
Towards Query Optimization for the Data Web
Disk-Based Algorithms: Trace Equivalence and Bisimilarity

Ala’ Hawash Anton Deik Bilal Farraj Mustafa Jarrar
Faculty of Information Technology

 Birzeit University
 Palestine

Ala.hawash@gmail.com Anton.deik@gmail.com bfarraj@gmail.com mjarrar@birzeit.edu

ABSTRACT
Companies, Communities, Research Labs, and even Governments
are all competing on publishing structured data in the web in
many forms such as RDF and XML. Many Datasets are now
being published and linked together, including Wikipedia, Yago,
DBLP, IEEE, IBM, Flickr, and US and UK government data.
Most of these datasets are published in RDF which is a graph-
based data model. However, querying RDF graphs is a major
problem which has brought the attention of the research
community. Among the many approaches proposed to tune up the
performance of queries over data graphs, a number of them
proposed to summarize RDF graphs for query optimization;
instead of querying a dataset, queries are executed over the
summary of the dataset. In order to summarize a dataset, two well
known algorithms are being used, namely, Trace Equivalence and
Bisimilarity. Nevertheless, these are memory based and thus
suffer from scalability problems because of the limitations
imposed by the memory. In this paper, we propose disk-based
versions of those memory-based algorithms and we adapt them to
RDF data. Our proposed algorithms are experimented on
relatively large datasets and using different sizes of memory to
prove that they are indeed disk based.

Categories and Subject Descriptors
H.3.4 [Semantic Web], G.2.2 [Graph Theory]: Graph
Algorithms.

General Terms
Algorithms, Performance.

Keywords
Semantic/Data Web, WEB 3.0, RDF, Query Optimization,
Scalability, Trace Equivalence, Bisimilarity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISWSA’10, June 14–16, 2010, Amman, Jordan.
Copyright 2010 ACM 978-1-4503-0475-7/09/2010…$10.00.

1. INTRODUCTION
The vision of semantic web as proposed by the World Wide
Consortium (W3C) is to “create a universal medium for the
exchange of data” [1]. For this vision to realize, large amounts of
structured datasets are being published forming a web of
interlinked structured data [1]. The W3C SWEO community
project Linking Open Data [2] is playing a lead role in this by
bringing and linking massive amounts of structured data in the
web. Examples of structured datasets being published and
interlinked by the project include Wikipedia, Wikibooks, Yago,
DBLP bibliography, Wordnet, Geonames, MusicBainz, Freebase
and many more. Governments are also following the trend of
publishing structured data in the web. Both the US and the UK
governments are not only publishing their data in the web but also
encouraging people to reuse and benefit from it.
The most widely adopted data model specification for
representing structured data in the web is RDF (Resource
Description Framework). RDF syntax is based on XML and
reflexes simple graph-based data model [1]. RDF represents data
as triples < , ,  >. For instance, the fact
that the movie Sicko (2007) is directed by Michael Moore from
the USA can be represented by the following triples which form a
directed labeled graph (see Figure 1):
< M1, name, Sicko >
< M1, year, 2007 >
< M1, directedBy, D1 >
< D1, name, Michael Moore >
< D1, country, C1 >
< C1, name, USA >

This way of representing data (RDF) is more elementary than
databases and XML models, which indeed enables data
integration and interoperability between systems. However,
querying RDF data graphs is a major problem that brought the
attention of the research community [5, 10, 16]. In fact, querying
such data, which is typically stored in one relational table denoted
by < , ,  > is of high complexity because traversing a graph
stored in relational model involves many self-joins of that table.
More specifically, a query with ()	edges on such a table requires
( − 1) self joins of that table [12].

mjarrar
Published As:
Anton Deik, Bilal Faraj, Ala Hawash, Mustafa Jarrar: Towards Query Optimization for the Data Web - Two Disk-Based algorithms: Trace Equivalence and Bisimilarity. In proceedings of the International Conference on Intelligent Semantic Web – Applications and Services. Pages 131-137. ACM. ISBN 9781450304757. June 2010.

