization techniques because for tree data 
graphs, the two equivalence relations (Bisimulation and Trace 
Equivalence) coincide [17]. However, this problem may easily 
appear in RDF because it forms a graph.  
Our version of the Bisimilarity algorithm solves many of the 
problems that emerge in graph-based data (RDF), which does not 
appear in tree-structured data (XML). A typical problem is 
depicted in Figure 6.a, which emerges from the property that the 
edge labels coming out of a node are not unique. Using Trace 
Equivalence, nodes A1, A2, and A3 have the same set of paths, so 
they are grouped together. However, it’s not the case in the 
Bisimilarity algorithm, because the successors of these nodes do 
not fall in the same category. In our proposed version of the 
Bisimilarity algorithm, the hash function was carefully used to 
encrypt information about the predicates of the node which adapts 
the algorithm to solve this problem. 
Another problem that appears in graph-based data which is 
discussed by [17], is depicted in Figure 6.b. One can notice that 
A1 and A2 are grouped together using the Trace Equivalence 
algorithm because they have the same set of paths. Meanwhile, 
these two nodes are not Bisimilar; because their successors (M1 
and M3) do not belong to the same group. This case is what 
makes Bisimilarity algorithm produce larger summaries than 
Trace Equivalence algorithm. 
However, as can be seen from our experiments in section 5, the 
difference in size between the summaries of the two algorithms 
can be tolerated; experimentally, the summary produced using the 
Bisimilarity algorithm is about 8% larger than that produced using 
Trace Equivalence. It is important to point out here that people 
using these summaries in query evaluation have to be aware not to 
use Bisimilarity algorithm to generate graph indexes when their 
query evaluation is based on Trace Equivalence scheme.  
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Figure 6: Special cases that appear only in graph-based data  
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5. EXPERIMENTS EVALUATION 
This section presents experimental results evaluating our disk- 
based versions of Trace Equivalence and Bisimilarity algorithms. 
Both algorithms were implemented using PL/SQL in Oracle 11g. 
The experiments were conducted on a PC with a 2.50 GHz Intel 
Core 2 Quad CPU, 2GiB of memory, and a 250GiB SATA Hard 
disk. The Operating System is Windows XP SP2. 
In the experiments, we used two RDF datasets: the DBLP and 
Yago dataset. Yago contains 15 million triples (1.10GiB) while 
DBLP contains 8 million RDF triples (1.07GiB). We partitioned 
Yago into 5 tables: Y3 with 3 million triples, Y6 with 6 million, 
Y9 9 million, Y12 12 million, and Y15 with 15 million triples. 
DBLP was partitioned into 4 tables: D2, D4, D6, and D8 with 2, 
4, 6, and 8 million triples respectively. Note that no sorting was 
applied on the data before partitioning (e.g., D4 was created by: 
create table D4 as select * from D8 where 

rownum<=4000000). 
The two datasets we used in our experiments differ in the nature 
of the data they contain. The DBLP data tends to be more 
homogenous and node paths tend to be shorter than those in the 
Yago dataset (the longest path in the DBLP dataset is 4 levels 
long). On the contrary, Yago data is more heterogeneous and node 
paths tend to be longer than those in DBLP. These observations 
have an impact on the results of the experiments (shown in Tables 
1 and 2) especially in the summarization time. For instance, in the 
case of Bisimilarity, Y6 is summarized in 241 seconds while D6 is 
summarized in 68 seconds though both contain 6 million triples. 
Also, to prove that our algorithms are indeed disk based and 
therefore memory independent, we conducted the same 
experiment twice on the same machine; the first was done using 
2GiB of memory and the second was done using only 1GiB. 
Experimental results are summarized in Tables 1 and 2. 

5.1 Analysis of Experimental Results 
This subsection provides analysis of the experimental results 
shown in Tables 1 and 2 in terms of memory independency and 
scalability of both algorithms.  

5.1.1 Memory independency of both algorithms 
The results of our experiments prove that the two proposed 
algorithms are indeed disk based and thus memory independent. 
From Tables 1 and 2, one can see that reducing the memory used 
from 2GB to 1GB has no impact on the time cost of 
summarization for both algorithms.    

