A —
T —

knowledgeweb

realizing the semantic web

D2.1.3.1 Report on Modularization
of Ontologies

Coordinated by Stefano Spaccapietra
(Ecole Polytechnique Fédérale de Lausanne)

With contributions from:
Maarten Menken, Heiner Stuckenschmidt, Holger Wache (Vrije
Universiteit Amsterdam)
Luciano Serafini (Centro per la Ricerca Scientifica e Tecnologica, Trento)
Andrei Tamilin (Universita degli Studi di Trento)
Mustafa Jarrar (Vrije Universiteit Brussel)
Fabio Porto (Ecole Polytechnique Fédérale de Lausanne)
Christine Parent (Université de Lausanne)
Alan Rector, Jeff Pan (University of Manchester)
Mathieu d’Aquin, Jean Lieber, Amedeo Napoli (Institut National de Recherche en
Informatique et en Automatique, Lorraine)
Giorgos Stoilos, Vassilis Tzouvaras, Giorgos Stamou (Centre for Research and
Technology Hellas, Informatics and Telematics Institute)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.1.3.1 (WP2.1)

This deliverable gives an overview of concepts and methods necessary for achieving scalability
through modularization of ontologies. This includes partitioning algorithms for large ontolo-
gies into smaller modules, distributed reasoning, e.g. distributed RDF querying, engineering
approaches to ontology modularization, as well as an insight into composition (the inverse to
modularization).

Keyword list: state-of-the-art, scalability, modularization, distribution, composition.

Document Identifier | KWEB/2004/D2.1.3.1/v1.1
Project KWEB EU-IST-2004-507482
Version vl.l

Date July 30, 2005

State final

Distribution public

Copyright © 2005 The contributors



Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science

Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel@uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel

35512 Cesson Sévigné

France. PO Box 91226

Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department

Swiss Federal Institute of Technology

IN (Ecublens), CH-1015 Lausanne

Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

Freie Universitit Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de 1I’Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person: Jérome Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L.3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk




Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asunciéon Gémez Pérez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc.liv.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van.Harmelen@cs.vu.nl

University of Karlsruhe (UKARL)

Institut fiir Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitit Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@vub.ac.be




Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
Ecole Polytechnique Fédérale de Lausanne
France Telecom

Free University of Bozen-Bolzano

Freie Universitét Berlin

Institut National de Recherche en Informatique et en Automatique
Learning Lab Lower Saxony

National University of Ireland Galway

The Open University

Universidad Politécnica de Madrid
University of Innsbruck

University of Karlsruhe

University of Liverpool

University of Manchester

University of Sheffield

University of Trento

Vrije Universiteit Amsterdam

Vrije Universiteit Brussel




Changes

Version | Date | Author Changes

v0.1 23.08.04 | Stefano Spaccapietra | creation

v0.2 18.11.04 | Stefano Spaccapietra | First version of Part 1

v0.3 20.01.05 | Stefano Spaccapietra | Part 1 completed

v0.4 08.03.05 | Stefano Spaccapietra | Part 1 consolidated

v0.5 24.05.05 | Stefano Spaccapietra | first draft part 2

v0.6 10.06.05 | Stefano Spaccapietra, | integration of contributions to part2
Andrei Tamilin

v0.7 15.06.05 | Stefano Spaccapietra, | different contributions compiled together,
Andrei Tamilin working draft for NoE meeting in Crete

v1.0 09.07.05 | Stefano Spaccapietra, | version sent for review
Holger Wache

vl.l 30.07.05 | Stefano Spaccapietra, | final version

Holger Wache




Executive Summary

Modularization is one of the techniques that bear good promises of effective help towards
scalability in ontology design, use, and management. Currently, the issue of modular-
ization in ontologies is very unresearched and very open. This deliverable has to be
understood as exploring an area where much research in still preliminary stages, iden-
tifying many of the different open topics with the view of preparing building an overall
framework in which all the work fits.

This deliverable continues the effort on modularization by Working Group 2.1 on
scalability. The previous deliverable has outlined the main advantages expected from
modularization and developed a review of state-of-art research in the field.

With this deliverable the working group sets the scene for a deeper understanding
of what modularization may mean in the world of ontologies, and explores the relevant
efforts and results achieved by KWeb partners, with the view that this exploration will
eventually lead to some convergence of efforts.

The deliverable is organized into two main parts. The first one discusses the concepts
and issues related to modularization. This was felt necessary, as it is easy to realize that a
multiplicity of views over modularity exist in the different groups and in the literature, re-
sulting in frequent confusion and misunderstanding. Part 1 is a contribution to organizing
and clarifying the discourse on ontology modularization.

Part 2 reviews different approaches to ontology modularization. Its scope includes first
the design phase, investigating how modules may be designed, characterized, assembled,
and controlled. Description logics, graph algorithms, and conceptual modeling contribute
to this part. Second, a number of proposals on reasoning in a modular ontology context
are discussed. We are happy that the discussion can include a variety of approaches, from
the distributed DL reasoning to CASE-based reasoning and query processing techniques.

The results from this work show that the partners are now in a perfect position to
understand each other’s work, and appreciate differences and complementarities. This
is the cement that will promote mutual enrichment and enable each partner to continue
developing its approach in coordination with the work by the other partners.



Contents

I GENERAL FRAMEWORK 1
1 Introduction 2
2 Goals of Modularization 5
3 Module Definition and Description 8
4 Modularity Criteria 10
5 Properties of Modules and Modularization 12
6 Inter-Module References and Module Composition 14
7 Module Overlapping and Conflicts 16
8 Conclusion 18
I MODULARIZATION APPROACHES 19
9 Overview of technical contributions 20
10 Partitioning 23
10.1 The Partitioning Method . . . . . . . ... ... ... ... ... ... 24
10.2 Partitioning OWL Ontologies . . . . . . . . .. .. ... ... ...... 25
10.2.1 Partitioning of the Class Hierarchy . . . . . . .. ... ... ... 25

10.2.2 Using Domain Relations . . . . . ... ... ........... 27

10.3 Tool Support for Automatic Partitioning . . . . . . .. ... ... .... 29
10.3.1 Graph Generation . . . . . . .. ... ... ... .. ....... 30

10.3.2 Partition Generation and Improvement . . . . . . . ... ... .. 31

10.3.3 Using Pajek as a Tool for Analyzing Ontologies . . . . . . . . .. 33

10.34 Automatic Comparison . . . . . . . . .. . ..o 34

104 Discussion . . . . . . .. oL e e e 35

11 Modularization for Scalable Ontology Engineering 36

iii



CONTENTS

11.1 ASimple Example . .. ... ... ... .. ... ... ... ... ..
11.2 Synthesis of Related Work . . . . . ... ... ... ... ........
11.3 Our Approach . . . . . . . . . . . . e
11.3.1 Modularity Criterion (Decomposition) . . . . . . ... ... ...
11.3.2 Module Composition . . . . . . ... ... ... ... ......
114 Formal Framework . . . . . ... ... .. ... ... ... ... ...
11.4.1 Definition (Module) . . . . ... ... .. ... .. .......
11.4.2 Definition (Model, Module Satisfiability) . . .. .. .. ... ..
11.4.3 Definition (Composition Operator) . . . . . . . . ... ... ...
11.4.4 Definition (Modular Axiomatization) . . . ... ... .. .. ..
11.5 Conclusion and Implementation . . . .. ... ... ... ........

12 Engineering Robust Modules
12.1 OVEIrVIEW . . . . . . e e e e e
12.2 Primitive Skeleton . . . . . . . . . .. .. . . e
123 Rationale . . . . . . . . . . ... e
124 DISCUSSION . . . . v v v v e e e e e e e e e e
12.5 Issuesand Problems . . . . . . . . . .. ... ... ... ... ...
12.6 Conclusion . . . . . . . . . . .

13 A Contextualization Mechanism for Modularization
13.1 Stamping . . . . . . . . e e e
13.2 Multiple Representations Modeling . . . .. ... .. ... .......
13.3 Context-Varying Relationship Types . . . . . ... ... ... ... ...
134 Context-VaryingIs-aLinks . . . . . ... ... ... ... ... .....
13.5 Context-aware Querying . . . . . . . . . . . v
13.6 Conclusion . . . . . . . ... L

14 Distributed and Modular Ontology Reasoning
14.1 Distributed Description Logics . . . . . . . ... ... ... ... ....
142 Inconsistency inDDL . . . . . . ... ... .o oL
14.3 Fixed-Point Semantics of Bridge Rules . . . . . . . ... ... .. ....
144 Distributed Tableaux Algorithm for DDL . . . . ... .. ... ... ..
145 DRAGO Reasoning System . . . . . . . .. ... ... ... .......
14.6 Preliminary Evaluation of Distributed Reasoning . . . . . . . ... ...
14.7 Conclusions and Outlook . . . . . . ... ... .. ... ... ......

15 Reasoning on Dynamically Built Reasoning Space with Ontology Modules
15.1 Introduction . . . . . . . . . ...
15.2 Ontology Spaceand Modules . . . . . . .. .. ... ... ... .....
15.3 Reasoning Space . . . . . . . . . . e

15.3.1 Ontology QueryModel . . . . . ... ... ... ... ......
15.3.2 Finding Relevant Entities on the Ontology Space . . . . ... ..
15.3.3 Answering Queries over the Reasoning Space . . . . . . ... ..

v July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

15.34 Dealing with Global Interpretation . . . . . . .. ... ... ... 94
154 Applying the Reasoning Space Approach intoa Use Case . . . . . . . . . 95
155 Conclusion . . . . . . . .. 97
16 Decentralized Case-Based Reasoning with an Application to Oncology 98
16.1 Introduction and Motivation: Adaptation Within Multiple Viewpoints in

Oncology . . . . . .« . e 98
16.2 Case-Based Reasoning withOWL . . . . ... ... ... ........ 100
16.2.1 Principles of Case-Based Reasoning . . . . . .. ... ... ... 100

16.2.2 Reformulations: an Approach for Representing Adaptation Knowl-
edge . . . .. e 100
16.2.3 CBR within OWL ontologies . . . . ... ... .. ....... 101
16.3 Decentralized Case-Based Reasoning with C-OWL . . . . . .. ... .. 102
16.3.1 CBR with Contextualized Knowledge . . . . .. ... ... ... 102
16.3.2 Combining Viewpoints Thanks to Bridge Rules . . . . . . . . .. 103
16.4 Application to Breast Cancer Treatment . . . . . ... ... ....... 106
16.5 Discussion and Related Work . . . . . .. .. ... ... ... ... 108
17 Conclusion 110

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 v



Part 1

GENERAL FRAMEWORK



Chapter 1

Introduction

by STEFANO SPACCAPIETRA

KnowledgeWeb Deliverable 2.1.1 [WSC104] has analyzed various techniques to achieve
scalability in ontology management systems. This deliverable is meant to further explore
the technique known as modularization. This issue was introduced in the previous deliv-
erable using the following terms:

”In order to deal with the envisaged volumes of information, new tech-
nologies will be required. We will focus on knowledge process and ontology-
based tool benchmarking. Related to knowledge process, we will explore
new techniques for approximation (in order to reduce computational costs)
and modularity (in order to reduce the amount of information that must be
taken into account).”

As the name indicates, modularization has to do with modules. An intuitive under-
standing of the concept of module is some subset of a whole that makes sense (i.e., is
not an arbitrary subset randomly built) and can somehow exist separated from the whole,
although not necessarily supporting the same functionality as the whole. Chapter 3 here-
inafter discusses the issue of finding a more proper definition of a module. Of course, the
“whole” this deliverable is interested in is an ontology, so our modules are ontological
modules.

Even at this informal level, it is worth, to limit ambiguities, making a difference be-
tween two types of components of a whole: a module and a part. A module is a compo-
nent that is expected to somehow support similar functionality as the ones supported by
the whole. For example, an ontological module conveys knowledge in a form that sup-
ports reasoning. How this concept of similarity is exactly defined is an open issue. For
example, a small ontology can be a module of a larger ontology. A part is a component
that specializes in some of the functionality offered by the whole. For example, the T-box
and A-box of an ontology are two different parts of the ontology. Though modules and
components are not the same thing, they share a lot and this should be mentioned and
explained.



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

The development of proper ontological modules should provide a mechanism for
packaging coherent sets of concepts, relationships, axioms, and instances, and a means
for reusing these sets in new environments, possibly heterogeneous with respect to the
environment the modules were first built. To enable the reuse of such modules, a de-
scription of their functionality ("competence”) is necessary. For example, the description
could include syntactic items (e.g., information on language choices and commitments to
paradigms and modeling styles) and semantics items (e.g., keywords characterizing the
content of the module). Notice that for this description an ontology can be used, thus al-
lowing to automatically detect which module can be used to answer a query. Description
of modules is also addressed in Chapter 3 hereinafter.

Modularization can be perceived in three different ways. On the one hand, people
think of modularization as the process that leads to decomposing a large ontology into
smaller modules. The starting point is the whole ontology; the target is the modules.
Proposals for a methodology to implement a decomposition strategy include those re-
ported in the second part of this deliverable (Chapters 10 and 12). On the other hand,
an equally viable perception is to assume that the semantic web is filled with ontology
modules and that there is a requirement to assemble some of these modules to form a
wider ontology. The module in this perception is something like a building block. The
starting point is the set of useful modules; the target is the new ontology. This kind of
modularization requires the specification of mechanisms to construct new ontologies from
modules, e.g., inclusion operators, mapping rules and redefinition methods. Chapter 11
proposes such a composition mechanism. Actually, some of the modules used as building
blocks may originate from the decomposition of an ontology, making the two approaches
(composition, decomposition) coexisting within the same environment. As an ontology
may be built up from other ontologies written in different representation languages, the
characterization of modeling primitives in different languages may be necessary. A third
alternative perception locates modularization at the design level. As suggested in Chapter
11, the hypothesis is that the ontology designer/builder knows about the target modules
and while specifying ontology items (s)he also specifies to which modules they belong.
In this approach, modularization is performed on the fly, as a by-product of design, and
there is neither decomposition nor composition. The ultimate result is not necessarily the
same as the one obtained by first designing the whole ontology and second splitting it into
modules.

The three interpretations are discussed in this deliverable. However, coverage of the
assembling approach is limited, as the approach is the focus of deliverables from WP 2.2.

According to this description, further work is needed to clarify the following issues:

1. What kind of modularization does make sense? The aim is to reduce the amount of
information that must be taken into account. This entails that it must be possible to
satisfy information requests by looking at only one (or a few) module. Adequacy
between a given modularization and user/application requirements is a very open
question which does not seem to have been addressed up to now.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 3



1. INTRODUCTION

2. A module is a packaging for a coherent set of concepts, relations, axioms, and in-
stances. How can we define what a coherent set” is? Chapters 10 and 12 offer at
least a possible partial answer to this question. The former adopts a more mechan-
ical definition, based on structural properties of the ontology, while the latter seeks
for a more semantics-driven definition assisted by the knowledge of the ontology
designer.

3. How is a module described? Potential users have to find out which module to use.
The choice may be driven by the content of the module, the paradigm and formalism
it uses to organize its content, the language it speaks. etc. The question is partially
in the hands of research on service description languages. It has not been addressed
in the works reported in this deliverable.

4. How can modules possibly be linked to each other, and what kind of inter-modules
links would be desirable? How can mappings between modules be defined? How
are they used? A concrete proposal is reported in detail in Chapter 14.

5. A particular use of a module is as a component contributing to building a new
ontology. How does this composition operate? How does it take into account the
mappings defined at point 4? Chapter 11 offers a possible answer.

Discussion of these questions forms the framework to understand the many facets of
modularization. The following chapters in this first part of the deliverable provide the
reader with such discussions. The second part of the deliverable is devoted to the analysis
of some of the many techniques that contribute to solving the issues raised by a modular
approach to ontologies.

4 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



Chapter 2

Goals of Modularization

by STEFANO SPACCAPIETRA

The understanding of what modularization exactly means, and what are advantages
and disadvantages that can be expected from modularization, depends on the goals that
are assigned to modularization. This chapter lists the possible goals we highlight.

Scalability This is an all-embracing goal, which sees modularization as a way to keep
performance of DL reasoners at an acceptable level. The basic idea is that reasoners are
known to perform well on small-scale ontologies, with performances degrading rapidly
as the size of the ontology increases. So, if the amount of ontological knowledge to be
analyzed for a given reasoning task can be kept small in all cases (or at least in a ma-
jority of cases), performance will be acceptable. Modules help in this, although there is
no commitment that the size of a module is small enough to make reasoning realistically
possible. Also, it remains to be demonstrated that, whenever a given reasoning task re-
quires a network of modules to be searched, the overall time for coming up to a result is
less than the time required for the same task executed against a single ontology formed
by turning the modules in the network into a single ontology.

The scalability goal is most naturally associated with the decomposition approach,
i.e. it materializes into the fact that an ontology gets split into smaller modules. However,
scalability may also be a concern in a composition approach. In this case it materializes as
the decision to keep existing modules as separate contributors to the desired knowledge set
needed by some application, rather than integrating them to form the desirable ontology.
This implies that some form of distributed reasoning should be available, as the tasks at
hand will then operate on a network of ontology modules.

In the decomposition approach, scalability concerns may be split into two sub-topics,
as follows.

* Scalability for information retrieval
For this goal, the driving criterion for modularization is to localize the search space

5



2. GOALS OF MODULARIZATION

for information retrieval within the limits of a module. Implementing this decom-
position criterion requires knowledge about the search requests that are expected.
This type of knowledge can be extracted a posteriori from observing information
requests over some period of time. Predicting this knowledge a priori would be
more effective, but difficult to achieve (Chapter 11, for instance, assumes a priori
knowledge is available with the ontology designer).

* Scalability for evolution and maintenance

For this goal, the driving criterion for modularization is to localize the impact of up-
dating the ontology within the limits of a module. Implementing this decomposition
criterion requires an understanding of how updates propagate within an ontology.
It also requires knowledge on the steadiness of the information in the ontology.
Steadiness here is meant to denote the likeliness of an evolution. A possible factor
for steadiness is the confidence level attached to information in the ontology. How
confidence levels, and more generically steadiness indicators, are acquired remains
an open issue for research. Chapter 14 illustrates this approach.