Figure 1. An RDF Data graph

Several solutions were proposed to solve the problem of querying
RDF. Among these are solutions which propose new methods for
storing RDF such as Oracle’s Semantic Technology [7], C-Store
[20, 3], and RDF3X [18]. Other solutions such as Graph-Signature
Indexing [13] and PIG [22] use a different methodology; they
propose to summarize RDF data such that queries are executed on
the summaries instead of the original data. The latter solutions
have shown better results in terms of performance and are more
promising than those which propose alternative methods for
storing RDF.
Summarizing data graphs as proposed by Graph-Signature
Indexing [13] and PIG [22] is done using two well known
algorithms, namely, Trace Equivalence and Bisimilarity. So far,
versions of these algorithms were used to summarize relatively
small XML data graphs [9, 14, 15, 17]. For instance, indexing
techniques for XML such as DataGuides [9], 1-index [17], A(k)-
index [15], and F&B [4, 14] all use Trace Equivalence and
Bisimilarity algorithms for summarizing XML data. Also,
versions of Trace Equivalence and Bisimilarity found in literature
are memory based, that is, the data graph is loaded into the
memory and the algorithms are executed there. In other words,
memory-based versions of Trace Equivalence and Bisimilarity
found in literature are not scalable due to the limitations imposed
by the memory so they cannot be used to summarize large data
graphs.
The original contribution of this paper is twofold; (i) to propose
scalable disk-based versions of Trace Equivalence and
Bisimilarity which can be used to summarize large data graphs
and (ii) to adapt both algorithms to the RDF data model.
The remainder of this article is arranged as follows: related work
on indexing techniques is presented in section 2, our disk-based
version of Trace Equivalence is discussed in section 3, and
Bisimilarity in section 4. In section 5, we present an evaluation of
our proposed algorithms on two relatively large datasets using
different memory sizes.

Figure 2. The summary of the RDF data graph in Figure 1

2. RELATED WORK
Several techniques have been proposed in the literature for
indexing semi-structured data, especially for XML. Among these
approaches are the DataGuides, 1-index, A(k)-index, and F&B. In
this section we will briefly investigate each these indexing
techniques.
The authors of [9] proposed the DataGuide as a covering index to
answer queries from this index directly without referring to the
original graph. The Dataguide is established by extracting all
possible paths from a data graph. This technique is analogous to
the problem of obtaining a deterministic automaton from a
nondeterministic finite automaton. However, this approach relies
on the graph being rooted (as the case in XML) as opposed to our
approach that has no such structural constraint on the data.
Moreover, a node can appear in the extent of more than one index
node, allowing the index graph to be exponential in the size of the
data graph at the worst case [17, 14]. On the contrary, the size of
the index graph in our approach can never be larger than the size
of the data graph. Further, DataGuides are not adequate for
complex queries having several regular expressions and variables
[17]. In practice, this approach becomes very problematic when
applied to cyclic graphs, as the authors of [9] were unable to
compute the strong DataGuide on a small subset of the IMDB
dataset.
1-indicies proposed by [17] is another example of a covering
index that covers incoming path queries. In this approach nodes
having the same set of incoming paths are grouped together to
obtain the index graph in a way similar to our approach. However,
it also relies on the data graphs being rooted. Compared to
DataGuides, the size of the 1-indicies has an upper bound
dependent on the length of the longest acyclic path. Further,
because grouping is based on the Bisimulation relationship, we
can compute the index for a data graph with n nodes and m edges
in (()) time, using an algorithm proposed by [19]. For
highly irregular and heterogeneous data graphs, the size of the 1-
index may become very large [17]. To tackle this issue the authors
of [17] also proposed the T-index as a variant of the 1-indicies for
reducing the size of the index. This is done by restricting the class
of queries that the index supports. The A(k)-index proposed by
[15] also reduces the size of the index by relaxing the equivalence
condition, based on the concept of k-bisimilarity in which only
paths whose length are no longer than k are considered.
Last of all, the F&B index proposed by [4, 14] group nodes
having the same set of incoming (Forward) and outgoing
(Backward) paths together. However, the size of this index can

M1,M2

M3,M4

2007, 2009 Capitalism, Sicko

D1

actedIn D2, D3

1995, 2007

Brave Heart,
Caramel

P1,P2,P3

Michael Moore

hasWonPrizeIn

C1,C2,C3

Mel Gibson,
Nadine Labaki

USA, Lebanon,
Sweden

Washington DC,
Stockholm, Beirut

Emmy Awards, Oscars,
Stockholm Festival

1995,1996,2007

M1

M2

M3

2007

directedBy
D1

Michael Moore

P1

Emmy Awards

2009

C1 USA

Washington DC
directedBy

D2
actedIn

1995

Brave Heart

P2 Oscars

1996

M4
directedBy

D3
actedIn

2007

Caramel

Mel Gibson

C2 Lebanon

Beirut

Nadine Labaki

P3 Stockholm Festival
2007

name
C3

Sweden

Stockholm

location

1995

Capitalism

Sicko

approach the size of the data graph itself, giving a little
performance gain when evaluating queries on the index instead of
the original graph.
Our work in this paper differs from the related work briefed above
in two issues. Firstly, our focus is on the RDF data model in that
we adapt both Trace Equivalence and Bisimilarity algorithms to
the RDF model. Secondly, all of these indexing techniques for
XML data rely on memory-based versions of Trace Equivalence
and Bisimilarity which are not scalable and thus cannot be used to
summarize large datasets. On the contrary, our disk-based
versions of Trace Equivalence and Bisimilarity are memory-
independent and thus are scalable to very large data graphs.