5.1.2 Scalability evaluation 
It is evident from the experimental results in either table that the 
time cost to summarize the graphs is linear with respect to the data 
size in both algorithms. For example, Bisimilarity-based 
summarization of D2 using 2GB of memory is 23 seconds, of D4 
41 seconds, and of D6 68 seconds.  
What is more scalable is the behavior of the graph summary with 
respect to the number of triples in the original graph. For instance, 
in the case of Trace Equivalence, the whole Yago dataset (Y15) is 
summarized by 462K triples. One can notice that this number 
tends to increase when the data is smaller (e.g. 658K for Y12). This 
means that it is likely that the more triples there are in the dataset, 
the more similarities are found, thus, the smaller the summary. 

 
 

 

 
 

Table 1. Summary of Experimental results using our disk-based versions of  
Trace Equivalence and Bisimilarity algorithms on YAGO dataset 

 

 Number of Y3 Y6 Y9 Y12 Y15 

O
rig

in
al

 G
ra

ph
 

Unique Triples 3M 6M 9M 12M 15M 

Unique Subjects 1.78M 2.67M 3.30M 3.84M 4.34M 

Unique Predicates 81 83 83 84 84 

Unique Objects 1.50M 3.04M 4.54M 6.09M 7.64M 

Data Size 226MiB 459MiB 678MiB 904MiB 1.10GiB 

G
ra

ph
 S

um
m

ar
y 

(T
ra

ce
 E

qu
iv

al
en

ce
) Unique Categories 32K 82K 121K 148K 100K 

Triples in Summarized Graph 102K 312K 501K 658K 462K 

2GiB Summarization Time 
(seconds) 95 311 1,025 3,507 9,869 

1GiB Summarization Time 
(seconds) 94 314 1,022 3,511 9,873 

G
ra

ph
 S

um
m

ar
y 

(B
isi

m
ila

rit
y)

 
Unique Categories 33K 86K 128K 159K 109K 

Triples in Summarized Graph 106K 325K 530K 703K 499K 

2GiB Summarization Time 
(seconds) 96 241 504 1481 1,818 

1GiB Summarization Time 
(seconds) 101 243 498 1483 1,816 

Table 2. Summary of Experimental results using our disk-based versions 
of  Trace Equivalence and Bisimilarity algorithms on DBLP dataset 

 

 Number of D2 D4 D6 D8 

O
rig

in
al

 G
ra

ph
 

Unique Triples 2M 4M 6M 8M 

Unique Subjects 791K 942K 1.04M 1.15M 

Unique Predicates 24 25 27   27                     

Unique Objects 659K 1.23M 1.76M 2.30M 

Data Size 275MiB 541MiB 824MiB 1.07GiB 

G
ra

ph
 S

um
m

ar
y 

(T
ra

ce
 E

qu
iv

al
en

ce
) Unique Categories 5K 13K 16K 4K 

Triples in Summarized Graph 28K 87K 118K 30K 

2GiB Summarization Time 
(seconds) 44 70 116 174 

1GiB Summarization Time 
(seconds) 43 72 119 175 

G
ra

ph
 S

um
m

ar
y 

(B
isi

m
ila

rit
y)

 

Unique Categories 6K 16K 19K 5K 

Triples in Summarized Graph 32K 102K 139K 35K 

2GiB Summarization Time 
(seconds) 23 41 68 107 

1GiB Summarization Time 
(seconds) 25 40 69 110 



6. CONCLUSION AND FUTURE WORK 
In this paper, we proposed two disk-based versions of the well-
known Trace Equivalence and Bisimilarity algorithms for 
summarizing data graphs. Also, we adapted the algorithms to the 
RDF data model.  The analysis of conducted experiments on 
both algorithms using relatively large RDF datasets proved that 
the two algorithms are scalable and totally memory independent. 
The research presented in this paper is part of the MashQL [13] 
project which aims to develop effective methods and techniques 
for querying the Data Web. This project was started at the 
University of Cyprus and is continued at Birzeit University. 
Future direction of this project is to develop a generalized query 
optimization solution for RDF data graphs, namely Graph-
Signature Indexing which we plan to use for query optimization 
in MashQL.  
 