Complexity management While scalability usually refers to performance in using the
ontology, there is also an identical issue regarding the design of the ontology. The larger
the ontology, the more difficult is controlling the accurateness of the design, especially
if the designers are humans. It has been suggested that an easier to follow approach is
to have designers designing ontology modules of a size designers can apprehend, and
later compose these modules into the final ontology. This is one more illustration of the
divide-and-conquer principle.

Understandability When encountering an ontology, the first issue at hand is to be able
to understand its content. Of course, this is easier if the ontology is small. This is un-
doubtedly true if the user of the ontology is a human being, but also holds if the user is
an intelligent agent navigating through the Web-services space. Size, however, is not the
only criterion that influences understandability.

Personalization Ownership of information is known to be an important factor to be
taken into account when organizing a cooperative system. This may also apply to ontolo-
gies, although most of them as seen as publicly available resources. Ownership in these
cases provides the criterion for decomposing the ontology into smaller modules. Own-
ership information can also be attached to existing module to make them complying to
a personalization environment. The technique discussed in Chapter 13 holds a possible
response to the need for personalization.

Reuse Reuse is a well-know goal in software engineering. Reuse is most naturally seen
as an essential motivation for the composition approach. However, it also applies to the

6 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

decomposition approach, where it would lead to a decomposition criterion based on the
expected reusability of a module (e.g., how well can the module fill purposes of various
applications?). Reusability emphasizes the need for rich mechanisms to describe modules,
in a way that maximizes the chances for modules to be understood, selected and used by
other services and applications.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 7



Chapter 3

Module Definition and Description

by STEFANO SPACCAPIETRA

Although ontology management tools and reasoning services can operate on an ontol-
ogy consisting of a single axiom, from a usefulness perspective a module cannot just be
an arbitrary subset of an ontology. Indeed, while complying with the formal definition of
an ontology, e.g. as a set of concepts, relations, axioms, and instances, an arbitrary subset
does not comply with the goals assigned to ontologies. In particular, queries to such an
arbitrarily modularized ontology would need examining all modules, one after the other,
till the required information is found.

A module is therefore defined as a sub-ontology that “makes sense”. It may make
sense from the application perspective, i.e. the module is capable of providing a rea-
sonable answer to at least some of the queries it is intended to support. Alternatively,
it may make sense from the system perspective, i.e. the modular organization is capa-
ble of improving the performance of at least some of the ontology management services.
The vagueness of this definition reflects the subjective nature of the decision about what
could be and what could not be regarded as a module. This vagueness, however, does not
prevent the concept to be operational.

Also, it is possible to define some formal criteria to check that a given collection of
ontology components makes sense or not. For example, it could be stated that a collection
that includes instances not related to any concept (or concepts not related to any other
concept) is not desirable. However, there is currently no agreement on criteria to separate
good ontologies from not-so-good ontologies. This may be an item in a quality-of-service
research agenda.

Defining a module as a sub-ontology translates the fact that an ontology is turned
into a module when considering it in a wider framework where the targeted service is
to be provided by a collection of modules. Conversely, a module can be considered as
a self-standing ontology for purposes that do not require access to other modules in the
collection.

Modules can be independently developed ontologies that are put together to form a



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

collection providing some new services. This is the composition approach to ontology
modularization. Typically, such a modular architecture would include facilities for im-
porting new ontologies into the collection, according to organizational rules characteriz-
ing the collection.

Modules can also be built by splitting an existing ontology. This is the decompo-
sition approach. Splitting may be done manually, but is more likely to be done (semi-
)automatically by the ontology management system, based on a decomposition criterion
explicitly defined by the ontology administrators. Having the criterion explicitly stated
also allows automatic maintenance of the collection of modules when modifications (in-
sertions, deletions, updates) are introduced.

We say a module is “closed” if it does not contain any link to another module. A
typical example of a closed module is an external ontology that has just been imported
into a collection of modules.

We say a module is “open” if it contains links to other modules. Open modules re-
quire a choice of which interoperability techniques are to be implemented to support the
collection of modules.

The same openness and closeness concept applies to collections of modules.

A collection of closed modules is likely to maintain some meta-ontology describing
the scope of each module, so that the relevant modules can be identified when a query is
addressed to the collection manager.

A collection of open modules may not need to maintain a meta-ontology external to
the modules in the collection, but its organization may also include such a meta-ontology.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 9



Chapter 4

Modularity Criteria

by STEFANO SPACCAPIETRA

In composition approaches, modules pre-exist the collection that forms the wider on-
tology they belong to. The question about what to put into a module does not arise, unless
the strategy to integrate a module in the collection contains some rules to redistribute or
reallocate the content of modules within the collection. For example, the strategy could
instruct the ontology system to remove duplicate content and replace it by inter-module
links, in an effort to reduce the individual or the cumulative size of the modules.

In the decomposition approaches, instead, finding a good decomposition criterion is a
challenge. Relying on human “ontological commitment” is the simplest solution, but not
a very satisfying one, as it makes the quality of service entirely dependent on the expertise
of the ontology designers. While implementing this decomposition strategy, it would be
recommended to also implement a complementary trust management component, so that
reliability and efficiency of services provided by modules can be monitored, possibly
leading to some preference ordering or other forms of reorganization among the modules
in the collection.

In a human-based decomposition, rather than asking the ontology designer to position
every ontology component (e.g., concept, relation, axiom, instance) into one or more
modules, it is possible to ask the designer to identify group of components (e.g., groups
of concepts) that have to be kept together, and then apply some algorithm that builds a
module for each group with the selected components and the other components attached to
the selected ones. Of course, the algorithm would have to use some criterion to determine
how far it should go in looking for attached components (e.g., using something like a
threshold for distance between the selected component and the other components).

Implementing an automatic or semi-automatic decomposition strategy on an applica-
tion perspective requires knowledge about the application requirements. Such knowledge
can be acquired, for example, by analyzing the queries that are addressed to the ontology
and storing the paths within the ontology that are used to respond to queries. Frequency
of paths and their overlapping can lead to determine the clustering rule that produces the

10



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

optimal decomposition. A number of techniques are available to do such data mining and
clustering analyses. Path analysis is at the core of the decomposition approach proposed
in Chapter 10.

A performance-based decomposition can be seen as a strategy that only considers
system aspects, ignoring application requirements. This is not to say that application-
based decompositions do not aim at improving performance. Examples of performance-
based decompositions are graph decomposition algorithm. They aim at decomposing a
graph into a collection of sub-graphs that shows the desired properties, and hold whatever
the semantics of the nodes and edges in the graph is.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 11



Chapter 5

Properties of Modules and
Modularization

by STEFANO SPACCAPIETRA

When aiming at modular ontologies, questions about correctness are important open
research issues. The problem can be split into correctness of modules (taken individually)
and correctness of the collection of modules that forms the wider ontology.

The former has already been mentioned in previous chapters: What guarantees that a
module is an ontology, and what guarantees that a module makes sense.

In composition approaches, correctness of the collection has to do with whether the
composition has produced a semantically correct result. If, for example, the composition
approach at hand aims at producing a fully integrated ontology, the correctness criterion
can be that the resulting ontology contains a synthesis of all the components in the source
modules (i.e., no information is lost in the process). It may also be requested that, in
addition, the mappings between the resulting ontology and the input modules are defined.
Alternatively, if, for example, the targeted result is the specification of the discovered
links among modules, correctness may be defined as the fact that all relevant links are
implemented and no implemented link is duplicated or inferable from the other links.

Correct solution of all kind of conflicts (syntactic and semantic heterogeneities, dif-
ferent granularities, etc) among the source modules is the key to a correct composition
Strategy.

In decomposition approaches, correctness of the collection again translates the fact
that no information is lost in the process. Information preserving may be defined as the
fact that the result of a query addressed to the collection is functionally (i.e., not from a
performance viewpoint) the same as the result of the same query addressed to the original
ontology. Another candidate correctness criterion is that after the decomposition the same
inferences lead to the same results (which means information is preserved).

Information preserving can also be defined as the fact that, when recomposing the

12



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

original ontology from the modules (using some composition rules), what is obtained is
exactly the original piece, nothing less, and nothing more. Depending on the decomposi-
tion rules used, it may be possible to guarantee that, if rules are obeyed, the decomposition
they generate is information preserving.

If information loss cannot be avoided, an estimation of the information loss can be a
very useful add-on for the query answering techniques (cf. Eduardo Mena’s work on this
topic [MIO1]).

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 13



Chapter 6

Inter-Module References and Module
Composition

by STEFANO SPACCAPIETRA

Even if we start with the idea that modules are independent sub-ontologies, it is un-
likely that a module will always be able to produce a full answer to a query. There is a
need for some facility for query answering based on multiple modules within the avail-
able collection of modules. This can be organized using a modular ontology management
service that can identify the needed modules, query each module on the basis of its ca-
pabilities, and merging and synchronizing the different partial answers to form a global
answer. In this case modules need not to be inter-related, i.e. modules may be closed,
the links being maintained as metadata external to the modules and used by the query
processing service. This metadata can be centralized in a single repository, or distributed
and, for example, associated to each module as an interface definition which provides the
necessary information on the content of the module and the way to retrieve its content
(sort of encapsulation in the object-oriented sense).

In more cooperative (e.g., peer-to-peer) approaches, modules may be open, i.e. inter-
related with one or several other modules, the links expressing paths to complementary
information.

Links can be specified via assertional statements or via procedural statements. An
assertional statement is a correspondence assertion that states a degree of commonality
between components of one module and components of another module. Correspon-
dences may be one-to-one as well as one-to-many and many-to-many. Correspondence
assertions indicate that more about a component of a module can be found in the other
module. Hence, whenever the query answering service finds that it needs more informa-
tion than the one available in a given module, it could use these correspondence assertions
to extend the scope of the search and continue its navigation in the linked modules.

Procedural specification of a link is frequently proposed as a view definition. The
link is seen as a mechanism to extract some knowledge from another module, and what

14



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

is exactly extracted is defined as a query over the other module(s). Whenever the query
answering mechanism needs information visible in the view that materializes the link,
traditional query rewriting techniques are applied to the original query to generate the
corresponding query over the other module.

The advantage of an assertional specification is that the method and the extent of
the process extracting information from a module to enhance information available in
another module can be dynamically determined during the query evaluation process. In
other words, the strategy can be adapted to the actual query. The procedural specification
of a link as a view is easier to operate, and may lead to better performance in query
evaluation. Its disadvantage is that it is one and the same for all possible queries, so there
is a dimension of personalization that is lost.

As links define potential or actual mappings among modules, an important question is
to determine what kind of mappings can be dynamically evaluated. For example, assume
a mapping specifies that a concept A in a module M; corresponds to the union of concepts
B and C in another module M;, and that a relationship r1(C, D) between C and D holds
in module M;. Then, to evaluate a query Q that references A in M;, we might want to
traverse the mappings between M; and M; to find out what does M; have to say about
B and C. It might be the case that r1 restricts C, which corresponds to a restriction of its
associated concept A. A possible query answering strategy based on these mappings is
discussed in Chapter 15.

What are the possible heterogeneities that can be supported in this context?

The answer to this second question depends on the mapping language in use. Some
mappings might not allow for dynamically evaluation, requiring, eventually, the material-
ization of such mapping results, with the entire burden needed to keep those in synchrony.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 15



Chapter 7

Module Overlapping and Conflicts

by STEFANO SPACCAPIETRA

Modules built by decomposition result from an initial unique perception of the world
(the one portrayed by the initial ontology). Therefore, it is reasonable to assume that
they will show no representation conflicts, and they if any overlapping exists it has been
planned for and is under control of the system.

On the contrary, modules in a collection built by composition are expected to show
all kind of heterogeneities, due to different perceptions of the real world. These hetero-
geneities range from the formalism on which the module is built (e.g., one module could
be built on RDF, another one on OWL), to the semantic content of the module (e.g., one
module holds road network ontology while another one holds public transport system
ontology). Despite the multiplicity of the sources the modules come from, the fact that
they are composed to build a wider ontology most likely entails that there is some level
of commonality among the modules. In particular, one would expect that modules show
some semantic overlapping (i.e., some of them include description of the same piece of re-
ality), with both duplicated and complementary elements within these intersections. The
literature on composition (usually referring to the issue as data, information and ontology
integration) has coined the term “conflict” to denote situations where representations of
the same fact in different repositories are not identical, despite the fact that having differ-
ent perceptions of the same thing is not per se a conflict in the informal use of the term.
Therefore, conflict discovery and resolution are the core issues in any composition effort.

Taxonomies of conflicts are available in the literature (e.g. [SK93]. They usually dis-
tinguish such broad categories as terminological conflicts, description conflicts, structural
conflicts, and semantic conflicts.

Some conflicts simply stem from terminological choices. An identifying property
for a car concept, for example, is either named “Carld”, or ”car_id”, or "Chassis#”, or
”Chassis”. Terminological tools will easily identify the first two and the last two as being
equivalent terms. But finding the equivalence between “Carld” and ”Chassis#” requires
knowledge that both fulfill the same identification role and both have the same value

16



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

domain.

Additional conflicts come from the fact that modules associate different descriptions,
e.g. different properties, to the same concept. Car has properties <Chassis#, category> in
one module, and has properties <Carld, Branch, Model, Make, Category, Year, Mileage,
LastServiced> in another module.

Structural conflicts may be illustrated considering customer information. Assume a
module holds a Customer concept which includes a “Rating” property (with value do-
main: “Preferred”, "Blacklisted”, etc) to discriminate various categories of customers.
Another module can represent the same reality by having two sub-concepts (Blacklisted,
FrequentTraveller) to the Customer concept. This difference between the two represen-
tations is mainly due to different levels of interest for the same fact in the two modules.
Notice that a third module also holding the Customer concept may define two other sub-
concepts of Customer to be Person and Company, the latter with sub-concepts Private-
Corporation and Government.

Semantic conflicts stem from different classifications scheme, not involving subsump-
tion links. One module can hold two concepts for bookings: one for current bookings
(those where a specific car has been assigned), another for non-current bookings (where
only a car category is specified). Another module has all bookings in a unique Rental-
Booking concept. Current bookings are found by restricting Rental-Booking instances to
those that are linked to a car instance by the Allocate-to role.

These differences give an idea of the complexity inherent to the composition process,
which will have to sort out differences to build a consistent ontology. They also point at
the benefit expected from the new ontology. The latter enables users to query, for example,
the model of a car, while the car belongs to one module and its model to another module.

We do not further discuss this important topic, as it is central to the work in KWeb
Workpackage 2.2, and refer the interested reader to deliverables from that Workpackage.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 17



Chapter 8

Conclusion

by STEFANO SPACCAPIETRA

Managing large ontologies is a challenge for ontology designers, reasoners and users.
A known approach to deal with large problems is modularization, in which a whole is or-
ganized into smaller parts that can be independently manipulated and still collaborate for
the whole picture. Applying the modularization principle to ontologies should consider
particular characteristics of the problem, such as, for example: the semantics of an ontol-
ogy module, the criteria to achieve modularization, the necessary descriptive information
of an ontology module, and the techniques to manage heterogeneity between ontology
modules.

The challenge is high, and has already prompted attention by different research groups.
However, the domain is not yet mature, and it can be easily acknowledged that discussions
on ontology modularization rapidly get blurred by the fact that the concept can be under-
stood in rather different ways. We have developed in the previous sections an analysis of
the various facets and perceptions of ontology modularization. We have focused on iden-
tifying and showing alternative approaches, with their underlying assumptions as well as
with their specific goals.

While it is too early to come up with consensus on an overall framework in which all
the work fits, this first part of the deliverable was meant to make a first step hopefully into
the right direction.

Looking for an overall framework does not mean that we think in terms of a future
coherent single approach that would clearly outperform any other one. The need for
modularization emerges from different contexts, characterized by different requirements.
A multiplicity of solutions is required to cover all potential useful contexts.

18



Part 11

MODULARIZATION APPROACHES

19



Chapter 9

Overview of technical contributions

by STEFANO SPACCAPIETRA

The many questions that Part I of this deliverable has identified and introduced are
open research issues that have been or are being addressed by a number of research groups
within and beyond the KnowledgeWeb community. This second part of this deliverable
reports on ongoing efforts that in one way or another contribute to the goal of making
the idea of modular ontologies operational. Each chapter presents the work of a Knowl-
edgeWeb research group. At last, some pointers to related work by other groups are given.
The conclusion summarizes the main achievements and points at directions for further ef-
forts and recommendations for continuation of work within KnowledgeWeb.

The contributions hereinafter can be grouped into two sets, respectively focusing on:

* How modules may be created, assembled, and organized (Chapters 10 to 14); and

* How reasoning may be performed within a modular organization of ontological
knowledge (Chapters 15 and 16).

The next two chapters illustrate the alternatives outlined in Part 1 Chapter 1, i.e. the
fact that interest in modularization may focus on either how an ontology can be split into
modules (by semi-automatic decomposition or by human design choice) or on how, given
a set of existing modules, they may be composed to form a larger ontology:

* How to semi-automatically decompose an ontology into modules (Chapter 10, con-
tributed by M. Menken, H. Stuckenschmidt, and H. Wache).

The proposed approach relies on the rewriting of the ontology as a weighted graph,
on which a graph-partitioning algorithm is applied. As the most appropriate parti-
tioning policy is difficult to determine, the algorithm is run repeatedly with chang-
ing input parameters. Results are then compared to infer which partitioning are the
most likely good ones.

20



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

* How to compose modules, defined by an ontology designer using the ORM model,
to form a new ontology (Chapter 11, contributed by M. Jarrar).

In this approach modules are seen as relatively small, shared ontologies covering
some generic and limited domain and based on a common terminology, to be used
as building blocks for elaborating larger ontologies for wider domains. A compo-
sition operator is defined for merging of modules. Consistency of the composed
result is checked.

The following chapter also follows the decomposition approach, but focuses on rec-
ommending that an ontology be restructured before decomposing it. The purpose of the
restructuring is to conform the ontology to a defined pattern that is believed to lead to a
decomposition that is semantically meaningful to the applications using the ontology:

* Which criteria can be used to characterize a good module (Chapter 12, contributed
by A Rector and J.Pan).