3. TRACE EQUIVALENCE
A data graph can be summarized by combining nodes that have
exactly the same set of their outgoing paths. The graph shown in
Figure 1 is summarized by the graph shown in Figure 2. For
instance, one can notice that M1 and M2 have the same set of paths:
{(name),
 (year),
 (directedBy, name),
 (directedBy, country, name),
 (directedBy, country, capital),
 (directedBy, hasWonPrizeIn, name),
 (directedBy, hasWonPrizeIn, year),
 (directedBy, hasWonPrizeIn, location, capital),
 (directedBy, hasWonPrizeIn, location, name)}

Therefore, M1 and M2 are grouped together in the same category
as shown in Figure 2. Also, M3 and M4 have the same set of their
outgoing paths and therefore they are grouped together. However,
they are not put into the same category as M1 and M2 because
they don’t have the same set of paths; both M3 and M4 have an
extra path: (directedBy, actedIn).

Generating such summaries is done using the well-known Trace
Equivalence algorithm which we applied on the graph in Figure
1. Before delving into the definition of Trace Equivalence and
the details of the algorithm, it is necessary to formally define the
directed labeled graph and the vertex-rooted path which lies in
the core of Trace Equivalence.

A directed labeled graph (also referred to here by data graph) is
composed of vertices (nodes) and edges connecting those vertices.
Labels are associated with all of the nodes and edges. The formal
definition as proposed by [6] is as follows:
Definition 1. Given a finite set of vertex labels  and a finite set
of edge labels , a directed labeled graph is defined by a triple
 =< , ,  >, such that:

•  is a finite set of vertices.

•  ⊆ 	 ×  is the relation that associates vertices with
labels, i.e.,  is the set of couples (, ) such that vertex 
has label .

•  ⊆ 	 ×  ×  is the relation that associates edges with
labels, i.e.,  is the set of triples (, , ) such that edge
(, ) has label . From the definition of , we can define
the set of edges 	as:  = (, )	|	∃, (, , )}.

Definition (2) below defines the vertex-rooted path and is based
on Definition (1) of the directed labeled graph.

Definition 2. A v1-rooted path is defined as a finite tuple of edges
< (, ), (, ), … , (, ) >, such that, (, ) and
,  are the same vertex (	 = 1,2, … , ).

For simplicity, we can write the v1-rooted path as a finite
tuple of edge labels< , , … ,  >, such that(,  , )
(	 = 1,2, … , ).
Roughly speaking, Trace Equivalence is an equivalence relation
defined on the set of vertices V, such that two vertices (, ) are
Trace Equivalent if and only if the set of all -rooted paths is
equal to the set of all -rooted paths. The more formal definition
according to [11] is as follows:
Definition 3. The vertex  trace-dominates the vertex  if for
every finite -rooted path , there is a -rooted path  such that
 = . The vertices  and  are trace equivalent, written  ≈ 
if  trace-dominates  and  trace-dominates .
Memory-based Trace Equivalence algorithm can be inferred
from Definition (3) of Trace Equivalence relation. In literature,
this definition is often presented as Trace Equivalence algorithm
for graph summarization because the algorithm is indeed
directly related to the definition. The algorithm simply suggests
that we take each node in the graph and find all outgoing paths
from it. After that, nodes having the same set of paths are
grouped together. Each group is seen as an equivalent class of
its members.
The memory-based version of the algorithm has been used to
summarize directed labeled graphs, but proved to be
inefficient if applied to large data graphs because of memory
limitations. Hence, we introduce a scalable disk-based version
of the algorithm to reduce large graphs. The idea in our
version of the algorithm is basically based on the definition of
Trace Equivalence relation (Definition 3); that is, to generate
the summary of a graph we first find all possible outgoing
paths of a node and then group the nodes that have the same
set of paths together. However, in our disk based version of
the algorithm a directed labeled graph is represented by a
< , ,  >	table. So, finding the set of all paths from a node is
done by continuously performing self-left joins to this table
until all paths are determined. The number of self-left joins
required depends on the levels the longest path spans, e.g., if
the longest path is only two levels only one left join is needed,
if it is four levels deep (as in our graph in Figure 1) then two
left joins are needed, and so on. The stopping condition of this
process is: “when no more left joins possible”, i.e., the longest
path has been retrieved and further joins do not retrieve any
additional path. However, because a self-left join becomes
more expensive as the table becomes larger, the algorithm
eliminates the columns that are not needed before performing
each join. More specifically, the result of the first self-left join
of the table < , ,  > is the table named
< , , , , ,  > (self-left join is done on	 = ).
Before performing the second self-left join we eliminate the
columns < ,  >	resulting in a reduced table, namely,
< , , ,  > on which the second self-left join is performed
resulting in the table < , , , , , , ,  >. Again,
before performing the third self-left join, columns < ,  >
are eliminated from this table resulting in the table			<
, , , , ,  > on which the fourth self-left join is
performed. This elimination is done in the same manner for all
remaining self-left joins. In addition, the algorithm checks for
possible loops in the graph before performing the self-left join