7. ACKNOWLEDGEMENTS 
First of all, we would like to express our gratitude and thanks for 
Mr. Majed Ayyad for his useful comments on earlier drafts of this 
paper.  
We would also like to thank Professor Marios Dikaiakos and Mr. 
Andeas Manoli from the University of Cyprus for their generous 
help and contribution in the MashQL project. Without their help 
this research project wouldn’t have been possible. 

 
8. REFERENCES 
 
[1] World Wide Web Consortium (W3C). 

 http://www.w3c.org. (2010). 
[2] Linking Open Data Project. 

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProj
ects/LinkingOpenData (2009). 

[3] Abadi, D.J., Marcus, A., Madden, S., and Hollenbach, 
K.J.”Scalable Semantic Web Data Management Using 
Vertical Partitioning”, In Proceedings of VLDB. 2007. 

[4] Abiteboul, S., Buneman, P., and Suciu, D. Data on the web: 
from relations to semistructured data and XML. Morgan 
Kaufmann Publishers, Los Altos, CA 94022, USA, 1999. 

[5] Angles, R., and Gutierrez, C. Querying RDF data from a 
graph database perspective, Proceedings of the 2nd European 
Semantic Web Conference (ESWC), Greece (2005), 346-
360. 

[6] Champin, P., and Solnon, C. Measuring the similarity of 
labeled graphs. In Proceedings of the Fifth International 
Conference on Case-Based Reasoning. Berlin. Springer, pp. 
80–95. 2003. 

[7] Chong, E., Das, S., Eadon, G., Srinivasan, J. An efficient 
SQL-based RDF querying scheme. VLDB ’05, Springer. 
2005.  

[8] Fernandez, J.C. An Implementation of an Efficient 
Algorithm for Bisimulation Equivalence. Science of 
Computer Programming, vol. 13, 2-3, may 1990. 

[9] Goldman, R., and Widom, J. Dataguides: Enabling query 
formulation and optimization in semistructured databases, in 
VLDB, pages 436–445, 1997. 

[10] Gutierrez, C., Hurtado, C., and Mendelzon, A. Formal 
aspects of querying RDF databases,First VLDB Workshop 
on Semantic Web and Databases,Berlin, Germany, 
September 7-8, 2003. 

[11] Henzinger, R., Henzinger, A., and Kopke, W. Computing 
Simulations on Finite and Infinite Graphs. FOCS'95. 

[12] Jarrar, M., and Dikaiakos, M. A query formulation language 
for the data web. IEEE Internet Computing Magazine. 

[13] Jarrar, M., and Dikaiakos, M. Querying the Data Web – The 
MashQL approach. IEEE Internet Computing Magazine. 
2010. 

[14] Kaushik R, Bohannon P, Naughton J, Korth H: Covering 
Indexes for Branching Path Queries. SIGMOD’02 

[15] Kaushik, R., Shenoy, P., Bohannon, P., and Gudes, E. 
Exploting local similarity for efficient indexing of paths in 
graph structured data. ICDE, pages 129–140, 2002. 

[16] McGlothlin, J., and Khan, L. RDFJoin: A Scalable Data 
Model for Persistence and Efficient Querying of RDF 
Datasets, Technical Report UTDCS-08-09.  

[17] Milo, T., and Suciu, D. Index structures for path expressions. 
ICDT’99. 1999.  

[18] Neumann, T., and Weikum, G. RDF3X: RISC style engine 
for RDF. VLDB’08. 

[19] Paige, R., and Tarjan, R. E. Three partition refinement 
algorithms. SIAM Journal on Computing. 16(6):973{989, 
December 1987. 

[20] Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., 
Cherniack, M., Ferreira, M., Lau, E.,  Lin, A., Madden, S., 
O’Neil, E. J., O’Neil, P. E., Rasin, A., Tran, N., and Zdonik, 
S. B.   C-Store: A column-oriented DBMS. In VLDB, pages 
553–564, 2005. 

[21] Tian, Y., Hankins, R. A., and Patel, J. M. Efficient 
aggregation for graph summarization. Proceedings of the 
2008 ACM SIGMOD international conference on 
Management of data, June 09-12, 2008. 

[22] Tran, T. Efficient RDF Query Processing through Structure-
aware RDF Graph Matching and Structure-based 
Partitioning. A Technical Report  
https://sites.google.com/site/kimducthanh/research/strucIdx-
TR.pdf?attredirects=0&d=1 