The proposed approach defines a number of structural rules that are claimed to
provide a sound basis for modularization. The approach parallels database normal-
ization approaches in that the original ontology is restructured to make it compliant
with the rules that have been defined.

The last contribution in the first set proposes a mechanism to identify modules within
an ontology. The goal is to preserve the original ontology as a whole, while allowing one
or more decompositions into overlapping modules that can be used separately (for queries
confined to a given module), or together (for queries spanning over different modules):

* How ontology modules can coexist within a single ontology with controlled sharing
of ontology elements (Chapter 13, contributed by C.Parent and S.Spaccapietra).

The focus in this approach is to provide rules for describing how information in
an ontology relates to one or more modules. Each element of an ontology can be
defined as relating to multiple modules, sharing the element. The sharing can be
from the meta-level (T-box) to the value level (A-box). Alternatively, elements may
be defined as specific of a single module. The repository (T-box+A-box) can then
contain both the original ontology and its modules. The same mechanism can be
used to define context-dependent ontologies.

Contributions in the second set offer alternative approaches to reasoning with multi-
ple ontologies, which includes reasoning on modular ontologies. The common goal is
to enable performing a reasoning task without having to a priori centralize all available
knowledge into a single ontology:

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 21



9. OVERVIEW OF TECHNICAL CONTRIBUTIONS

22

* Reasoning with multiple ontologies connected via directional links (Chapter 14,

contributed by L.Serafini and A.Tamilin).

The proposed reasoning formalism is based on directional mappings between on-
tologies. Each mapping defines the possibility for an ontology to get related knowl-
edge from other specified ontologies. A formal framework is proposed to perform
distributed reasoning using these inter-ontology mappings.

Query answering over a modular ontologies space (Chapter 15, contributed by
F.Porto).

This proposal looks at collaborative query answering in an ontology space over a
peer-to-peer network.

Case-Based Reasoning over multiple ontologies and across multiple contexts (Chap-
ter 16, contributed by M.d’Aquin, J.Lieber and A .Napoli).

Like in the proposal by Serafini and Tamilin, this last contribution focuses on en-
abling adaptive reasoning in a multi-ontology environment. The chosen formal-
ism is case-based reasoning. Semantic relations between contexts support reuse of
knowledge across contexts.

July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



Chapter 10

Partitioning

by MAARTEN MENKEN, HEINER STUCKENSCHMIDT, HOLGER WACHE

The work reported in this chapter aims at the management of large ontologies. Today
large ontologies which we find for example in medicine or biology are available whose
size and domain coverage make them very difficult to understand and manage. Our aim
is to develop methods that automatically partition large ontologies into smaller modules
that contain semantically related concepts. This aim is very challenging as the semantic
relatedness of concepts is much more difficult to determine than coherence in a software
system where we can look for function calls across modules.

There is some previous work on partitioning knowledge models. Amir and Mcllraith
[AMOS5] describe a partitioning method for logical theory that optimizes a distributed deci-
sion theory. Such a partitioning aimed at efficient reasoning, however does not necessary
correspond to a partitioning based on semantic relatedness. In fact these two goals seem
to be orthogonal with respect to the optimal partitioning.! Mehrotra and others [MW95]
discuss the partitioning of knowledge bases (mostly rule bases) with respect to different
viewpoints. This work is more related to our problem. Currently, we do not address the
problem of creating a partitioning according to a particular viewpoint. We rather try to
find a generally applicable partitioning that helps to present the content to the user in a
structured way.

This chapter continues previous work reported in deliverable Del22 “Ontology Re-
finement — Towards Structure-Based Partitioning of Large Ontologies” of the EU funded
project WonderWeb — Ontology Infrastructure for the Semantic Web [SKO4a]. In that
deliverable we described a partitioning method that uses techniques from network analy-
sis to partition simple class hierarchies based on their structure. But in domains like
medicine, however, existing ontologies consist of far more than a simple hierarchy and
make use of the expressive power of the web ontology language OWL. The problem we
address in this chapter is how to adapt our method for partitioning simple class hierarchies

"MecIllraith 2004, personal communication

23



10. PARTITIONING

to more expressive ontologies paying special attention to ontologies encoded in OWL. In
Section 10.1, we briefly recall the basic steps of our partitioning method and refer to the
corresponding definitions in the original publication. In Section 10.2, we describe an ex-
tension of the method to OWL ontologies. In particular, we discuss different options for
including the definitions of concepts into account during partitioning. In order to support
this extended method we are developing a software tool that takes RDF Schema and OWL
ontologies as input and makes proposals for a partitioning of the corresponding ontology.
This tool is described in Section 10.3. We conclude with a discussion of the method and
its potential role on the semantic web.

10.1 The Partitioning Method

In [SK04b] and [SKO4a] we presented a method for automatically partitioning lightweight
ontologies. In particular, the method was aimed at models that only consists of a concept
hierarchy. We showed that using simple heuristics, we can create meaningful partitions
of class hierarchies for the purpose of supporting browsing and visualization of large
hierarchies. We briefly recapitulate the different steps of our method as the following
discussions will be based on this information.

Step 1: Create Dependency Graph: In the first step a dependency graph is extracted
from an ontology source file. The idea is that elements of the ontology (concepts,
relations, instances) are represented by nodes in the graph. Links are introduced be-
tween nodes if the corresponding elements are related in the ontology (cf. [SK04a],

page 4).

Step 2: Determine strength of Dependencies: In the second step the strength of the de-
pendencies between the concepts has to be determined. This actually consists of
two parts: First of all, we can use algorithms from network analysis to compute de-
grees of relatedness between concepts based on the structure of the graph. Second,
we can use weights to determine the importance of different types of dependen-
cies, e.g. subclass relations have a higher impact than domain relations. For our
experiments (cf. [SK04a], page 4/5) we use the structure of the dependency graph
to determine the weights of dependencies. In particular we use results from social
network theory by computing the proportional strength network for the dependency
graph. The proportional strength p;; of a connection between a node ¢; and c; de-
scribes the importance of a link from one node to the other based on the number of
connections a node has (a;; is the weight preassigned to the link between ¢; and c;)
[Bur92]:

aij -+ ajl-

Pij = —
> i+ Qg
2

24 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

Step 3: Determine Modules: The proportional strength network provides us with a foun-
dation for detecting sets of strongly related concepts. This is done using a graph
algorithm that detects minimal cuts in the network and uses them to split the over-
all graph in sets of nodes that are less strongly connected to nodes outside the set
than to nodes inside (cf. [SKO4a], page 5/6). For this purpose, we make use of the
“island’ algorithm: A set of vertices / C ('is a line island in network if and only if
it induces a connected subgraph and the lines inside the island are stronger related
among them than with the neighboring vertices. In particular there is a spanning
tree 7' over nodes in / such that [Bat03]

maz  w(u,v) < min_ w(u,v)
(u,w)eVwgT (u,w)eT

Step 4/5: Improving the Partitioning: In the last steps the created partitioning is opti-
mized. In these steps nodes leftover nodes from the previous steps are assigned to
the module they have the strongest connection to. Further, we merge smaller mod-
ules into larger ones to get a less scattered partitioning. Candidates for this merging
process are determined using a measure of coherence ([SK04a], page 7,9 and 10).

The strength of this method lies in its simplicity, generality and scalability. A valid
question is now, if we can apply the same method to partition more complex (i.e. OWL-
based) ontologies that we also find on the semantic web.

10.2 Partitioning OWL Ontologies

The application of this method to OWL ontologies raises further questions. In previ-
ous experiments we have only considered class hierarchies with no further definitions of
classes or relations between them. In OWL ontologies, these additional definitions play
an essential role, in particular, because they can be used to infer implicit subclass relations
and therefore should be taken into account when determining modules. This can best be
done by modifying the first step of the method, because all following steps work on the
dependency graph created here. The problem of applying the partitioning method to OWL
ontologies therefore reduces to the problem of adequately representing the dependencies
implied by class and property definitions in a dependency graph. In the following, we
discuss and compare different ways in which such a graph can be constructed for OWL
ontologies using an example ontology.

10.2.1 Partitioning of the Class Hierarchy

The simplest way of creating the dependency graph for an OWL ontology is to do it in
the same way we did for simple class hierarchy. In this case, we would ignore most of the

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 25



10. PARTITIONING

definitions of classes and just look at explicitly contained subclass statements that con-
nect classes. This simple approach proved to work quite well for simple class hierarchies.
When looking at the resulting dependency graph for our example ontology (Figure 10.1),
we immediately see that this approach will often fail for OWL ontologies. The problem
is that the nature of OWL allows us to build class hierarchies without explicitly using
subclass relations. As a consequence, it will often happen, that a significant number of
concept will only be linked with the TOP concept. When partitioning the ontology, all of
these concepts will end up in the same partition. In the example ontology, we will only
be able to distinguish between persons and animals, but the algorithm will not be able to
create more fine grained partitions corresponding to different kinds of persons.

&
white wan man

wan driver .cat

& .
cat liker .
& animal lower
pek owner

a
sheep

grownup

erzol animalT T —— g
\ \ giraffe

haulage truck. driver
&* .
VET‘
) )
dnve\ larry driver CDW—_‘mad cow

dog owrer

.dng Iiker————:ki

& .
bus driver

L
cat owner
WOMIAN

Figure 10.1: Dependency Graph of the Person-related Part of the Ontology

A straightforward solution to this problem is to not only consider explicit subclass
relations, but to also include implied relations into the dependency graph. We can do this
by simply computing the implied class hierarchy using an OWL reasoner. The derived
hierarchy can be stored in the model. After doing this, we can use the same method for
creating the dependency graph as we did before. The result of using the computed sub-
class hierarchy as a dependency graph for our example ontology is shown in Figure 10.2.
We see that the different person-related concepts are now organized into subtrees with a
coherent topic. We see for instance that different kinds of children and grown-ups are
placed in different subtrees. Further, we see a distinction between concepts that represent

26 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

different roles of people (e.g. driver). This information can be used by the island algo-
rithm to compute a more fine-grained partitions.

1 iraffe
zheep

‘ﬂd_,—/-”"cnw

rmad cow

?
“wegetaran 190
cak
& .
haulage truck. diver

&

airl

haulage worker

. F——f* white wan man
boy ki war driver
lorry driver
.wuman QrownLp .
" buz driver
dog liker
&
mar
pet cwner
old lady
animal lower

dog owner
cak cwner

Figure 10.2: Dependency Graph after adding implied subclass relations

It might be argued that there is a conceptual difference between explicit and implicit
subclass relations that need to be taken into account. We could consider to assign different
levels of importance to explicit and implied relations. The level of importance can be
encoded by weighted edges between concepts. These weights are input to the second
step of the partitioning method and influence the relative strength between two nodes that
we use as a measure for the partitioning. We will come back to the use of weights for
different kinds or dependencies later.

10.2.2 Using Domain Relations

The idea of the previously discussed approaches for constructing the dependency graph
relied on the impact that additional definitions have on the class hierarchy without directly
encoding any of these definitions in the dependency graph. The question is now whether

we can achieve even better results by also directly considering concept definitions. We

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 27



10. PARTITIONING

have to be careful, however, because our partitioning algorithm tends to not performing
well on highly connected graphs. Therefore, if we want to include parts of the definitions
into the dependency graph, we should restrict ourselves to the most significant parts of the
definitions. An obvious choice is to include information about domain relations as they
are an important part of an OWL ontology. Including relations in the dependency graph
also has the advantage that they are assigned to partitions as well.

An obvious idea is to look at the domain and range of each relation and to declare
the corresponding concepts to be dependent by virtue of being connected by a domain
relation. This would mean treating domain relations in the same way as we treat subclass
relations. Looking at this in more details, however, reveals that this way of using do-
main relations often produces undesired results. In fact, domain relations are often used
to connect objects of a very different nature. In existing ontologies, the range of domain
relations are often datatypes and even even object properties often link concepts that we
would put into different partitions. In medical ontologies like the DICE ontology that
we analyzed, an ontology would talk about things like Drugs diseases and body parts,
each forming a coherent submodel. Domain relations that would typically be found are
relations like ’treats’ that connect drugs with diseases or ’located-in’ connecting diseases
and body parts. Adding these relations to the dependency graph would create connections
between parts of the ontology that we want to keep separate.

Despite these problems, it turns out that we can use information about relations to
determine additional dependency relations in a fruitful way. Reconsidering the medical
example mentioned above, we conclude that concepts of the same nature are not charac-
terized by being connected through a domain relation but by the use of a certain relation:
Different kinds of Drugs will have the ’treats’ relation in their definition, diseases will
use the ’located-in’ relation and body parts will often be defined using the part of rela-
tion. This observation is closely related to the use of implicit subclass relations as these
relations are often computed by comparing restrictions on the same property. Using this
shared use of properties as a criterion for dependency provides us with more information
about related concepts but still abstracts from the details of the definitions often leading to
a dependency graph with clear clusters. Figure 10.3 shows the dependency graph of our
example ontology. It is based on the computed hierarchy and the shared use of relations.
We can see that similar concepts are indeed grouped around certain relations (animals
around ’eats’, persons around ’sex’ and ’age’ pet-owners around “has-pet’ and drivers
around ’drive’).

Mixing different sources of dependency, in this case the concept hierarchy and the
use of relations, brings us back to the problem of using weights for different types of
dependencies. While we can justify the different sources of dependencies by observed
modeling styles and language properties, there is no knowledge about the right choice of
weights. Currently, we have to determine weights through systematic experiments apply-

28 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

cat owner

“*has pet

animal lover

pet owner
dog owner

wegetariat dog liker.

" cat liker " likes

driver.
bz driver
P “wan driver
=T A

eats

cat

drives

“haulage truck driver
white wan man

haulage worker——"wmkS far
Figure 10.3: Dependency Graph after adding shared use of relations as a dependency
criterion.

ing the method with different weights to the same ontology. In this way we can determine
the best setting for a given problem. It is too early, however, to draw general conclusions
about the importance of different kinds of dependencies and the corresponding weights to
be used.

10.3 Tool Support for Automatic Partitioning

From the discussion about applying our partitioning method to OWL ontologies, we can
derive a number of requirements for functionality that has to be provided by a partition-
ing tool. Besides the actual partitioning of the dependency graph these requirements are
mostly concerned with the modification of input parameters and the evaluation of the
resulting partitioning. A system for ontology partitioning has to provide options for dif-
ferent ways of generating the dependency graph based on the nature of the ontology to be
partitioned. These options should at least include the options discussed above as well as
the possibility to set weights for different kinds of dependencies. As we will have to run
many experiments and compare their results in order to find the right weights, the system

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 29



10. PARTITIONING

should provide immediate graphical feedback in terms of the resulting partition for human
inspection. For larger ontologies, this manual inspection will not be sufficient. Therefore,
an automatic comparison function is needed that can compare the results of experiments
to a golden standard and to each other.

Based on these requirements we have implemented a tool for supporting partitioning
of OWL ontologies. It performs all the steps that were described before: creating the
dependency graph, determining the modules, and improving the partitioning by assigning
leftover nodes to the already found modules. The tool is a Java application that performs
the partitioning interactively through a graphical user interface. It is freely downloadable
from http://swserver.cs.vu.nl/partitioning/ and licensed under the GNU General Public
License.

10.3.1 Graph Generation

Our tool uses Sesame, a system for storing and querying data in RDF and RDFS [BKvHO02].
The ontology is loaded into a local Sesame repository, after which it can be easily queried
via an API. Because Sesame does not have native OWL support, some extra programming
had to be done to deal with ontologies in this format. This includes explicitly querying
for resources of type owl:Class while retrieving all classes (Sesame only returns re-
sources of type rdfs :Class) and following blank nodes for determining the definition
relations (see below). Further, irrelevant resources have to be filtered out. This is done
on the basis of user-defined namespaces that are to be ignored. Resources that occur in
those namespaces do not show up in the resulting network. In most cases the classes and
properties defined in RDFS and OWL can be ignored because they do not describe parts
of the domain but constructs for talking about them and are therefore on a different level
of abstraction. By entering the corresponding namespaces in the text area also extensions
of RDF or elements of other RDF-based languages can be excluded if they do not con-
stribute to the actual domain model.

Before converting an ontology, the user has to decide what relations to include in
the network, and if those relations are to be represented by edges (undirected) or arcs
(directed). The tool allows five types of relations to be included: subclass, property, de-
finition, substring, and string distance relations. The user also has to decide about the
strength of each type. At the moment, only subclass relations that are explicitly stated
in the ontology are included in the network. If the classified hierarchy is to be used for
the partitioning, existing OWL reasoners can be used to compute implicit subsumption
relation beforehand and add them as explicit statements into the repository. This can for
example be done by using the BOR reasoner [SJO2] that is integrated with the Sesame
system. When property relations are to be included, for each domain/range restriction a
relation is created. Definition relations are established between a concept and its property

30 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

(or not only properties but also other resources). These can be used to make concepts
dependent on some shared property. The remaining two relations, substring and string
distance, look at the concept names (or labels if specified). They create a relation if one
concept name is contained in another or if the string distance between two concept names
is below a certain threshold.

Finding the definition relations was a bit cumbersome. Querying using the Sesame
API involves posing queries of the form <Subject, Predicate, Object> and getting back
a subset of triples from the ontology that match the query. The complicating factor is
that the graph model representing the definition contains a number of nested blank nodes.
See for an example Figure 10.4. Here, the definition relation should be created between
the concept dog and the property eats. To find those relations, all triples in the ontol-
ogy are retrieved and for each of those triples the blank nodes are traversed until an
owl:onProperty statement is found.

<owl:Class rdf:about="http://.../mad cows#dog">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="http://.../mad cows#eats"/>
<owl:someValuesFrom>
<owl:Class rdf:about="http://.../mad_cows#bone"/>
</owl:someValuesFrom>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Figure 10.4: Part of the example ontology showing relevant information for a definition
relation. (Adapted for readability.)