because the existence of a loop would cause the algorithm to
run indefinitely. The detection of the loop is done by checking
the condition “ = ” for each row before performing the join
and isolating the rows that satisfy this condition by copying
them into a different table. After performing all required self-
left joins and retrieving all paths, these rows are returned to
the table.
However, it is worth mentioning that using Trace Equivalence is
expensive; the process of testing the trace equivalence of two
vertices in a directed labeled graph is known to be PSPACE
complete [11]. It is not in the scope of this paper to improve the
complexity of this process.
The algorithm is presented formally in Figure 3 using Relational
Algebra notation.
Algorithm 1: Trace Equivalence (G)
Input: A graph  (three-tuple table,< , ,  >).
Output: Summarized Graph  ′
Begin
1.  = (	)		
2. While (no more left joins possible) do
3. For each row in 
4. if  = 
5. Copy row to table 
6. Delete row from 
7.  	, ,,,…,,		 		⋈.. 		 	 // self left join
8. End While
9. Insert into R all rows from R.
10.  ℎ, ,(,…,)	()
11. ℎ = All distinct (PATH) in ℎ
12. For each (PATH) in pathID assign a unique number
13.  , .,.ℎ	 ⋈.. 	ℎ
14. (, ,(),		())
15. Generate graph summarization from	.
End

Figure 3. The disk-based Trace Equivalence algorithm

4. BISIMILARITY
The idea of using Bisimilarity for graph summarization was
proposed as an improvement to tackle the complexity of the Trace
Equivalence Algorithm. Bisimilarity algorithm produces summaries
that are Trace Equivalent. However, these summaries are in fact
approximations. In other words, the complexity of Bisimilarity
algorithm is ( log) for a graph with  vertices and  edges
[11, 17] which is indeed a significant improvement on Trace
Equivalence. However, Bisimilarity does not catch/summarize all
cases, that is, some cases that are Trace Equivalent are skipped and
not discovered by Bisimilarity. Again, as in section 2, we first
present the well-known memory based algorithm for computing
Bisimilarity (shown in Figure 4) and the definition of the
Bisimilarity relation (given in Definition 4), then, we introduce our
disk-based version of the algorithm.
Roughly speaking, Bisimulation in directed labeled graphs is an
equivalence relation defined on a set of vertices , such that two
vertices (, ) are Bisimilar if and only if the set of edge-labels
of  is equal to the set of edge-labels of	. Also all nodes ’, ’
in the set of triples (, ’, ), (, ’, )} must be Bisimilar. This
equivalence relation is written as		 ≈ . Compared to Trace
Equivalence, Bisimilarity relation is finer than Trace

Equivalence, that is 	 ≈  implies 	 ≈  [8, 11]. The formal
definition is given in Definition (4) below.
Definition 4. Given a directed labeled graph G=<V,rV,rE> as in
Definition (1), two vertices	(, ) ∈  are bisimilar if and only if:
1. For all set of tuples

< (, , ), (, , ),… , (, , ) >∈  there
exists < (, , ), (, , ),… , (, , ) >∈ 
such that  	= 	 		( = 1,2,… , ).

2. Conversely, for all set of tuples
< (, , ), (, , ),… , (, , ) >∈  there
exists < (, , ), (, , ), … , (, , ) >∈  such
that  	= 	 		( = 1,2, … , ).