Figure 10.5 shows a screen shot of the tool in which an OWL ontology is converted to
a dependency network. The screen is divided into three parts: the upper part gives a short
help text about the currently selected tab, the middle part is for specifying the required
arguments (in this case the input ontology and the output network) and the bottom part is
for various optional parameters that influence the conversion. The tool converts an ontol-
ogy written in RDFS or OWL to a dependency graph, written in Pajek format.

10.3.2 Partition Generation and Improvement
Besides converting ontologies, another function of the partitioning tool is the creation of

the partitions. Based on a dependency network, it creates one or more clusters. The max-
imum number of concepts per cluster can also be specified. The actual calculation of the

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 31



10. PARTITIONING

& pajek Tools =13 x|

File Settings Help

Ontalagy conversion I KIF conversion | Island creation | Similarity measurement

~ Description
Corvertz an ontology [writter in ROF[S) or 0WL) to a Pajek network., ﬂ
Fezources of which the URI startz with one of the lines contained in the "lgnored resources" text area are ignored.
Firve types of edges between resources can be included in the conversion: subclazs edges, property edges. definition edges, substring
edges and distance edges. For each type, the edge strength can be specified. LI

~Required argument

Ontology file IC:'\DDcuments and Settingz'\Maarten Menkenihy Documentsimad_cows, ol Browsze...

I

Output file IC:'\DDcuments and Settingz'Maarten Menkenihy Documentsimad_coms. net Browsze...

-~ Optiok

Ignored resources [hitp: AAvovow. w3 org/ 2002407 fowll

btk e w3, org/ 1 99902/ 22 df-suntan-nstt
itk e w3, org/ 2000070 Ardf-zchematt

itk e w3, org/ 2007 A<MLS chemalt

[+ Include subclass edges  Strength subclass edges IE
[ Include property edges Strength property edges IE

[~ Include definition edges  Strength definition edges IE Included definition resources IDnIy properties * I

[~ Include substring edges  Strenagth substring edges IE

[~ Include distance edges  Strenath distance edges IE

Create edges or arcs IEdges - I

Convert |

Figure 10.5: Screen shot of the partitioning tool with the ontology conversion tab active.

islands is done by an external Windows program written by Matjaz Zaversnik?. Therefore
this functionality is only available on Windows.

After this partitioning, in some cases there will be some leftover nodes which are not
assigned to any cluster. The tool will automatically assign these nodes to the cluster to
which they have the strongest connection. How this process works can best be explained
by an example. Figure 10.6 shows an example network. It contains two modules (M1 and
M?2) and one leftover node (c8). c8 is connected to module M1 by one edge with strength
0.3 and to module M2 by two arcs with strengths 0.2 and 0.3. To determine the strength
of a connection between a leftover node and a module, the strengths of all edges and arcs
that connect the two are summed. Because edges are undirected and work in this respect

Zhttp://vlado.fmf uni-lj.si/pub/networks/

32 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

Module M1 Module M2

@ node

—— edge

—» arc
C] module

Figure 10.6: Example network for the assignment of leftover nodes to modules.

Another option for improving the partitioning is to merge small related modules into
larger ones. The current implementation does not support this as there is still a need to
explore this functionality on a theoretical level.

10.3.3 Using Pajek as a Tool for Analyzing Ontologies

The result of the conversion as well as the result of the partitioning process is represented
in a format that can be processed by the Pajek network analysis tool [BMO3] (available at
http://vlado.fmf.uni-1j.si/pub/networks/pajek/). In particular, these results are:

* the dependency graph of the ontology
* graphs representing each individual module

* a graph containing the partitioning in terms of different node labels

These graphs can be loaded into Pajek for inspection and further processing. Fig-
ure 10.7 shows a screen shot of Pajek. A partition is shown in a graph, each module in a
different color. In particular, the different graph layout algorithms of Pajek help to inspect
the result of the process and spot potential problems. Pajek also provides functionality
for managing and analyzing partitions. It often happens for example, that the dependency
graph of the ontology contains different components. These components can easily be

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 33



10. PARTITIONING

detected and extracted by Pajek. The most interesting functionality, however is the pos-
sibility to compute different network theoretic measures like the internal coherence of a
module that can be used to assess a created partitioning.

ES. Proportional strength networ - | Ellil

Lavout  Layers GraphOnly  Previous Redraw MNexk  Options Export  Spin Maowe Info

c%[1] haulage+company
0.

(1) compary C}[2] bicycle

G mang ey

(3] woman

EgEK] .
[0) bus+drivery

[0 wanD 033 [0] wehite+vah+rman

“ [0] wan+driver

]d_ 50 i FErEEEE__ _{lx]
rivver

File Met hlets Operations Partition Partitions Permut.,  Cluster  Hierarchy  Vector
Veckors  Options Draw  Macro  Info  Tools

MNetwark —
|3 Proportional strength network of N2 (18) -
ol el = | H
Fartition - - - —
B <. |slands [Line Weights] in N4 [1,12]
el H #

4]

Figure 10.7: Screen shot of Pajek displaying four partitions.

10.34 Automatic Comparison

In the case of very large models the evaluation of the partitioning result can often not be
done manually. For this purpose, our tool implements limited funcationality for compar-
ing two partitions of the same graph that can be used to compare the output of a parti-
tioning process to a given partitioning. The measures implemented are adaptations of the
classical precision and recall measures as well as a method called EdgeSim [MMO1]. The
first two measures are based on the numbers of intrapairs, which are pairs of concepts that
are in the same cluster [AFL99]. Precision is defined as the percentage of intrapairs in the
first cluster that are also intrapairs in the second cluster. Recall is defined as the percent-
age of intrapairs in the second cluster that are also intrapairs in the first. The EdgeSim
measure considers both the vertices and the edges and is not sensitive to the size and
number of clusters (as are precision and recall). Both intraedges (i.e., edges that connect

34 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

nodes within the same cluster) or interedges (i.e., edges that connect vertices in different
clusters) are taken into account to calculate the edge similarity between two partitionings.
The three measures give an indication of how well the partitioning was performed and
therefore what relations and strengths give best results.

Currently we finish our implementation and will perform the first experiments on the
several large ontologies.

10.4 Discussion

We presented a method and a tool for partitioning OWL ontologies based on different
criteria for semantical relatedness of concepts. Using our tool, these criteria can be iden-
tified weighted and used to generate a dependency graph that serve as input for the actual
partitioning method. This process of creating the dependency graph is the critical step
in the method, because the success of the partitioning heavily depends on an appropriate
choice of the parameters. In particular, we have to decide which criteria (subclass rela-
tions, shared used use of properties, etc. ) to include and their relative importance in
terms of weights. These choices are not trivial and will probably not be the same for any
model. We believe that the only way of getting a better idea of the right choices is to carry
out experiments on real ontologies. The tool described in this chapter cannot free us from
this task, but it can ease the task by automating large parts of it. We are currently using
the tool for carrying out experiments on a large medical ontology called DICE. We will
test different strategies for creating the dependency graph and evaluate the result based
on feedback from medical experts. At the moment it is unrealistic to assume that domain
experts will be able to use the tool directly, because the choice of the parameters requires
some knowledge about the partitioning method. Improving the tool far enough to enable
other people to use it off the shelf nevertheless is the ultimate goal of this work.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 35



Chapter 11

Modularization for Scalable Ontology
Engineering1

by MUSTAFA JARRAR

The main idea of the modularization in this section is to develop an ontology as a
set of small modules and later (i.e. at the deployment phase) compose them to form one
ontology. The goal is that modules are: 1) easier to reuse in other kinds of applications;
2) easier to build, maintain, and replace; 3) enable distributed development of modules
over different locations and expertise; 4) enable the effective management and browsing
of modules, e.g. enabling the construction of ontology libraries. In short, this approach to
modularization is aimed with achieving scalable ontology engineering.

For automatic composition of modules, a composition operator can be used: all atomic
concepts and their relationships (called lexons [JDMO02, Mee99]) ) and all constraints,
across the composed modules, are combined together to form one ontology (called mod-
ular ontology).

11.1 A Simple Example

In what follows, we give an example to illustrate the (de)composition of axiomatizations.?
Figure 11.1 shows two ontologies for Book-Shopping and Car-Rental applications.’ No-

I'This section is short summary of the research on ontology modularization by Mustafa Jarrar, see [Jar05]
for more details.

%In this section, the term ‘axiomatization’ is often interchanged with the term ‘ontology’ to mean the
same thing.

3Please note that these modules are represented using the ORM [Hal01] graphical notation for simplicity
and easy understanding. ORM (Object-Role Modeling) [HalO1] is a conceptual modeling method. ORM
has an expressive and stable graphical notation since it captures many kinds of rules graphically (such
as identity, mandatory, uniqueness, subsumption, subset, equality, exclusion, value, frequency, symmetric,
intransitive, acyclic, etc.). Although ORM was originally developed as a database modeling approach, it has
been also successfully reused in other conceptual modeling scenarios, such as ontology modeling [JDMO02,

36



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

tice that both axiomatizations share the same axioms about “payment”.

’fr-"'_'_'_‘_‘-h-\
RequestOff | ok
_————=
il
SetledVi Payment Method
Setilediia| | o
>
T A g
[VISA W &
American Express @ ) Maney Order =
MasterCard | z
Card-company> | -
Card-Compan -
Payment Card 33
Card Number o
Carn Hurmer B
— Credit Card =
Card Holder =
e —
Expiring Date T |Tlas
Authorize With I‘@ Endsi| |
2D ]| =

IssuedBy Rental 6 Y
_Re questD i- G o
Setfledvid  [MLPayment Methad

- kCe
American Express @ %) Money Order
MasterCard .
IOf [Has Payment Card
card Number TsOOF
— Credit Card
Card Holder .

supgennddy jejuay-180)

Figure 11.1: Book-shopping and Car-Rental axiomatizations.

Instead of repeating the same effort to construct the axiomatization of the “payment”
part, the modularization principle suggests that we decompose these axiomatizations into
three modules, which can be shared and reused among other axiomatizations (see Figure
11.2). Each application-type (viz. Book-Shopping and Car-Rental) selects appropriate
modules (from a library of application axiomatizations) and composes them through a
composition operator. The result of the composition is seen as one axiomatization.*

Jar05], business rule modeling language [Hal97, DIM02], XML-Schema conceptual design [BGH99], etc.
4The illustrated composition in this example is very simplistic, as each pair of modules overlap only in

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 37



11. MODULARIZATION FOR SCALABLE ONTOLOGY ENGINEERING

E-Commerce Library

'\

RequestOf] |

T
(IS8

AMerican ExXpress
MasterCard }

suopedddy Guiddoyg-qoog

S

Statsad] |
RequestOf |

Settedvid |

Fental

Iesues [ssuedBy

i
suoRed|ddy |e1uaH-Jegpj !

Payment Method

Figure 11.2: Modularized axiomatizations.

Developing and engineering axiomatizations in this way will not only increase their
reusability, but also the maintainability of these axiomatizations, i.e. scalable and effi-
cient ontology engineering. As the software engineering literature indicates, small mod-
ules are easier to understand, change, and replace [Par72, SWCHO1]. An experiment
by [BBDD97] proves that the modularity of object-oriented design indeed enables better
maintainability and extensibility than structured design.

Decomposing axiomatizations into modules also enables the distributed development
of these modules over different location, expertise, and/or stakeholders. As an analogy,
compare the capability of distributing the development of a program built in Pascal with
a program built in Java, i.e. structured verses modular distributed software development.

one concept, i.e. the “Payment Method”. In further sections, we discuss more complicated compositions,
in which rules in different modules may contradict or imply each other.

38 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

11.2 Synthesis of Related Work

The importance of modularity has received limited attention within the knowledge repre-
sentation community [SKO3b]. Recently, as presented in this report, modularity has been
adopted by some researchers to achieve more scalability for reasoning and inference ser-
vices. A knowledge base is seen as a set of distributed knowledge bases, with each base
referred to as a module. In this way reasoning is performed locally in each module, and
the results are propagated toward a global solution. Global soundness and completeness
(i.e. consistency) follows from the soundness and completeness of each local reasoner
[WSCT04]. The performance of such reasoning is claimed to be linear in the tree struc-
ture in most cases. See Section 14 as an example of such approaches.

While such approaches are concerned with the modularity at the deployment phase
of ontologies (i.e. distributed reasoning), Rector (see Section 12) has proposed another
approach to modularity that is mainly concerned with the distributed development of the
T-box of an ontology (i.e. scalable engineering). Rector’s proposal is to decompose
an ontology into a set of independent disjoint skeleton taxonomies restricted to simple
trees. Disjoint taxonomies (i.e. modules) can then be composed using definitions and
relationships between concepts in the different modules. In contrast to other approaches
above, the result of such a composition can be seen as one local T-box. This approach is
motivated by Guarino’s analyses of types [G98]. Assuming that each type has a distinct
set of identity criterion, when a type specializes another type, it adds further identity
criterion to those carried by the subsuming type. The taxonomy of such types is always a
tree.

11.3 Our Approach

In this section we introduce our approach to ontology modularization and composition
on an abstract level. The formal and technical details will be provided in the following
sections.

In our approach, we are mainly concerned with the modularity at the development
phase of an ontology. Similar to Rector’s proposal, our goal is to enable the “T-box” of
an ontology to be developed as a set of modules and to later be composed to form one
T-box.

However, unlike Rector’s approach, we do not restrict a module to taxonomic relations
between concepts. Modules are expected to include concepts, relations, and constraints
(i.e. a typical T-box). In other words, we do not distinguish modules according to their
level of abstraction, or according to the nature of their content. We call such distinctions
as “ontology layering” or “ontology double-articulation”, see [JDMO02, JM02].

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 39



11. MODULARIZATION FOR SCALABLE ONTOLOGY ENGINEERING

11.3.1 Modularity Criterion (Decomposition)

In what follows, we propose a modularity criterion aimed to help ontology builders to
achieve effective decomposition and to guide them in why/when to release a part of an ax-
1omatization into a separate module. The effectiveness of a decomposition can be seen as
the ability to achieve a distributed development of modules and maximize both reusability
and maintainability.

Subject: subject-oriented parts should be released into separate modules.’ For example,
when building an axiomatization for university applications, one should separate
between the financial aspects (e.g. salary, contract) and the academic aspects (e.g.
course, exams). Encapsulating related axioms (on a certain subject) into one mod-
ule will not only improve the reusability and maintainability of modules, but also
enable the distributed development of modules by different people with a distinct
expertise

Purpose: the general-purpose (or maybe called task-oriented) parts of an axiomatization
could be released into separate modules. The notion of “general purpose” axioma-
tization refers to a set of axioms that are expected to be repeatedly used by different

2% &<

kinds of applications. For example, the axiomatization of “payment”, “shipping”,
“person”, “address”, “invoicing”, is often repeated in many e-commerce applica-
tions. The reusability of such application axiomatizations is not based necessarily
on their ontological foundation or abstraction levels but may be recognized simply
from the experience of the creator and from best practices. For example, the wide
adoption (i.e. repeatability) of the Dublin Core elements® is based mainly on the

simplicity of the encoding of descriptions (i.e. metadata) of networked resources.

Specific-purpose parts could also be modularized and released separately. In this
way, the application-specificity of other modules will be decreased.

Stability: the parts that are expected to be frequently maintained or replaced could be re-
leased in separate modules. This affords other parts more stability and the unstable
parts will themselves be easier to maintain and replace.

The criteria suggested above cannot be followed rigidly, as it is based on builders’

best practice and expectation of the reuse, maintenance, and distributed development of
modules.

11.3.2 Module Composition

To compose modules we define a composition operator. All concepts and their relation-
ships and all constraints, across the composed modules, are combined together to form

SThis criteria is similar to, the so called “information hiding”, in software engineering, [Par72].
®http://www.dublincore.org (June 2004).

40 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

one axiomatization. In other words, the resultant composition is the union of all axioms
in the composed modules.

As shall be discussed later, a resultant composition might be incompatible in case this
composition is not satisfiable, e.g. some of the composed constraints might contradict
each other.

Our approach to composition is constrained by the following consistency argument.
An ontology builder, when including a module into another, must expect that all con-
straints in the included module are inherited by the including module, i.e. all axioms in
the composed modules must be implied in the resultant composition. Formally speaking,
the set of possible models for a composition is the intersection of all sets of possible mod-
els for all composed modules. In other words, we shall be interested in the set of models
that satisfy all of the composed modules.

In Figure 11.3, we illustrate the set of possible instances (i.e. possible models) for a
concept constrained differently in two modules composed together. Figure 11.3(a) shows
a compatible composition where the set of possible instances for M.c is the intersection
of the possible instances of M;.c and Ms.c. Figure 11.3(b) shows a case of incompatible
composition where the intersection is empty.

The set of the intended models for concept C,
at the ontology base level.

The set of the possible models of My c= A

The set of the possible models of My e =B

JLM=M1UM2, where A~B= @

The set of the possible models of M.c=A~ B

The set of the intended models for concept C,
at the ontology base level.

The set of the possible models of My.c= A

The set of the possihle models of M,.c =B

u' M=M1UM2, where A~B=9

Incompatible Composition, M. c cannot be satisfied.

(@)

(b)

Figure 11.3: (a) Compatible composition, (b) Incompatible composition.

Notice that our approach to module composition is not intended to integrate or unite
the extensions (i.e. A-boxes) of a given set of modules, as several approaches to ontol-
ogy integration’ aim to do [SP94, SK03b, BS03]. Our concern is to facilitate ontology
builders (at the development phases) with a tool to inherit (or reuse) axiomatizations with-
out “weakening” them. In other words, when including a module into another module

"This might be seen as a designation between composition verses integration of ontological modules.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 41



11. MODULARIZATION FOR SCALABLE ONTOLOGY ENGINEERING

(using our composition operator, which we shall formalize in the next section) all ax-
ioms defined in the included module should be inherited by (or applied in) the including
module.

114 Formal Framework

In this section, we introduce the formal framework of our approach to module compo-
sition. The approach is further illustrated by developing an algorithm for the automatic
composition of modules specified in ORM.

11.4.1 Definition (Module)

A module is an axiomatization of the form M =<P, 2>, where P is a non empty and
finite set of atomic concepts and their relationships (we call it lexon®); €2 is a set of con-
straints which declares what should necessarily hold in any possible world of M. In other
words (2 specifies the legal models of M.

11.4.2 Definition (Model, Module Satisfiability)

Using the standard notion of an interpretation of a first order theory, an interpretation I of
amodule M, is a model’ of M iff each sentence of M (i.e. each p € P and each w € Q) is
true for I.

Each module is assumed to be self-consistent, i.e. satisfiable. Module satisfiability
demands that each lexon in the module can be satisfied [vBHvdW91]. For each lexon p
in a given module M, p is satisfiable w.r.t. to M if there exists a model I of M such that
pt#0.

Notice that we adopt a strong requirement for satisfiability, as we require each lexon

in the schema to be satisfiable. A weak satisfiability requires only the module itself (as a
whole) to be satisfiable [Hal89, vBHvdWO91].

11.4.3 Definition (Composition Operator)

Modules are composed by a composition operator, denoted by the symbol *&’. Let M =
M; & M, we say that M is the composition of M; and Ms. M typically is the union of all

8 A lexon is formed as <Ty, 1, 1r’, To >, where T refers to a Term (concept label), r refers to a role, r’
refers to an inverse role, r and 1’ are the two parts of a binary relationship, for example <Customer, Issues,
IssuedBy, Order>.

9We also call it “legal model”.

42 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

lexons and constraints in both modules. Let M; =<Pq, €y > and My =<P5, 05 >, the
composition of (M;& M) is formalized as M =< P1® Py, ;@ Qy >.

A composition (M; @ M,) should imply both M; and M,. In other words, for each
model that satisfies (M; @& M), it should also satisfy each of M; and M,. Let (M;) and
(Ms)! be the set of all possible models of M; and M, respectively. The set of possible
models of (M; & My)'= (M;)'N (My)?. A composition is called incompatible iff this
composition cannot be satisfiable, i.e. there is no model that can satisfy the composition,
or each of the composed modules.

In what follow we specify how sets of lexons and sets of constraints can be composed
together.

Composing lexons

When composing two sets of lexons (P = P;@ P3), a concept M;(T) in module M;
and a concept My(T) in module M, are considered exactly the same concept'® iff they
are referred to by the same term T, and/or URI. Formally, (M;(T) = M,.(T)). Likewise,
two lexons are considered exactly the same (M;.<Ty,r,1°, Ty > = My.<Ty, 1,17, Ty >)
iff Ml(Tl) = Mg.(Tl), Ml.(r) = MQ.(I'), M1 .(I") = MQ.(I"), and Ml.(T2)= MQ(TQ) .ll See
Figure 11.4.

In case that M; and M, do not share any concept between them (i.e. two disjoint sets
of lexons), the composition (M;@ M) is considered an incompatible operation12 , as there
is no model that can satisfy both M; and Ms.

Notice that in case concept is specified as “lexical” in one module and as “non-lexical”
in another (e.g. ’Account’), then in the composition, this concept is considered “non-
lexical”. Lexical object types in ORM are depicted as dotted- ellipsis, Lexical vs. no-
lexical in ORM is similar to DataProperty vs. ObjectProperty in OWL, or attribute vs.
class in UML and EER.

Composing constraints

When composing two sets of constraints, first, all constraints need to be combined
together (2 = ;@ €)s). Second, a satisfiability reasoning should be performed in order
to find out whether the composition (M = M;UMs) is satisfiable. Finally, an optional step
is to perform an implication reasoning to eliminate all implied constraints (also called
“entailments”) from the composition.

In the first step, the combination of all constraints (2, (25) should be syntactically

10] e. refer to the same intended models.

T refers to a Term (concept label), r refers to a role, 1’ refers to an inverse role, r and r’ are the two parts
of a relationship, example of a lexon <Ty,r,1°, Ty > is <Customer, Issues, IssuedBy, Order>.

12In some practice cases, we weaken this requirement to allow the composition of disjoint modules. For
example, in case one wishes to compose two disjoint modules and later compose them within a third module
that results in a joint composition.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 43



11. MODULARIZATION FOR SCALABLE ONTOLOGY ENGINEERING

Credit Card

Expirec-2

(M1)

(M2)

Credit Card

Ouined-By

Expired-At

Figure 11.4: Combining ORM fact types.

valid according to the syntax of the constraint specification language. For example, some
constraints need to be syntactically combined into one constraint. The combination of a
set of constraints should imply all of them. To provide an insight into such combinations,
in Figure 11.5, we show the combination of two UML cardinality constraints. Figure 11.6
illustrates several combinations of ORM constraints. Notice that in case of a constraint
contradiction, the composition is terminated and considered an incompatible operation,
as in Figure 11.6(d).

Figure 11.5: Combining UML constraints.
The ability to automate this process depends on the complexity of the constraint speci-

44 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

Figure 11.6: Examples of several combinations of ORM constraints: (a) combination of
two value constraints, (b) combination of uniqueness, and frequency, (c) combination of
subset and equality, and (d) combinations of equality and exclusion constraints.

fication language. In [Jar05] we have developed an algorithm - based on the above frame-
work - to automatically compose modules specifying in ORM, this algorithm is also
implemented in the DogmaModeler ontology modeling tool [Jar05]. Please see [JVMO03]
for real-life case study where this operator was successfully applied.

11.4.4 Definition (Modular Axiomatization)

A modular axiomatization M = {My, ... ,M,,, @} is a set of modules with a composition
operator between them, such that P=(P;® ... & P,) and Q = (... & Q,).

Notice that cyclic compositions are null operations, as the repetition of the same
proposition has no logical significance. For example, the composition M = (M1 M)
® M) equals (M; @ My) and the composition M= (M@ Ms) & (M@ M;)) also equals
M;® M,).

11.5 Conclusion and Implementation

In this chapter we have presented an approach to modularize and automatically compose
Ontology modules. This approach is fully implemented in DogmaModeler [Jar05], which
is a software tool for modeling ontologies and business rules using the ORM graphical no-
tation. DogmaModeler enables users to create, compose, add, delete, manage, and brows

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 45



11. MODULARIZATION FOR SCALABLE ONTOLOGY ENGINEERING

ORM (modular) schemes. DogmaModeler also implements a library of ORM modular
schemes, allowing different metadata standards (e.g. Dublin-Core, LOM, etc.) to be
used for describing modules. This approach has been also used in a real-life case study
(CCFORM EU project, IST-2001-34908, 5th framework.) for developing modular ax-
iomatizations of costumer complaints knowledge, see [Jar05, JVMO3] for the experience
and lessons learned.

46 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



Chapter 12

Engineering Robust Modules

by ALAN RECTOR, JEFF PAN

This chapter concentrates specifically on the engineering issues of robust modular im-
plementation in logic based formalisms such as OWL. More specifically, we concentrate
on the domain level ontology rather than the high abstract categories discussed by Guarino
and Welty [GWO0O0].

In our approach, the fundamental goal of modularity in the domain ontology is to
support re-use, maintainability and evolution. The goal is only possible if:

The modules to be re-used can be identified and separated from the whole.

* Maintenance can be split amongst authors who can work independently.

Modules can evolve independently and new modules be added with minimal side
effects.

The differences between different categories of information are represented explic-
itly both for human authors’ understanding and for formal machine inference.

12.1 Overview

We assume that the basic structure of the ontology to be implemented has already been
organised cleanly by a mechanism such as that of Guarino and Welty, and that a suitable
set of high level categories are in place. Our goal is to implement the ontology cleanly in
as FaCT, OWL, or other logic-based formalism. Such formalisms all share the principle
that the hierarchical relation is “’is-kind-of™” and is interpreted as logical subsumption —i.e.
to say that B is a kind of A” is to say that "All Bs are As” or in logic notation Vx. B(x)
— A(x). Therefore, given a list of definitions and axioms, a theorem prover or “reasoner”
can infer subsumption and check whether the proposed ontology is self-consistent.

47



12. ENGINEERING ROBUST MODULES

The list of features supported by various logic based knowledge representation for-
malisms varies, but in this chapter we shall assume that it includes at least:

* primitive concepts which are described by necessary conditions;

defined concepts which are defined by necessary and sufficient conditions;

* properties which relate concepts and can themselves be placed in a subsumption
hierarchy;

* restrictions which are constructed as quantified role-concept pairs, e.g. (restriction
hasLocation someValuesFrom Leg) meaning “located in some leg”;

* axioms which declare concepts either to be disjoint or to imply other concepts.

These mechanisms are sufficient to treat two independent ontologies as modules to be
combined by definitions. For example, independent ontologies of dysfunction and struc-
ture can be combined in concept descriptions such as "Dysfunction which involves Heart”
(Dysfunction and (restriction involves someValuesFrom Heart)), “Obstruction which in-
volves Valve of Heart” (Obstruction and (restriction involves some ValuesFrom (Valve and
(restriction isPartOf someValuesFrom Heart))). In this way, complex ontologies can be
built up from and decomposed into simpler ontologies. However, this only works if the
ontologies are modular. The rich feature sets of modern formalisms such as OWL allow
developers a wide range of choices in how to implement any given ontology. However,
only a few of those choices lead to the desired modularity and explicitness.

Implicit information could be a problem — most frequently because either 1) informa-
tion is left implicit in the naming conventions and is therefore unavailable to the reasoner,
or ii) information is represented in ways that do not fully express distinctions critical to the
user. Amongst the distinctions important to users are the boundaries between modules. If
each primitive belongs explicitly to one specific module, then the links between modules
can be made explicit in definitions and restrictions as in the examples above. However, if
primitive concepts are ‘shared’ between two modules, the boundary through them is im-
plicit — they can neither be separated, since they are primitive, nor confidently allocated to
one module or the other. Hence, it matters which concepts are implemented as primitives
and which as constructs and restrictions. The key notion in our proposal is that modules
be identified with trees of primitives and the boundaries between those trees identified
with the definitions and descriptions expressing the relations between those primitives.
We will discuss more details in the following sections.

12.2 Primitive Skeleton

We term that part of the ontology consisting only of the primitive concepts the “’primitive
skeleton”. We term that part of the ontology which consist only of very abstract cate-

48 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

gories such as ’structure” and “process” which are effectively independent of any specific
2 9

domain the “top level ontology”, and those notions such as ”bone”, “gene”, and “tumour”
specific to a given domain such as biomedicine the "Domain ontology”.

The essence of our proposal is that the primitive skeleton of a domain ontology should
consist of disjoint homogeneous trees.

1. The branches of the primitive skeleton of the domain taxonomy should form trees;
i.e. no domain concept should have more than one primitive parent.

2. Each branch of the primitive skeleton of the domain taxonomy should be homo-
geneous and logical; i.e. the principle of specialisation should be subsumption (as
opposed, for example, to partonomy) and should be based on the same, or progres-
sively narrower criteria, throughout. For example, even if it were true that all vas-
cular structures were part of the circulatory system, placing the primitive “vascular
structure” under the primitive “circulatory system structure” would be inhomoge-
neous because the differentiating notion in one case is structural and in the other
case functional.

3. The primitive skeleton should clearly distinguish:

(a) "Self-standing” named concept': most “things” in the physical and concep-
tual world — e.g. ”animals”, ”body parts”, "people”, “organisations”, ’ideas”,
“processes” etc as well as less tangible notions such as style”, “colour”,
’risk”, etc. Self-standing primitives should be disjoint and open, i.e. the list of
primitive children should not be considered exhaustive (should not ”cover” the
parent), since lists of the things that exist in the world are hardly guaranteed

exhaustive.

(b) Partitioning” or ”Refining” named concept: value types and values which
partition conceptual (qualia - [GWO0O0]) spaces e.g. “small, medium, large”,
“mild, moderate, severe, etc. For refining concepts: a) there should be a tax-
onomy of primitive ’value types” which may or may not be disjoint; b) the
primitive children of each value type should form a disjoint exhaustive parti-
tion, i.e. the values should “cover” the “value type”. The exhaustive manner
can naturally be represented by the use of datatypes. For instance, one can
define that objects with size less than 10cm are small, that objects with size
larger than 10m is large, and that anything between 10cm and 10m is medium.

In practice, we recommend that the distinction between self-standing” and “par-
titioning” named concept be made in the top level ontology. However, in order
to avoid commitment to any one top level ontology, we suggest only the weaker

'The phrase “self-standing concepts” is problematic, but has so far produced less controversy than any

suggested alternative. In Guarino and Welty they correspond to types”, “quasi-types” and certain concepts
used to construct representation of “formal and material roles”.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 49



12. ENGINEERING ROBUST MODULES

requirement for modularisation; i.e. that the distinction be made clear by some
mechanism.

4. The range and domain constraints should never imply that any primitive domain
concept is subsumed by more than one other primitive domain concept.

Note that requirement 2, that each branch of the skeleton be "homogeneous”, does not
imply that the same principles of description and specialisation are used at all levels of
the ontology taken as a whole. Some branches of skeleton providing detailed descriptions
(e.g. “forms and routes” of drugs or detailed function of genes) will be used only in
specialised modules ’deep” the ontology as a whole. Our proposal, however, is that when
such a set of new descriptors is encountered, its skeleton should be treated as a separate
module in its own branch of the skeleton.

The distinction between “self-standing” and “partitioning” named concept is usually
straight forward and closely related to Guarino and Welty’s distinction between “’sortals”
and “nonsortals” [GWO00]. However, the distinction here is made on pragmatic engineer-
ing grounds according to two tests: a) Is the list of named things bounded or unbounded?
b) Is it reliable to argue that the sub-concepts exhaust the super-concept? i.e. is it ap-
propriate to argue that ”Super & not sub; & not suby & not subs... not sub,,_; implies
sub,,”? If the answer to either of these questions is “no”, then the concept is treated as
’self-standing”.

The first consequence of the criteria 1, 3 and 4 is that all multiple inheritances are in-
ferred by ontology reasoners. Ontology authors should never assert multiple inheritances
manually. The second consequence is that, for any two primitive self-standing named
concepts, either one subsumes the other or they are disjoint. From this, it follows that
any domain individual is an instance of exactly one most specific self-standing primitive
concept.

A third set of consequences of criteria 1 and 3 is that a) declarations of primitives
should consist of conjunctions of exactly one primitive and zero or more restrictions; b)
every primitive self-standing concept should be part of a disjoint axiom with its siblings;
and c) every primitive value should be part of a disjoint sub-class axiom with its siblings
so as to cover its value type. Finally, criteria 4 limits the use of arbitrary disjointness
and subclass axioms. Disjointness amongst primitives is permitted, indeed required by
criterion 3.2 Subclass axioms are allowed to add necessary conditions to defined concepts
by causing them to be subsumed by further restrictions, but not to imply subsumption by
arbitrary expressions containing other primitives.

2A stronger criterion concerning disjointness axioms is probably desirable. The only two use cases
which we have seen which do not ‘tangle’ the ontology are a) disjointness between primitive siblings of
a common parent; b) disjointness between existential restrictions to represent non-overlap in space, e.g.
(has_location someValuesFrom Germany) disjoint (has_location someValuesFrom France).

50 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

12.3 Rationale

Minimising implicit differentia

This approach seeks to minimise implicit information. Not everything can be defined
in a formal system; some things must be primitive. In effect, for each primitive, there is
a set of implicit notions that differentiate it from each of its primitive parents (the Aris-
totelian “differentia” if you will). Since these notions are implicit, they are invisible to
human developer and mechanical reasoner alike. They are therefore likely to cause con-
fusion to developers and missed or unintended inferences in the reasoner. The essence
of the requirement for independent homogeneous taxonomies of primitives is that there
is exactly one implicit differentiating notion per primitive concept (i.e., different prim-
itive skeleton don’t share primitive concepts), thus confining implicit information to its
irreducible minimum. All other differentiating notions must be explicit and expressed as
“restrictions” on the relations between concepts.

Keeping the Skeleton Modular

The requirement that all differentiating notions in each part of the primitive skeleton
be of the same sort — e.g. all structural, all functional — guarantees that all conceptually
similar primitive similar notions fall in the same section of the primitive skeleton. There-
fore our modularisation will always include notions that divide along natural conceptual
boundaries. The requirement that the primitive skeleton of the domain concepts form
primitive trees is very general and still requires ontology authors to make choices. For
example, the notion of the “Liver” might be of a structural unit which serves a variety of
functions. It might be classified as an ”Abdominal viscera”, ”A part of the digestive sys-
tem”, or a part various biochemical subsystems. One such relationship must be chosen as
primary — if we follow the Digital Anatomist Foundational Model of Anatomy [RSB9§]
or OpenGALEN [RR96], we will choose the simple structural/developmental notion that
the Liver is an ”Organ”. All other classification will be derived from the description of
the structure, relationships, and function of that organ. “Liver” will therefore be part of
the organ sub-module of the structural anatomy module of the ontology.

Avoiding Unintended consequences of Changes

New definitions for new concepts can only add new inferences; they cannot remove
or invalidate existing inferences. Likewise, adding new primitive concepts in an open
disjoint tree can only add information. They may make new definitions and inferences
possible, but they cannot invalidate old inferences (because the languages we consider are
monotonic). Therefore definitions of new concepts and new disjoint concepts, or even
entire disjoint trees, can be added to the skeleton with impunity.

There are three operations which can cause unintended consequences: i) adding new
restrictions to existing concepts; ii) adding new primitive parents; iii) adding new unre-

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 51



12. ENGINEERING ROBUST MODULES

Original Hierarchy Normalised Skeleton Taxonomies
Substance
Protein Substance PhysiologicRole
‘ ProteinHormone’ Protein HormoneRole
Insulin* Insulin CatalystRole
ATPase* ATPase
Steroid Steroid
‘SteroidHormone’ Cortisol
Cortisol
‘Hormone’
‘ProteinHormone’ Linking Definitions and Restriction
Insulin* Hormone | Substance & playsRole-someValuesFrom HormoneRole
‘SteroidHormone’ ProteinHormone | Protein & playsRole someValuesFrom HormoneRole
‘Catalyst’ SteroidHomone | Steroid&playsRole someValuesFrom HormoneRole
‘Enzyme’ Catalyst | Substance & playsRole someValuesFrom CatalystRole
ATPase* Enzyme | Protein & playsRole someValuesFrom CatalystRole
Insulin — playsRole someValuesFrom HormoneRole
Cortiso — playsRole someValuesFrom HormoneRole
ATPase — playsRole someValuesFrom CatalystRole

Figure 12.1: Normalisation of Ontology of Biological Substances and Roles.

stricted axioms.