3. The set of vertices (, )		( = 1,2, … , ) are also
bisimilar.

procedure compute_bisim(G)
begin
1. Q and X are each a list of node-sets
2. Q = partition  by label
3. X = (a copy of) Q
4. while (true) do
5. for each x in X do //stabilize Q w.r.t X
6. compute Succ(x)
7. for each q in Q do // split
8. replace q by q ∩ Succ(x) and q − Succ(x)
9. if there was no split then
10. break
11. X = (a copy of) Q
End

Figure 4. The memory-based Bisimilarity algorithm

The Bisimilarity algorithm was used in the literature to summarize
data graphs. In particular, several researchers used it to summarize
XML graphs using several different techniques, such as 1-index
[17], a(k)-index [15], and F&B [4,14].
 However, RDF is more complex than XML in several ways.
First of all, RDF data in its nature forms a graph, which means
there is no single root for the data, whereas XML is tree
structured, such that for every XML document there is only one
single root for the data. Moreover, this tree structure implies the
fact that every node in the graph has only one parent, and that
for every node there is only one unique path that this node can
be reached from. Conversely, in RDF the same node may be
accessed via several paths, and through different nodes. Second,
RDF may contain loops or cycles that should be taken in
consideration when computing the structural summaries,
compared to XML in which the summarization process is
straightforward. These differences between XML and RDF
impose the need to adapt the bisimilarity algorithm to become
consistent with graph-based data. We will now demonstrate the
basic ideas in the memory-based bisimilarity algorithm, and then
we will discuss our disk-based version of the algorithm and its
adaptation for large RDF graphs.
Compared to the Trace Equivalence algorithm, the Bisimilarity
algorithm shown in Figure 4 creates graph summaries in an
iterative process, such that in each iteration we group nodes up
to a certain number of levels. Basically, the Bisimilarity
algorithm produces a summarized graph in two steps. First, it
groups the nodes based on the edge labels (or predicates in case
of RDF). Second, these groups go through a number of
iterations to split the nodes that conflict with the Bisimulation
Equivalence relation, until no more splitting can be done. In

other word, after grouping the nodes with the same set of edge
labels into categories, each group is taken alone and the
successors of the nodes in the group are tested for Bisimilarity
(this is done by checking the category of the successor node).
Nodes whose successors fail the test are split from the group.
For example, when applying Bisimilarity algorithm on the graph
in Figure 1, one can notice that {M1, M2, M3, M4} have the
same edge labels, {year, name, directedBy}. Hence, initially,
these nodes are grouped in the same category. However, when
their successors are tested for Bisimilarity, the algorithm reveals
that the successor of M1, and M2 {D1} does not fall in the same
category as the successor of M3 {D2} and M4 {D3}, thus we
split the group {M1, M2, M3, M4} into {M1, M2} and {M3,
M4}. This process typically goes over and over again until no
more splitting is possible, that is, until the graph is stable. Figure
2 sketches the summarized graph in which one can notice how
M1 and M2 are mapped to the same group, while M3 and M4
are mapped to another group. It is worth mentioning, that in our
simple example, both Bisimilarity and Trace Equivalence
algorithms resulted in the same summary. However, this is not
always the case as clarified earlier.
In our disk-based version of the Bisimilarity algorithm, shown
in Figure 5, our main focus was to propose an algorithm that is
(i) disk based, and (ii) adapted to work on graph-based data such
as RDF.

Algorithm 2: Bisimilarity (G)
Input: A Graph  (three-tuple table, <S,P,O>)
Output: summarized Graph ´.
Begin
1. T0 = (Copy of) 
2. T1 = all distinct (P) in T0
3. For each (P) in T1 assign a unique number
4. Update (P) in T0 with the corresponding unique number in T1
5.  1, ,(),			()
6. WHILE (R1 not stable)
7.  , .,.,..  ⋈.	.  ⋈.	. 	

8. 2, 
,(),			()			

∩ ,				()()


9. R1 = (copy of) R2
10. END WHILE
11. Generate graph summarization from R1
END

Figure 5. The disk-based Bisimilarity algorithm.