Operation 1) can be achieved either directly or by adding subclass axioms that cause
one class to be subsumed by a conjunction of further restrictions. Adding new restrictions
can be partially controlled by domain and range constraints on properties. If the ontology
is well modularised, then the properties that apply to concepts in each section of the skele-
ton are likely to be distinct and therefore unlikely to conflict. The results for existential
(someValuesFrom) restrictions are almost always easy to predict. They can only lead to
unsatisfiability if a functional (single valued) property is inferred to have (i.e. ’inherits”)
two or more disjoint values. Our experience is that in “untangled” ontologies this is rare
and that when it does occur it is easily identified and corrected. The results for universal
(allValuesFrom) and cardinality restrictions require more care but are at least restricted in
scope by modularisation.

However, operations ii) and iii) are completely unconstrained. It is difficult to pre-
dict or control what effects follow. Hence the rules for modularisation preclude these
constructs even though they are supported by the formalism.

12.4 Discussion

Examples & Relation to Other Methods

As a simple example consider hierarchy in Figure 12.1 for kinds of ”Substances”.
The original hierarchy is tangled with multiple parents for items marked with **’ — ”In-
sulin”, and ”ATPase”. Any extension of the ontology would require maintaining multiple
classifications for all enzymes and hormones. Modularisation produces two skeleton tax-

52 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

onomies, one for substances, the other for the physiologic role played by those substances.
Either taxonomy can be extended independently as a module — e.g. to provide more roles,
such as "neurotransmitter role”’, new kinds of hormone new kinds of protein or steroid, or
entire new classes of substances such as ”Sugars”. The definitions (indicated by * ’) and
restrictions (indicated by *—’) link the two taxonomies. The resulting hierarchy contains
the same subsumptions as the original but is much easier to maintain and extend. (To em-
phasise the point, the concepts defined in the modularised ontology are shown in single
quotes in the original ontology.)

As a further illustration consider the independently developed ontology in Figures
12.2,12.3 adapted from Guarino & Welty (see [GWO0O0] Figure 6). Figure 12.2 shows the
initial taxonomy after Guarino and Welty’s “Ontoclean” process. While ontologically
clean, its implementation is significantly tangled. Figure 12.3 shows the same ontology
untangled and modularised. Each of the changes makes more information explicit. For
example, "Food” is classified in the original as part of the backbone simply as a kind of
”Amount of matter”. In the modularised ontology in Figure 12.3, the relation of "Food”
to "EatenBy Animal” is made explicit (and the notion of ’plant food” therefore explicitly
excluded a decision which might or might not be appropriate to the application but which
would likely have been missed in the original. Note also that the nature of the relationship
between “red apple” and “red”, ’big apple” and ”big”, is now explicit.

The relationship between “lepidopteran”, “Butterfly” and “Caterpillar” which causes
Guarino and Welty some difficulty as an example of “phased sortals” poses no problem;
the relationship of each entity to the generic and to the phase is explicit. Furthermore,
general notions such as ”group” have been represented explicitly in a re-usable form and
ambiguities addressed, e.g. Was “group of people” intended as a group only of people, or
at least of people? Need a group have any members at all? The modularised representa-
tion forces the choice to be explicit rather than leaving it to the individual interpretation
of the linguistic label.

Experience

Experience and several experiments support our contention that these techniques are
a major assistance in achieving the goals set out in the introduction — explicitness and
modularity in order to support re-use, maintainability and evolution.

This approach has been used throughout OpenGALEN and related ontologies over a
period of fifteen years [Rec99]. In fact, many of the features of GRAIL, the formalism
used in GALEN, were designed around these precepts [RBG97]. Throughout this ex-
perience we have found no situation in which the suggested modularisation could not be
performed. The requirement to limit the primitive skeleton to simple disjoint trees may
seem restrictive, but it does not actually reduce expressiveness. In our experience, vio-
lation of this principle almost always indicates that tacit information is concealed which
makes later extension and maintenance difficult. Furthermore, this approach has proved
easy to explain to new ontology developers and has been one of the key strategies to sup-

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 53



12. ENGINEERING ROBUST MODULES

Entity
Amount of matter Agent Physical object Red

4 . SocialEntity
ing being Fruijt
/

. Group
Food Animal
Legal Agent Apple
Vert " Country \
ertebrate
Location Group of People Red Apple
. Organisation
Person Lepidopteran
Geographical

region Butterfly Caterpillar

Figure 12.2: Example ontology from Guarino & Welty.

Entity,
Self-Standing
Entity
Roles & Refiner
Action Phases
cal Red
Amo t obJect Insect stage Valye type
of matter role
ivi Social
/bemg Entity Fr {t Laval Size Value type
: Group Phase
Anim;
APP“’ Small
v " Adult Medium
ertebrate
Lotation Country Phase Large
\ Organisation
Person Lepidopteran
Geographical
region

Agent | agentFor someValuesFrom Action
Caterpillar | Lepidopteran & (inPhase someValuesFrom LarvalPhase)
RedApple | Apple & (hasColour someValuesFrom Red)
BigApple | Apple & (hasSize someValuesFrom Big)
Food | AmountOfMatter & isEatenBy someValuesFrom Anima

GroupOfPeople | Group & (hasMember someValuesFrom Person) & (hasMember allValuesFrom Person)

Figure 12.3: Untangled skeleton for example ontology 12.2 plus definitions linking inde-
pendent branches.

54 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

port loosely coupled development [RZS199]. Interestingly, Gu and her colleagues have
independently proposed post hoc decomposition into disjoint trees as a means to improve
maintainability of large ontologies represented in frame systems with multiple inheritance
[GPGT99].

We have no comparative data on effort for maintenance, but the combination of mod-
ularisation and the use of intermediate representations [RWRRO1, RZS™99] has allowed
us to develop and maintain a large ontology (~30,000 concepts) in a loosely coupled co-
operative team consisting at times of up to nine centres in seven countries. The central
maintenance and integration effort has been reduced to roughly ten per cent of the total.
New modules, for example for methodology and equipment for non-invasive surgery, have
been added without incident, almost without comment — e.g. it was possible to add the
notion of an “endoscopic removal of the gall bladder/ appendix/ ovary/ ulcer/...” in nu-
merous variants to account for different countries’ differing practices without any change
the modelling of "removal of gall bladder/ appendix/ ovary/ ulcer/...”.

Further evidence for the effectiveness of modularity comes from a study comparing
the manually organised UK classification of surgical procedures from Clinical Terms Ver-
sion 3 (CTv3) with corresponding parts of OpenGALEN [RPR98]. One source of dis-
crepancies was the inconsistent use in CTv3 of “removal” and “excision” — in some cases
removals of a structure were classified as kinds of excisions of the same structure; in
others the reverse (i.e., excisions were classified as kinds of removals of the same struc-
ture). In OpenGALEN because ontology is modularised, and “excision” and “removal”
are primitives in a module separate from the anatomic structures removed or excised, the
same policy is automatically maintained throughout. To take a second example from the
same study, another set of discrepancies was traced to minor differences is anatomical
boundaries reflecting genuine differences between experts. Each change to the anatomi-
cal module in OpenGALEN could be done in a single place in the anatomy module. Each
corresponding change in CTv3 required changes to every surgical procedure concept af-
fected and were widely distributed throughout the surgical procedure model.

Another evidence for the approach comes from the re-use of the OpenGALEN on-
tology as the basis for the drug information knowledge base underlying the UK Prodigy
project [SWRR99]. Perhaps the most dramatic example of the methodology was work
on the ”’simple” problem of forms, routes of administration and preparation of drugs. Al-
though there are only a few hundred concepts, they are densely interconnected and clas-
sification had resisted concerted efforts by standards bodies for over two years. Restruc-
turing the classification as a modularised ontology solved the problem in weeks [WCO1].

12.5 Issues and Problems

The Notion of ”’self-standing”

The notion of “self-standing concept” can be troublesome. In most cases it corre-

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 55



12. ENGINEERING ROBUST MODULES

sponds to Guarino and Welty’s notion of “’sortal”; in a few there are questions. For exam-
ple, consider ’colour’. On the one hand, "colours’ could be considered as partitioning a
”qualia space”, and the notion of an identity condition” for colours is problematic. How-
ever, in practice, the list of named colours is indefinitely large and constantly growing
— witness the efforts of paint companies and interior decorators. To claim a closed list
would therefore be inappropriate in most contexts. It is a rare context in which one would
be confident in saying "If it is not red or yellow or blue or green. .. then it must be [say]
brown”. For most ontologies, we therefore suggest treating colours as “’self-standing”. By
contrast, in most contexts we would be happy to accept that ”If a measurement is neither
low nor normal then it must be elevated”. This is true even though we might provide
intensifiers such as ’very’ or an alternative partition that included sky high” and “rock
bottom”. Hence in most ontologies we would recommend that such "modifiers” be treated
as ’partitioning”.

Meta-knowledge

A better solution might be argued to be to make the notion of “’self-standing” and par-
titioning” meta knowledge. These notions are really knowledge about the concepts rather
than about all of their instances. Likewise, the notion of whether a concept ought to be part
of the primitive skeleton, might be better expressed as meta-knowledge. OpenGALEN
and OWL-DL both exclude meta-knowledge within the language. Although it is permit-
ted in OWL full, the reasoning support is ill defined. Implementing the distinctions in
the ontology itself as suggested here might be considered to be an engineering “’kluge”
to cope with the limitations of DL classifiers. We would accept this point of view while
maintaining the importance of the distinction itself. Hence we advocate that the criterion
for modularisation be that there is a means for distinguishing between “’self standing” and
“partitioning” concepts without specifying the method by which the distinction be made.
(A full discussion of the role of meta-knowledge in ontologies for the Semantic Web and
the OWL family of languages is beyond the scope of this paper.)

12.6 Conclusion

To sum up, one can treat modules in complex ontologies as (smaller) ontologies. The
ability of logical reasoners to link independent ontology modules to allow them to be sep-
arately maintained, extended, and re-used is one of their most powerful features. How-
ever, to achieve this end sufficient information should be explicit and available to both
reasoners and authors. The large range of options provided by Description Logics mean
that implementers need guidance on to achieve this end. The approach presented in this
chapter is based on fifteen years’ experience in the development of large (>35,000 con-
cept) biomedical ontologies. The procedures are not an absolute guarantee of a clean,
untangled implementation. Not all obscure constructs are completely debarred nor all
unintended consequences eliminated, but they are greatly reduced. Others may wish to

56 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

challenge these criteria or propose further restrictions. However, we believe that if the
potential of OWL and related DL based formalisms is to be realised, then such criteria for
modularisation need to become well defined.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 57



Chapter 13

A Contextualization Mechanism for
Modularization

by CHRISTINE PARENT, STEFANO SPACCAPIETRA

Database researchers have since long practiced or investigated ways of modularizing
a database schema that are similar to the ontology modularization discussed in this deliv-
erable. The database approach to modularization is twofold, either application-oriented
or data structure-oriented. The application-oriented approach, somehow similar to the
proposal by Jarrar (cf. Chapter 11), consists in partitioning the database schema (roughly
equivalent to the T-box in description logics) into smaller subsets, easier to grasp for hu-
mans. Each schema subset, called module, describes the subset of the world of interest
that corresponds to one task or functionality of the application. For instance, when de-
signing the schema of the GESREAU database for water resources management for the
Vaud canton (Switzerland), application designers asked to partition it into eight modules:
Hydrographic network, Measuring stations, Resource management, Fauna, and so on.
Usually, the modules composing a database schema are disjoint. Usually too, instances
are not taken into account in the process; modules are used only for designing purposes.

The data-structure oriented approach, somehow similar to the partitioning approach
presented in Chapter 10, aims at reducing the size of schema diagrams (in terms of num-
ber of object and relationship types), so that a schema can be easily displayed (e.g., in
CASE tools for database design) and easily understood by humans (because of reduced
complexity). These approaches result in a multi-level schema definition, where the most
synthetic level shows a kind of summary of the original schema (still structured as a nor-
mal schema), such that each component is either a component of the original schema or is
a representation for an underlying “module”. User can iteratively examine the content of
each “module”, down to the level of the original detailed schema. Modularization in this
sense consists in defining rules for composing elementary “modules” from the existing
schema elements, such that each “module” can be replaced by a single, higher-level ob-
ject or relationship type. For example, a simple modularization rule consists in creating a
“module” for each is-a hierarchy of object types, and denoting the "module” in the higher

58



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

levels only by its root object type.

More recently, context-dependent information management has been emphasized as
a means to adapt the description of databases, web services, or user profiles, to a spe-
cific perception, or context. In this approach, contrarily to classic schema modulariza-
tion, each element of a data description may have several different representations, and
each instance may have several different values according to context. In particular, an
European IST project, MurMur, has been devoted to the specification and implementa-
tion of a framework that supports context-aware databases, or, more precisely and using
the terminology of the MurMur project, that supports multiple perceptions and multiple
representations for databases in general as well as for geographical databases [PSZ05].
The MurMur framework consists in a data model, called MADS, which is an extended
spatio-temporal entity relationship data model, and its associated manipulation and query
languages. The data model and languages have been implemented on top of existing
database management systems (DBMS) and geographical information systems (GIS).

A MADS multi-contexts (also called contextual) database is defined for several, say
N, contexts, and contains the equivalent of N classic mono-context databases, obeying
usual consistency rules, plus a number of implicit and explicit links among the mono-
context databases. This contextual database, taken as a whole, does not necessarily obey
the usual consistency rules for classic mono-context databases. It can contain different
(one per context) representations for the same fact that may be conflicting at the schema
or at the instance level. It may be, for instance, that for one context C1 the entity type A
subsumes the entity type B, and that the subsumption does not hold in another context C2.
Or, in context C1 the entity types A and B are related by a part-of relationship, and they
are not linked in the context C2. As a last example, the instance i0 of the entity type A has
different values in contexts C1 and C2. This potential for inconsistency is also outlined
in the contribution in Chapter 14. However, the data manipulation languages allow users
to correctly manipulate the database in one of two modes: mono-contextual database or
multi-contextual database. In the second mode, the user sees several representations, can
access any one of them, and can navigate from one representation to another one.

As MurMur results are valid for any data model, be it semantic, relational, or object-
oriented, we believe that they can also be used for the definition and management of
context-aware ontology services. Therefore, in this chapter we propose to adapt to on-
tology modularization the ideas from the MurMur project, whose main results may be
summarized as follows:

* The development of an extended entity relationship data model supporting multi-
ple representations depending on the context. The extension relies on two meta-
concepts, the stamp that identifies a context, and the representation that is the de-
scription of an element of the schema for a given context, or the value of a database
element for a given context.

* A set of rules defining the consistency of the representations in a contextual data-

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 59



13. A CONTEXTUALIZATION MECHANISM FOR MODULARIZATION

base.

» Extended data manipulation and query languages allowing users to insert, update,
remove, and access context dependent representations of instances.

* A set of rules restricting the access rights of users to the representations correspond-
ing to the contexts they are allowed to use.

The sequel of this chapter describes these results with more details. The basic initial
assumption of the MurMur approach is that each context is simply identified by a name
(as in C-OWL [BGvH"03, BGv*04]), and these names are used to express to which
contexts a given representation belongs (we say we “’stamp” facts with context names,
denoted sl1, s2, etc.). At this stage, we abstract from the semantics of contexts as well
as from the possible semantic relationships that may hold between contexts. Examples
of possible semantics of contexts include the personal and subjective viewpoint of the
designer, the semantic resolution required by an application, and the spatial resolution
for spatial data. Examples of possible semantic relationships between contexts are the
assertion that context s1 includes context s2, i.e., every representation that belongs to sl
also belongs to s2, and the assertion that context s3 is equal to the union of contexts s4
and s5.

13.1 Stamping

From data definitions (metadata) to data values, anything in a database relates to one or
several contexts. The first step for the database administrator is to identify the contexts
that are to be supported by the database and to associate a unique stamp to each one of
them. This defines the set of stamps that are allowed for use with the database. We say
that the database schema is stamped with this set. For instance, for a risk management
application we used as test case in the MurMur project, the application designer identified
nine contexts based on the combination of user profile (either managers, in charge of
decision-making processes, technicians, in charge of observations, measurements and risk
map preparation, or general public) and three spatial resolution levels.

Stamping an element defines for which contexts the element is relevant. Thus, an
element that has a single representation may bear multiple stamps, meaning that the same
representation is shared by several contexts. Representation consistency mandates that
stamps associated to an object (or relationship) type form a subset of the stamps associated
to the schema. Similar rules apply to properties within a type. An object or relationship
type relevant to several contexts may show different properties depending on the context.
Consequently, a property may be stamped with a subset of the stamps associated to the
type it belongs to. This is illustrated in Figure 13.1. The same applies at the value level.
A multi-context attribute may have different values that are specific to given contexts.

60 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

A
Building z; :

s1, s2

s1, s2: number : (1:1) integer

s1: usage : (1:1) enum (residential, commercial,
public/administrative, other)

s2: usage : (1:1) enum (residential,

non-residential, other)

s1, s2: description : (1:1) string f(P)

s1: entrancePoint: (1,n) @

s1: owner : (1,1) string

s2: height : (0,1) integer

s1: constructionDate : (1,n)

s2: constructionDate : (1,1) 0

s1, s2: KEY number

Figure 13.1: An illustration of a context-varying object type, bearing stamps s1 and s2.

For instance, in multilingual databases, a property such as riverName may take different
values according to the language in use within the context (e.g., Rhin, Rhein, and Reno).

Complementarily to stamping database elements, transactions accessing the database
should be given a means to specify which contexts (one or many) they adhere to, which
determines which representations (data types or values) are relevant to them. We assume
that transactions issue an "OpenDatabase” command to specify which contexts (stamps)
they want to use. Matching this set with the sets of stamps associated with the object
and relationship types defines which object and relationship types are actually visible to
the transaction, and with which properties. Thus, stamping provides functionality similar
to a subschema definition capability, with the advantage that this approach maintains an
integrated view of all contexts, while subschema definition (as provided in CODASYL-
like database systems) isolates each schema definition.