In the memory-based version of Bisimilarity algorithm
traversing all nodes to create groups of equivalent classes is
expensive. Besides, testing successor nodes for Bisimilarity in a
group of  nodes has the complexity of	(), whereas our
disk-based version of the algorithm suggests a new way to
create equivalent classes of Bisimilar nodes that has a
complexity of	().
The initial grouping of nodes with similar outgoing predicates
was done by assigning to each distinct predicate (P) a unique
hash value. Then, we group all the nodes by the subject (S) and
the sum of all its predicates hash value. Therefore, subjects that
end up having the same summation belong to the same group.
For example in Figure 1, let’s suppose that the outcome of the
hash function for predicates {Country, name, hasWonPrizeIn,
actedIn} was {1, 2, 3, 4} respectively. Computing the sum of
predicates for {D1, D2, D3} yields {6, 10, 10} respectively.
This means that D1 have a different set of predicates as opposed

to each of D2, and D3 which have the same set of predicates and
therefore they are grouped together. Likewise, determining
whether the successors of two nodes fall in the same category is
done using the same idea. For all the subjects in the graph, we
find their successors, and then we compute the sum of the
subject category and a hash value of the sum of all its
successors’ category together. Then, we group them by the
subject. In this way, subjects in each group are split according to
their successors’ categories. In general, this step is repeated  times,
until the table stabilizes, with  corresponding to the longest acyclic
path in the graph.
As mentioned earlier, because of the fact that the summaries
created by the Bisimilarity algorithm are approximations, the size
of the summary created is usually larger than the summary
produced by the Trace Equivalence algorithm. This issue was not
discussed in XML summarization techniques because for tree data
graphs, the two equivalence relations (Bisimulation and Trace
Equivalence) coincide [17]. However, this problem may easily
appear in RDF because it forms a graph.
Our version of the Bisimilarity algorithm solves many of the
problems that emerge in graph-based data (RDF), which does not
appear in tree-structured data (XML). A typical problem is
depicted in Figure 6.a, which emerges from the property that the
edge labels coming out of a node are not unique. Using Trace
Equivalence, nodes A1, A2, and A3 have the same set of paths, so
they are grouped together. However, it’s not the case in the
Bisimilarity algorithm, because the successors of these nodes do
not fall in the same category. In our proposed version of the
Bisimilarity algorithm, the hash function was carefully used to
encrypt information about the predicates of the node which adapts
the algorithm to solve this problem.
Another problem that appears in graph-based data which is
discussed by [17], is depicted in Figure 6.b. One can notice that
A1 and A2 are grouped together using the Trace Equivalence
algorithm because they have the same set of paths. Meanwhile,
these two nodes are not Bisimilar; because their successors (M1
and M3) do not belong to the same group. This case is what
makes Bisimilarity algorithm produce larger summaries than
Trace Equivalence algorithm.
However, as can be seen from our experiments in section 5, the
difference in size between the summaries of the two algorithms
can be tolerated; experimentally, the summary produced using the
Bisimilarity algorithm is about 8% larger than that produced using
Trace Equivalence. It is important to point out here that people
using these summaries in query evaluation have to be aware not to
use Bisimilarity algorithm to generate graph indexes when their
query evaluation is based on Trace Equivalence scheme.

A B
Figure 6: Special cases that appear only in graph-based data

A2

M1

M2

A1 M. Gibson

1996

actedIn

actedIn

directedBy

year

A3 M3
directedBy

J. Cameron

2009

actedIn

yearA1
M1

M2

directedBy
M. Gibson

1996

A2
M3

M4

directedBy
J. Cameron

2003

2009

5. EXPERIMENTS EVALUATION
This section presents experimental results evaluating our disk-
based versions of Trace Equivalence and Bisimilarity algorithms.
Both algorithms were implemented using PL/SQL in Oracle 11g.
The experiments were conducted on a PC with a 2.50 GHz Intel
Core 2 Quad CPU, 2GiB of memory, and a 250GiB SATA Hard
disk. The Operating System is Windows XP SP2.
In the experiments, we used two RDF datasets: the DBLP and
Yago dataset. Yago contains 15 million triples (1.10GiB) while
DBLP contains 8 million RDF triples (1.07GiB). We partitioned
Yago into 5 tables: Y3 with 3 million triples, Y6 with 6 million,
Y9 9 million, Y12 12 million, and Y15 with 15 million triples.
DBLP was partitioned into 4 tables: D2, D4, D6, and D8 with 2,
4, 6, and 8 million triples respectively. Note that no sorting was
applied on the data before partitioning (e.g., D4 was created by:
create table D4 as select * from D8 where

rownum<=4000000).
The two datasets we used in our experiments differ in the nature
of the data they contain. The DBLP data tends to be more
homogenous and node paths tend to be shorter than those in the
Yago dataset (the longest path in the DBLP dataset is 4 levels
long). On the contrary, Yago data is more heterogeneous and node
paths tend to be longer than those in DBLP. These observations
have an impact on the results of the experiments (shown in Tables
1 and 2) especially in the summarization time. For instance, in the
case of Bisimilarity, Y6 is summarized in 241 seconds while D6 is
summarized in 68 seconds though both contain 6 million triples.
Also, to prove that our algorithms are indeed disk based and
therefore memory independent, we conducted the same
experiment twice on the same machine; the first was done using
2GiB of memory and the second was done using only 1GiB.
Experimental results are summarized in Tables 1 and 2.