13.2 Multiple Representations Modeling

Each element of the schema (object type, relationship type, attribute, method) and each
element of the database (set of instances of an object or relationship type, object instance,
relationship instance, attribute value) may have different representations according to the
context. For example, at the schema level, an object type may have different descriptions
(representations) according to the context; at the database level, an object type may have
different sets of instances, an instance may have different values according to the context.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 61



13. A CONTEXTUALIZATION MECHANISM FOR MODULARIZATION

Each representation, pertaining to the schema or database level, participates in one or sev-
eral contexts. Stamping provides an easy way to identify representations that belong to
a given context. Figure 13.1 illustrates the case of an object type holding two different
representations of buildings, one for context s1 and another one for context s2. Build-
ings are spatial objects (i.e., objects whose spatial extent is relevant for the applications).
Depending on resolution, the spatial extent is represented either as a complex area (more
precise description, stamp sl) or as a simple area (less precise description, stamp s2).
Icons on the right hand side of the object type name show the existence of the alternative
geometries. The list of attributes shows that:

* number is a monovalued and mandatory (minimum and maximum cardinalities
1:1) attribute shared by s1 and s2. It serves as key for the object type.

e usage is a monovalued mandatory attribute in both sl and s2, with enumerated
domains specific to each representation.

* description is a shared monovalued mandatory attribute whose value is a function
of stamps. We call this a context-varying attribute, identified as such by the f(C)
notation. For instance, the same building may have a different description for s1,
e.g. ’Individual house”, and for s2, e.g. "Private house”.

* entrancePoint and owner are mandatory attributes that only belong to representa-
tion s1.

* height is a monovalued optional attribute that only belongs to representation s2.

* constructionDate is a mandatory attribute in both s1 and s2, but it is monovalued
for s1 and multivalued for s2.

We say that Building is a context-varying object type, as the actual representation of
building objects changes from one context to another. Building is both multi-representa-
tion (it holds two representations) and multi-context (it relates to two contexts). At the
instance level, the fact that two representations relate to the same real world entity is in
this case conveyed by the fact that the two representations share the same oid (we refer
to this as an implicit link between contexts). Logically they are part of the same object
instance.

Another way to organize alternative representations for the buildings is to define two
separate object types, e.g. Building and IGNBuilding, each one holding the represen-
tation for the corresponding context. The two object types are then explicitly linked by
a relationship type that holds a specific inter-representation semantics (cf. Figure 13.2),
expressing that two linked instances describe the same building. Instances of the relation-
ship type (Correspond, in Figure 13.2) tell which object instances represent the same
buildings. The inter-representation semantics is visually indicated on schema diagrams
by the < icon. In Figure 13.2, the cardinalities of Correspond show that buildings that

62 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

0:1 Correspond 11
Building s1 @ @p IGNBuilding 2 &
s1
s1, s2 s2
s1: number : (1:1) integer . L . s2: number : (1:1) integer
s1: usage : (1:1) enumb(lll’e/siger?ti'alt, c?mme{ﬁial), s1,52: quality: (1:1) string s2: usage : (1:1) enum (residential,
public/administrative, other non-residential, other)

s1: description : (1:1) string s2: description : (1:1) string
s1: entrancePoint : (1,n) [} s2: height : (0,1) integer
51: ownir : (t1.,‘l)I:)sttr|ng(1 ' o s2: constructionDate : (1,1) O
s1: constructionDate : (1,n

TKEY 5 s2: KEY number
st number

Figure 13.2: Modeling buildings as two mono-context object types linked by a multi-
context inter-representation relationship type.

have a representation at the most detailed level, s1, do not necessarily have one at the less
detailed level, s2.

The mapping between the instances that represent the same real world entities for dif-
ferent contexts is not always a 1:1 mapping. It can be 1:n or nm. Moreover, in some
cases the mapping may relate not individual instances but groups of instances. This hap-
pens when the object types represent the real world entities not as wholes but through
their components. In order to support these cases, the MADS model offers a new kind
of relationship type, called multi-association relationship type. Contrarily to a classic
relationship, each role of a multi-association relationship links a set of instances.

Inter-representation relationship types are not transitive: It is possible to have an inter-
representation relationship type between object types O1 and O2 and one between object
types O2 and O3 without having one between O1 and O3. Thus, if more than two types are
used to describe and store the desired set of representations for a given set of entities, these
types have to be linked by as many inter-representation relationship types as appropriate.
Consider, for instance, a database with object types Person, Company, and CarOwner,
and rules for this database stating that persons and companies are separate sets of objects,
while both persons and companies may own cars. In this case there will be an inter-
representation relationship type between Person and CarOwner, another one between
Company and CarOwner, but none between Person and Company.

The two solutions for describing multiple representations are not always interchange-
able. The first solution, a unique object type grouping two (or more) representations,
requires that the instances belonging to each context be interrelated by a (total or partial)
1:1 mapping.

Instances are another component of a type; hence they obey the same stamping con-
sistency rule as properties. In our example, a Building instance can be created by a
transaction holding stamp s1, or holding stamp s2, or holding both stamps. If the trans-
action holds both s1 and s2, it may create the whole value of the Building instance, as
in a normal INSERT operation in traditional databases. If the transaction holds only one
stamp, it can only create the representation corresponding to this stamp. In short, it can
create only part of the instance. This straightforwardly generalizes to transactions holding

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 63



13. A CONTEXTUALIZATION MECHANISM FOR MODULARIZATION

a subset of the set of stamps associated to a type. Partial creation of an instance means
that two transactions using different stamps must be able to share an identification mech-
anism (e.g., the building number) guaranteeing that their data can correctly be merged by
the DBMS into a single instance. Consider the creation of a Building instance. It can be
done by two transactions. The first one creates a new instance for a specific context, say
sl, like in the following insert operation. This transaction has to provide a value for all
mandatory attributes of the s1 representation.

INSERT INTO Building VALUES (
stamp = {sl},
geometry = complexarea { {(x1,y1),...(xn,yn)} },
number = 5001,
usage = ’residential”,
description = "Individual house”,
entrancePoint = { (al ,bl) },
owner = "Dupont”,
constructionDate = { 1980, 1999 })

Then a second transaction may add a new representation to the instance. For exam-

ple, the following operation adds an s2 representation to the previously created building
instance:

ADDREP TO Building WHERE number = 5001 VALUES (

stamp = {s2},

geometry = simplearea {(x'1,y'1), ...(x'n,y'n)},
usage = “residential”,

description = "Private house”,

height = 12.50,

constructionDate = 1980)

Stamping instances also allows determining which instances are visible to a trans-
action. A transaction with stamp sl will only see the instances stamped s1 or (s1, s2).
Similarly for transactions stamped s2 only. A transaction with both stamps s1, s2 will
see all Building instances, but it will still have to be aware that the actual format of each

instance varies according to its stamps.

13.3 Context-Varying Relationship Types

Similarly to object types, relationships may be context-varying. Context stamps may be
associated to a relationship type, to its attributes, methods, and population. Its structure
(e.g., participating roles and their cardinalities) and semantics (topology, synchronization,
aggregation...) may also be context-varying. However, the objects (or sets of objects) in-
volved in role of a relationship instance cannot change from one context to another one
within the same relationship instance. This is because the linked objects are inherently
part of the relationship instance, i.e. they participate in the identification of the relation-
ship instance. If any of them is replaced with another object, it is not anymore the same
relationship instance. So, for a given relationship instance and role, it is always the same

64 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

— 1@ .
Building 2§ N GivesAccess @0)—2" Road @
s1, s2 s1, s2

Figure 13.3: A stamped (topological) relationship type.

object instance that is linked, whatever the context is (in case of a multi-association, for
a given instance of the multi-association and for a given role, it is always the same set
of instances that are linked, whatever the context is). On the other hand, a context may
see only a subset of the roles, but always at least two roles, as each context must always
provide a consistent database.

A usual rule regarding relationships says that pending roles are not allowed. Hence,
access rules have to guarantee that a relationship type is visible to a transaction only if
for at least two of its roles the linked object types are visible, so that a consistent unit
of information can be delivered to the transaction. The same rule applies at the instance
level: Only visible instances of the relationship that link object instances visible to the
transaction may be delivered to the transaction. Consider, for instance, the Correspond
relationship type in Figure 13.2. As it links two object types bearing different stamps,
transactions willing to see it must hold both s1 and s2 stamps. Having these two stamps
also gives visibility over the relationship type, which bears stamps s1 and s2. However,
relationship types do not need to be relevant for all contexts of the linked object types.
For instance, Figure 13.3 shows a GivesAccess relationship type that only bears the stamp
s1, whereas the linked object types have stamps sl and s2. Consequently, transactions
holding only stamp s2 do not see GivesAccess (they ignore which instances of Building
are linked to instances of Road, and vice versa).

In fact, the way relationship types are stamped does not depend on how the linked
object types are stamped. It may be perfectly correct to have the Correspond relationship
type in Figure 13.2 stamped with a stamp s3. In this case, the relationship type would be
only visible to transactions holding the three stamps, (s1, s2, s3).

134 Context-Varying Is-a Links

Is-a links, like the other concepts of the data model, are stamped. The population inclu-
sion and inheritance constraints that characterize is-a links mandate that the management
of multiple representations obeys these constraints. In a multi-context framework, this
translates into the constraint that an is-a link must belong to the same context as the ob-
ject types it links. In other words, the super-type and the sub-type must share one or
several stamps, and the is-a link is stamped with a non-empty subset of these common
stamps. For instance, the is-a links shown in Figure 13.4 are only visible for context s1.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 65



13. A CONTEXTUALIZATION MECHANISM FOR MODULARIZATION

T
Building 2§
s1, s2
A
I
PrivateBuilding PublicBuilding
s1 s1

Figure 13.4: Multiple representations supported via is-a links.

13.5 Context-aware Querying

As already stated, transactions accessing a multi-represented database have to specify
which contexts they adhere to, so that consistency in the use of data can be monitored.
Before accessing data, a transaction has to issue an OpenDatabase operation (any syntax
used in this section is simplified and for explanatory purposes only):

OpenDatabase (database-name, set-of-stamps)

The operation specifies the stamps the transaction wants to use. This operation re-
stricts the view of all operations in the transaction to the database elements that have at
least one of the quoted stamps, i.e. to the representations defined by the set of stamps
set-of-stamps. If set-of-stamps includes only one stamp, the transaction sees a mono-
context database, similar to traditional databases. If set-of-stamps includes more than
one stamp, what the transaction sees is something like the corresponding collection of
mono-context databases, but with possibly integrated specifications (i.e., context-varying
types) and augmented with inter-contexts links (including inter-representation relation-
ships), only visible to this kind of transactions.

Having completed an OpenDatabase operation, any visible representation can be ac-
cessed via selection operations. Because of the multi-representation framework, which
representations are requested should be specified without ambiguity in the operation.

Assume, for instance, that a transaction T1 has opened, using stamps sl and s2, a
database that includes the Building object type as shown in Figure 13.1. T1 now issues
the following selection query:

(1) Selection [number = 5001] Building

This query selects the Building instance bearing number 5001. First, as the transac-
tion holds the two stamps that are attached to Building, and Building is not stamped in
the query, all Building instances are visible to the query, with both s1 and s2 represen-
tations. Moreover, as the number attribute has a unique representation, common to both
contexts, s1 and s2, there is no need to qualify number with a context stamp. Finally, as

66 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

the query sees both representations, the resulting instances have the same format as the
one they have in the database, i.e., their formats are heterogeneous: sl, s2, or (s1+s2)
formats.

A query may also restrict the representations it wants to see by explicitly stating the
desired stamps. For instance, if the transaction T1 now issues the query:

(2) Selection [number = 5001] Building.defAtStamp(s1)

This query only returns Building instances that are stamped with at least s1 and satisfy
the predicate on number. The notation Building.defAtStamp(s1) uses a method defined
for context-varying types. The method defAtStamp() restricts the definition of the Build-
ing object type to the one that holds for the stamp specified by the parameter (here, s1).
Instances are returned in the sl format: The schema of the resulting object type only
shows attributes from the operand type that exist for stamp s1, with their s1 definition and
value.

Let us now consider a transaction T2 that has opened the same database with the
representation stamp sl only. Then the following T2 query has the same result as query

(2):
(3) Selection [Number = 5001] Building

When a query accesses an attribute (or method) that has a different definition accord-
ing to the context in use, it has to specify which representation it wants to see, otherwise
the query would be ambiguous. For instance, a query of transaction T1 that wants to
select the buildings such that the value of usage is “commercial” should specify which
representation of usage should be used, as in the following operation:

(4) Selection [usage.defAtStamp(s1) = ”’commercial”’] Building

This operation returns instances whose format complies with s1 or (s1 and s2) stamps.
Instances stamped s2 only are eliminated, as the predicate cannot be checked. Note that
associating the stamp to Building, instead of usage, would return the same instances but
in format s1 only.

Similarly, when accessing an attribute whose value varies according to the context,
queries have to specify which value (which representation) they want. For instance, a
query to retrieve buildings whose description for stamp s1 is ”Individual house” should be
written with the s1 stamp associated to the value. To this purpose the method atStamp(s)
has been defined for context-varying types: It selects the value of the attribute that holds
for the stamp s.

(5) Selection [description.atStamp(s1)g”’Individual House’’] Building

A query may also want to search for a value, whatever the context is. Then it has to
use an existential or universal quantifier to define the intended semantics of the query. For
instance, the following two queries yield different results. :

(6) Selection [kscDstamp description.atStamp(s)="Individual House’] Building

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 67



13. A CONTEXTUALIZATION MECHANISM FOR MODULARIZATION

(7) Selection [iscDstamp description.atStamp(s)=""Individual House’’] Building

The first one selects buildings that bear description “Individual house” for at least one
of their representations (Dstamp is the set of context stamps of the database). The second
one requires that description is equal to “Individual house” for all representations.

13.6 Conclusion

The multi-representation approach of the MurMur project aimed at supporting a global
database containing a set of classic mono-context databases, such that elements that de-
scribe different representations of the same set of real world phenomena can be related.
Two corresponding elements can be either merged in a multi-context object (or relation-
ship) type. Or they can be described each one by an object type, and the two object types
be related by a peculiar relationship type whose semantics is “inter-representation”. A
contextual database comes with a specific, additional consistency rule that enforces the
constraint that for each element shared by multiple contexts its instances (or values) must
be identical for all the sharing contexts.

The results of the MurMur project can be used directly in the ontology field to define
and use modules. The stamp meta-concept allows users to name the modules and to
assert for each element of the ontology to which module(s) it belongs. There is no need to
physically separate each module from the other modules. Specific kinds of relationships
(inter-representation, multi-association) allow designers to explicitly relate elements that
describe the same real world phenomena while belonging to different modules. Two rules
maintain the consistency of the modules:

¢ Each module must be a classic database.

* Any two schema elements that belong to different modules and that share a com-
mon (non context-dependent) description must have, at the instance level, the same
instances (or values).

The extension of the data manipulation and query languages enable the languages
to manipulate and query the data of either a module or a set of modules.

The MurMur solutions provide means to address modularization in different ways:

* Defining a multi-contextual ontology a la MADS, made up of a set of interrelated
modules. Each module being a classic ontology.

* Merging a set of already existing ontologies into a set of interrelated modules, and
thus creating a multi-contextual ontology as above. The MADS model supports a
merge that keeps the origins and differences of the representations.

68 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

* Partitioning an already existing classic ontology into a set of modules by stamping
each of its elements (concept, role, is-a link, attribute, and instance) with the name
of the module(s) to which it will belong.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 69



Chapter 14

Distributed and Modular Ontology
Reasoning

by LUCIANO SERAFINI, ANDREI TAMILIN

As it is pointed out in the introduction to the deliverable, the question of ontology
modularization can be perceived from two polar perspectives.

(1) On the one hand, the modularization can be seen as the process that decomposes,
partitions, a large ontology into a set of smaller ones, modules. This approach is addressed
in the preceding chapters.

(2) On the other hand, the semantic web can be rationally assumed to contain multiple
distributed ontologies, modules, and the modularization therefore can be seen as a mech-
anism for assembling some of these modules into a coherent network that can be referred
to as a single entity, modular ontology. In this chapter we pursue the later option stand-
ing for a compositional approach to the modularization. Nevertheless, the theoretical and
practical results to be presented further can be also used for dealing with a decomposed,
modularized, ontology.

Hereinafter we refer to an ontology as modular when it is composed from a set of
autonomous ontological modules, which are interrelated between each other through se-
mantically meaningful links (see deliverables of the KnowledgeWeb Workpackage 2.2 for
more information about what the semantic links between ontologies are [BEET05]).

Our approach to modules composition is formally grounded on the theory of Dis-
tributed Description Logics (DDLs) [BS03]. According to DDLs, a modular ontology
formally corresponds to a set of local T-boxes (one for each ontological module) which
are interrelated by sets of “bridge rules” (semantic links between modules). In this chapter
we give an overview of basic definitions, properties and mechanisms of DDLs.

In particular:
* we introduce an approach which views the bridge rules connecting two ontologies

70



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

as describing an operator that propagates knowledge in the form of Description
Logics subsumption axioms. This is used as the basis of a characterization of dis-
tributed DL reasoning using a fixed point operator, which does forward-propagation
of axioms;

* we give a sound and complete distributed tableaux algorithm that determines the
satisfiability of a SHZ Q [HST99] concept in the context of the local axioms of an
ontology and the extra knowledge imparted by the bridge rules;

* we describe the design and implementation principles of a distributed reasoning
system, called DRAGO (Distributed Reasoning Architecture for a Galaxy of On-
tologies)!, that implements the distributed tableaux algorithm for the case when
ontologies are expressed in OWL [BvHH04] and interrelated by semantic links in
C-OWL [BGVH'03, BGv04];

* we conclude with some preliminary evaluation of the scaling behaviour of the in-
troduced distributed reasoning approach and highlight the future directions to be
taken.