5.1 Analysis of Experimental Results
This subsection provides analysis of the experimental results
shown in Tables 1 and 2 in terms of memory independency and
scalability of both algorithms.

5.1.1 Memory independency of both algorithms
The results of our experiments prove that the two proposed
algorithms are indeed disk based and thus memory independent.
From Tables 1 and 2, one can see that reducing the memory used
from 2GB to 1GB has no impact on the time cost of
summarization for both algorithms.

5.1.2 Scalability evaluation
It is evident from the experimental results in either table that the
time cost to summarize the graphs is linear with respect to the data
size in both algorithms. For example, Bisimilarity-based
summarization of D2 using 2GB of memory is 23 seconds, of D4
41 seconds, and of D6 68 seconds.
What is more scalable is the behavior of the graph summary with
respect to the number of triples in the original graph. For instance,
in the case of Trace Equivalence, the whole Yago dataset (Y15) is
summarized by 462K triples. One can notice that this number
tends to increase when the data is smaller (e.g. 658K for Y12). This
means that it is likely that the more triples there are in the dataset,
the more similarities are found, thus, the smaller the summary.

Table 1. Summary of Experimental results using our disk-based versions of
Trace Equivalence and Bisimilarity algorithms on YAGO dataset

 Number of Y3 Y6 Y9 Y12 Y15

O
rig

in
al

 G
ra

ph

Unique Triples 3M 6M 9M 12M 15M

Unique Subjects 1.78M 2.67M 3.30M 3.84M 4.34M

Unique Predicates 81 83 83 84 84

Unique Objects 1.50M 3.04M 4.54M 6.09M 7.64M

Data Size 226MiB 459MiB 678MiB 904MiB 1.10GiB

G
ra

ph
 S

um
m

ar
y

(T
ra

ce
 E

qu
iv

al
en

ce
) Unique Categories 32K 82K 121K 148K 100K

Triples in Summarized Graph 102K 312K 501K 658K 462K

2GiB Summarization Time
(seconds) 95 311 1,025 3,507 9,869

1GiB Summarization Time
(seconds) 94 314 1,022 3,511 9,873

G
ra

ph
 S

um
m

ar
y

(B
isi

m
ila

rit
y)

Unique Categories 33K 86K 128K 159K 109K

Triples in Summarized Graph 106K 325K 530K 703K 499K

2GiB Summarization Time
(seconds) 96 241 504 1481 1,818

1GiB Summarization Time
(seconds) 101 243 498 1483 1,816

Table 2. Summary of Experimental results using our disk-based versions
of Trace Equivalence and Bisimilarity algorithms on DBLP dataset

 Number of D2 D4 D6 D8

O
rig

in
al

 G
ra

ph

Unique Triples 2M 4M 6M 8M

Unique Subjects 791K 942K 1.04M 1.15M

Unique Predicates 24 25 27 27

Unique Objects 659K 1.23M 1.76M 2.30M

Data Size 275MiB 541MiB 824MiB 1.07GiB

G
ra

ph
 S

um
m

ar
y

(T
ra

ce
 E

qu
iv

al
en

ce
) Unique Categories 5K 13K 16K 4K

Triples in Summarized Graph 28K 87K 118K 30K

2GiB Summarization Time
(seconds) 44 70 116 174

1GiB Summarization Time
(seconds) 43 72 119 175

G
ra

ph
 S

um
m

ar
y

(B
isi

m
ila

rit
y)

Unique Categories 6K 16K 19K 5K

Triples in Summarized Graph 32K 102K 139K 35K

2GiB Summarization Time
(seconds) 23 41 68 107

1GiB Summarization Time
(seconds) 25 40 69 110

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed two disk-based versions of the well-
known Trace Equivalence and Bisimilarity algorithms for
summarizing data graphs. Also, we adapted the algorithms to the
RDF data model. The analysis of conducted experiments on
both algorithms using relatively large RDF datasets proved that
the two algorithms are scalable and totally memory independent.
The research presented in this paper is part of the MashQL [13]
project which aims to develop effective methods and techniques
for querying the Data Web. This project was started at the
University of Cyprus and is continued at Birzeit University.
Future direction of this project is to develop a generalized query
optimization solution for RDF data graphs, namely Graph-
Signature Indexing which we plan to use for query optimization
in MashQL.

7. ACKNOWLEDGEMENTS
First of all, we would like to express our gratitude and thanks for
Mr. Majed Ayyad for his useful comments on earlier drafts of this
paper.
We would also like to thank Professor Marios Dikaiakos and Mr.
Andeas Manoli from the University of Cyprus for their generous
help and contribution in the MashQL project. Without their help
this research project wouldn’t have been possible.

8. REFERENCES

[1] World Wide Web Consortium (W3C).

 http://www.w3c.org. (2010).
[2] Linking Open Data Project.

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProj
ects/LinkingOpenData (2009).

[3] Abadi, D.J., Marcus, A., Madden, S., and Hollenbach,
K.J.”Scalable Semantic Web Data Management Using
Vertical Partitioning”, In Proceedings of VLDB. 2007.

[4] Abiteboul, S., Buneman, P., and Suciu, D. Data on the web:
from relations to semistructured data and XML. Morgan
Kaufmann Publishers, Los Altos, CA 94022, USA, 1999.

[5] Angles, R., and Gutierrez, C. Querying RDF data from a
graph database perspective, Proceedings of the 2nd European
Semantic Web Conference (ESWC), Greece (2005), 346-
360.

[6] Champin, P., and Solnon, C. Measuring the similarity of
labeled graphs. In Proceedings of the Fifth International
Conference on Case-Based Reasoning. Berlin. Springer, pp.
80–95. 2003.

[7] Chong, E., Das, S., Eadon, G., Srinivasan, J. An efficient
SQL-based RDF querying scheme. VLDB ’05, Springer.
2005.

[8] Fernandez, J.C. An Implementation of an Efficient
Algorithm for Bisimulation Equivalence. Science of
Computer Programming, vol. 13, 2-3, may 1990.

[9] Goldman, R., and Widom, J. Dataguides: Enabling query
formulation and optimization in semistructured databases, in
VLDB, pages 436–445, 1997.

[10] Gutierrez, C., Hurtado, C., and Mendelzon, A. Formal
aspects of querying RDF databases,First VLDB Workshop
on Semantic Web and Databases,Berlin, Germany,
September 7-8, 2003.

[11] Henzinger, R., Henzinger, A., and Kopke, W. Computing
Simulations on Finite and Infinite Graphs. FOCS'95.

[12] Jarrar, M., and Dikaiakos, M. A query formulation language
for the data web. IEEE Internet Computing Magazine.

[13] Jarrar, M., and Dikaiakos, M. Querying the Data Web – The
MashQL approach. IEEE Internet Computing Magazine.
2010.

[14] Kaushik R, Bohannon P, Naughton J, Korth H: Covering
Indexes for Branching Path Queries. SIGMOD’02

[15] Kaushik, R., Shenoy, P., Bohannon, P., and Gudes, E.
Exploting local similarity for efficient indexing of paths in
graph structured data. ICDE, pages 129–140, 2002.

[16] McGlothlin, J., and Khan, L. RDFJoin: A Scalable Data
Model for Persistence and Efficient Querying of RDF
Datasets, Technical Report UTDCS-08-09.

[17] Milo, T., and Suciu, D. Index structures for path expressions.
ICDT’99. 1999.

[18] Neumann, T., and Weikum, G. RDF3X: RISC style engine
for RDF. VLDB’08.

[19] Paige, R., and Tarjan, R. E. Three partition refinement
algorithms. SIAM Journal on Computing. 16(6):973{989,
December 1987.

[20] Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X.,
Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S.,
O’Neil, E. J., O’Neil, P. E., Rasin, A., Tran, N., and Zdonik,
S. B. C-Store: A column-oriented DBMS. In VLDB, pages
553–564, 2005.

[21] Tian, Y., Hankins, R. A., and Patel, J. M. Efficient
aggregation for graph summarization. Proceedings of the
2008 ACM SIGMOD international conference on
Management of data, June 09-12, 2008.

[22] Tran, T. Efficient RDF Query Processing through Structure-
aware RDF Graph Matching and Structure-based
Partitioning. A Technical Report
https://sites.google.com/site/kimducthanh/research/strucIdx-
TR.pdf?attredirects=0&d=1