14.1 Distributed Description Logics

We briefly recall the definition of DDL as given by Borgida and Serafini [BS03].

Syntax Given a non-empty set / of indexes, used to enumerate local ontologies, let
{DL;}ic1 be a collection of description logics.> For each i € I, let us denote a T-box
of DL, as 7;.> To make every description D distinct, we will prefix it with the index of
ontology it belongs to, asini : C. Weuse i : C' T D to say that C = D is being
considered in the i-th ontology.

Semantic mappings between different ontologies are expressed via bridge rules. A
bridge rule from 7 to j is an expression, which in the deliverable is restricted to being one
of the following two forms:

: cC . : .
1:x— j:y — aninto-bridge rule

11T ij :y — anonto-bridge rule

Thttp://trinity.dit.unitn.it/drago

2We assume the reader is familiar with description logics and related reasoning systems, as described in
[BCM03].

3We assume that a T-box will contain all the information necessary to define the terminology of a
domain, including not just concept and role definitions, but also general axioms relating descriptions, as
well as declarations such as the transitivity of certain roles. This is in keeping with the intent of the original
paper introducing the terms T-box and A-box.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 71



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

SWRC
@ E Ferson
P (L) Employee
L2 f,_C_.‘Ac‘ademicStaff
Q @?Fﬁculeember
(E) AssistantProfessor
(S} AssociateProfessar
(Z)FullFrofessor

SHOE

@ (E)Employes

§ (C) Adrriiriistrative Staff
'@'Dean
'@' Director
L IE) GystarmsStaf
® () Agsistant
() ResearchAssistant

(T) Lecturer | [El TeachinoAssistant
t@}\dministrativestaﬁ @ fE'.'Facqu
{C) Manager (E) Lecturer
{C) Technical Staff © (5l Prafessor
@ (T Student (Tl AssistantProfessor
® (Tl Graduate 'f:Ef'AssociateProfessor
(E) PhDStudent (C) Dean
{2 Undergraduate . (CIFullProfessar
@ (Tl Publication @ (EiPerean
(T Article @ (C) Btudent
{C) Book IE) GraduateSiudent
() InBook ) Bl LUndergraduatestudent
(S} InCallection (T Publication
[C) InProceedings IC) Article
() Manual T Book
{C Proceedings (T Bookéticle
9 [ Report @'CanerenceF'aper
{C) ProjectRepart iEI DoctoralThesis
@JTechRepon IE) JaumnalArticle
@ (C)Thesis (C) MasterThesis
(C) MasterThesis IZQPrDceedings
(E)PhDThesis (T Thesis
(ClyWorkshopPaper

Figure 14.1: Extracts of the class hierarchies

where x and y are concepts. The derived bridge rule i : x —- j : y can be defined as
the conjunction the corresponding into- and onto-bridge rule.

Bridge rules from i to j express relations between ¢ and j viewed from the subjective

point of view of the j-th ontology. For example, the into-bridge rule i : C =, J
D intuitively says that, from the j-th point of view, the individuals in concept C' in ¢
correspond (via an approximation introduced by an implicit semantic domain relation) to
a subset of the individuals in its local concept D. Therefore, bridge rules from ¢ to j
provide the possibility of translating info j’s ontology some of the concepts of a foreign
ontology .

A distributed T-box (DTBox) ¥ = ({7;}icr,B) therefore consists of a collection of
T-boxes {7; };c1, and a collection of bridge rules B = {B,;},;c; between them.

Example 14.1.1 Figure 14.1 shows fragments of class hierarchies from two ontologies,
SWRC* and SHOE?, available from the DAML on-line library. These can be viewed
as local T-boxes. For the sake of demonstrating the value of mappings, we considered
oversimplified SHOE ontology without imports. The following are examples of bridge

4www. semanticweb.org/ontologies/swrc-onto-2000-09-10.daml
Swww.cs.umd. edu/projects/plus/DAML/onts/univl.0.daml

72 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

rules from SWRC to SHOE:
SWRC : Publication — SHOE : Publication (14.1)
SWRC : InProceedings =, SHOE : ConferencePaper LI WorkshopPapern(14.2)
SWRC : InBook —= SHOE : BookArticle (14.3)

Semantics DDL semantics is a customization of the Local Models Semantics for Multi
Context Systems [GGO1, GS00]. Each ontology 7; is locally interpreted by a standard
DL interpretation Z; = <AIZ', i > Since local domains may be heterogeneous (e.g., time
may be represented by Rationals and Integers in two ontologies), we need relations that
model semantic correspondences between heterogeneous domains. A domain relation
r;; from A% to A% is a subset of A% x A%i. For example, if At and A2 are the
Rationals and the Naturals, then r;5 could be the round-off function. We use rij(d) to
denote {d' € A% | (d,d') € r;;}; for D C A%, we use r;;(D) for J,cp r45(d).

A distributed interpretation I = ({Z;}icr, {rij}izjer) of a DTBox ¥ therefore com-
bines the above two notions and is said to satisfy (written J ;) the elements of ¥ if

1. Z,Ff AC Bforall AC Bin7;

2. .’Tl:di:wij:y,ifrij(xzi) C yli

3. JFqi:x i>j:y,if7‘z~j(azzi) Dyt

4. Tk, %, ifforeveryi,j € I,TJF; 7, and J =, By;

Finally, T F ¢ : C C D (read as “T d-entails ¢ : C' C D”) if for every J, J F; T implies
JFEq1:C C D. Wesay ¥ is satisfiable if there exists a J such that J F; T. Concept
i : C'is satisfiable with respect to T if there is a J such that J =4 T and C% £ ().

On injective domain correspondences A key novelty of the semantic mappings in
DDL is support for multiple levels of granularity and perspective: allowing individuals to
be related using arbitrary binary relations rather than just bijection. For example, while it
is traditional to state correspondences such as “Wife in Ontology 1 corresponds to Moglie
in Ontology 2”, DDLs support domain correspondences that are general binary relations,
so that one can say that “Husband and Wife in ontology 1 correspond to Couple in

Ontology 2”, which can be formalized by using onto-bridge rules {1 : Wife = 2
Couple, 1 : Husband = 2. Couple}. In [BCG04], DDLs are faulted because the
collection of bridge rules {1 : Bird =2 Penguin, 1 : —Fly =2 Penguin} do
not render Penguin unsatisfiable even if Bird is subsumed by Fly in Ontology 1. As the

example involving Couple shows, the general formal pattern is correct in some cases, sO
this is actually a problem of incomplete modeling.

In the case of Penguins, the extra information is that the domain relation is one-to-one.
In such cases, one should also have added bridge rules stating that non-birds and flying

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 73



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

objects are non-penguins: {1 : —Bird =2 —Penguin, 1 : Fly =2 —Penguin}.
This would indeed lead to the conclusion ¥ =4 2 : Penguin C L.

Since the property that the domain relation is one-one over some concept I3 arises
quite frequently, we might consider adding a new kind of bridge rule to express it, writing

something like =L Penguin. Interestingly, it can be proven that in the context of DDLs,
such rules can be eliminated by syntactically manipulating the DTBox, so that whenever

=L Gand A = H are present, a new bridge rule —A =, —(H M G) is added. The
tableaux technique in Section 14 .4 could however use such rules more efficiently without
the encoding.

Properties and Desiderata for DDL.  We first give some basic ways in which subsump-
tion and a combination of onto- and into-bridge rules allows to propagate subsumptions
across ontologies.

Lemma 14.1.1 IfSBijcontainsz':Aij:Gandi:Bij:H,then‘S Fai: AL

Thus, in Example 14.1.1, the subsumption SHOFE : BookArticle C Publication can be
inferred in DDL through bridge rules (14.1) and (14.3), and the subsumption InBook C
Publication contained in Zgy rc.

If the local languages support disjunction as a concept constructor then a more general
form of propagation can occur:

Lemma 14.1.2 If*B;; contains i : A ij :Gandi: By ij s Hpforl <k <n
(with n > 0), then
Z}:diZAEUZZlBk:TIZdj:GElelek

Additional properties would be desirable for DDL entailment. In particular, since the
intended meaning is that bridge rules B;; constitute a semantic channel which allows for
ontology j to access and import knowledge from ontology 7, we want information flow to
be “directional” in some sense. To express this, we first introduce the notion of a bridge
graph.

Definition 14.1.1 The bridge graph G« of a DTBox ¥ is a directed graph with an arc
from i to j exactly when the set of bridge rules ‘B;; is non-empty.

We can then state the main property we are looking for as:
Directionality desideratum If in G5 there is no path fromito j,then¥ |=;j: AC B
ifand only if ¥ =, j : A C B, where ¥’ is obtained by removing 7;, B;;, and
B, from <.

74 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

This says that knowledge is propagated only through bridge rules, so that if there are
no bridge rules that go from 7 towards j, then j is not affected by ¢. The following two
isolation properties are special cases of this:

Isolation 1 A T-box without incoming bridge rules is not affected by other T-boxes. (For-
mally, if By, =D forallk #£i € I, thenT =;i: AC B=— T, F AC B)

Isolation 2 A T-box without outgoing bridge rules does not affect the other T-boxes.

Unfortunately, property Isolation I does not always hold, because of onto-rules. In-

deed, in the presence of onto-rule 1 : A =, 2. G from T-box T, to Ty, if 75 entails
T C G, then 1 : A cannot be empty according to DDL semantics, and so, for example,
an inconsistency would be generated if 7; entails A T 1. This is despite the fact that the
bridge rules are toward 7.

Property Isolation 2 may also not hold. Indeed, if 7; is unsatisfiable, then 75 =4
2 : X C Y forevery X,Y, even if there are no bridge rules connecting 7; with 75,
because there are no satisfying distributed interpretations at all. Note that in a DDL,
inconsistency may arise in a connected group of T-boxes even if each T-box is locally
consistent; e.g., consider the case in the hypothesis of Lemma 14.1.1, when 7; = T C G
and7; = HCL.

This is a significant problem, because a localized inconsistency spreads and contami-
nates reasoning in all other local ontologies, even in the absence of connections to them,
because there will be no satisfying distributed interpretation, and hence every statement
about them is true, as usual in logic. This problem plagues all modular and distributed
representation systems.

In the following section we propose an extension of the initial semantics in order to
fix this problem.

14.2 Inconsistency in DDL

There are a number of possible approaches to handle the problem of inconsistency prop-
agation.

(1) Define d-entailment in a 2-step manner, first eliminating local T-boxes that are
inconsistent, and then using the standard definition. The problem with this approach is
that it is non-monotonic, and it does not deal with cases where the inconsistency arises
due to several connected local sources.

(2) Use some variant of a multi-modal epistemic semantics, which allows for models
of even inconsistent knowledge in the case when the set of accessible worlds is empty.
Such an approach was used in [GS00] for Distributed First Order Logics, but its compu-
tational complexity/decidability aspects are quite worrisome, and the precise impact of

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 75



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

such non-standard semantics on logical consequences is hard to explain in an intuitive
manner to users.

(3) Introduce some special interpretation, called a “hole” in [BS03], whose role is to
interpret even inconsistent local T-boxes. We pursue this latter option.

Definition 14.2.1 A hole for a T-box T is an interpretation T¢ = ({), -), where the domain
is empty.

Of course, the important property of holes is that Z¢ = X C Y for every X and Y, since
both sides are interpreted as the empty set. We will however continue to refer to T-boxes
as “inconsistent/unsatisfiable” in case there are no interpretations other than Z¢ which
satisfy all the axioms in it.

Let us extend the notion of d-entailment =, obtaining the |=. relation, by also allow-
ing holes as interpretations for local T-boxes. Note that now even if some local T-box 7;
is inconsistent, we still have an interpretation for the whole DTBox: one that uses Z°¢ to
satisfy 7;.

Properties of the semantics with holes First, the new semantics does the intended job:
Theorem 14.2.1 The earlier-stated “directionality desideratum” holds for |=..

Non-standard semantics (such as multivalued logics) can however distort the meaning of
the original semantics in unpredictable ways. The following results should be reassuring
in this respect.

For any ¥ and any i € I, let T(¢;) (the distributed T-box with the i-th local T-box
viewed as inconsistent) be obtained by removing 7;, °B;; and B, form T, and by extend-

ing each 7; with the set of axioms {G C_L |i : A 2 j:Ge¢ B,;;}. For any finite set
J={i1,...,in},suchthat J C I,let T(e;) be T(e;,) ... (¢;,). Af Jisempty T(ey) = %))
The following then precisely characterizes the relationship of =, and |=.:

Proposition 14.2.1 T |=. i : X T Y if and only if for every subset J C I not containing
i, %(ej) Fai: XY,

Moreover, in acyclic cases the relationship is even clearer:
Proposition 14.2.2 Let ¥ = (7,,75,B15) be a DTBox. Then

(i) if T, is consistent, then for j € {1,2}, T = j: X C Y ifand only if ¥ =4 j :
XCY.

(ii) if Ty is inconsistent, then ¥ =, 2 : X C Y ifand only if L U{G CL | 1: A =,
2:G 6%12}):XEY

76 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

Application to Other Frameworks As noted earlier, the problem of local inconsis-
tency polluting the inferences of all the modules in a modular representation is quite
general. We examine how the approach presented here can be applied to two previously
proposed schemes.

[SKO03a] proposes an elegant notion of modular ontology which starts from the seman-
tic framework of DDLs, but restricts bridge rules to “identities” defining new local names
J : N using concepts ¢ : C' from T-box ¢, modulo a semantic domain correspondence ex-
actly like r;; for DDLs.% This can be modeled by replacing every definitioni : C' = j: N
by the composed bridge rule i : C' — j : N. Therefore the semantics involving holes
introduced in the previous section can be applied to this approach, in order to localize
inconsistencies in modules.

The Somewhere Peer Data Management System [Rou04] consists of a collection of
peers which maintain local ontologies, including repositories of “extensional data”. Peers
are acquainted with neighbours, whose concepts they can use, and query processing in-
volves intensional distributed reasoning for query rewriting. Since this reasoning is (se-
mantically) based on a single global interpretation, it is subject to the above mentioned
difficulties due to inconsistency. In fact, for completeness, a global consistency check,
involving even unconnected peers, would be required. We would suggest adopting a dis-
tributed semantics with holes, such as that of DDL. In particular, current peer links in
Somewhere can be reduced to subsumption expressions like 1 : CM3: D C 2: E. A
DDL can be constructed from this by replacing occurrences of ¢ : C' in peer j by new,
local symbol C;, and adding bridge rules i : ¢ — j : C;and i : =C — j : =C;.
Our semantics then provides for directionality and locality, and the next section provides
a distributed satisfiability testing algorithm for the semantics with holes.

Finally, the C-OWL [BGv'04] proposal for contextualized ontologies, uses a similar
model theory as DDL. The only difference concerns the definition of hole, which, in C-
OWL was defined on a non empty set. Those notion of hole supports directionality in all

the cases except the case of presence of ¢ L= J :L rule, which allows to propagate
back inconsistency. The particular version of “holes” given in the deliverable gives to
C-OWL the directionality property, in addition to the localized inconsistency it already
had.

14.3 Fixed-Point Semantics of Bridge Rules

As we saw earlier, combinations of bridge rules allow the propagation of subsumptions
across T-boxes. To better understand how this propagation happens, we will associate with
a set B;; of bridge rules an operator of the same name, which extends the j-th T-box with

® Although [SK03a] originally defines imported names using conjunctive queries over concepts and roles
in T-box j, it then says that these can be “rolled up” into descriptions. Although this may in fact not always
be doable, we will deal here with exactly those definitions for which this roll-up holds.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 77



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

a set of subsumption axioms that are the transformation via bridge rules of subsumptions
in the ¢-th T-box.

Before proceeding further, we need to introduce the concept of disjoint union for
interpretations. To begin with, we define as usual the disjoint union of two, possibly
overlapping sets S and T"as SWT = (S x {#}) U (T x {@}), where the values are
distinguished by tupling with two discriminant symbols — # and @, in this case. This
is generalized to the disjoint union 4, S; of a collection of sets {S; };cx indexed with
(possibly infinite) /', by using the indexes ¢ as the discriminants.

Definition 14.3.1 Given two interpretations T = (Az,X) and J = (Agz,-7) of the
same language L, the disjoint union of Z and 7, denoted by T W 7, is <AIL+J 7,19 >
where:

1. AI&JJ :AI X {#}UAJ X {@}
2. for concept A, (A)T¥T = AT x {#} U A7 x {@}

3. for role R, R**7 = {{(z,#), (y. #)) | (z.y) € R*}U{((w, @), (2,Q)) | (w,2) €
R7}

Disjoint union for interpretations (4, ., Zx can similarly be generalized to the case of a
sets. Intuitively the interpretation ZW 7 is interpretation that is composed of two unrelated
subparts one is isomorphic to Z and the other to 7.

Definition 14.3.2 A description logic family DL has the disjoint union satisfiability prop-
erty if E7' = Wrer E* holds for all concepts and roles E over DL, and for all interpre-
tations T' = \§.c x Zi..

Lemma 14.3.1 SHZQ, and its sub-languages, have the distributed union satisfiability
property.

On the other hand, languages that support nominals (such as OWL), or A-boxes do not
have this property.

The bridge operator The bridge operator essentially applies generalized subsumption
propagation Lemma 14.1.2, to find new subsumptions:

Definition 14.3.3 Given a set of bridge rules 812 from DL, to DL,, the bridge operator
B1s(+), taking as input a T-box in DL, and producing a T-box in DLs, is defined as
follows:

Ti = AC L B,

n 3 ‘
Bio(T) = Ge| | H |4 T2 €D
k=1 1: By — 2: Hy € B,

for1 <k<n,n>0

78 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

(Notationally, |_|2:1 Dy, denotes 1_.)

It is remarkable that these are essentially all the inferences that one can get, if we use the
semantics with holes:

Theorem 14.3.1 Let 15 = (71,73,B12) be a distributed T-box. If DL, and DLy have
the distributed union satisfiability property then:
1o }ZGQXEY<:>7-2U%12(7-1) }:XEY

For any family 8 = {%z‘j}m‘e ; of bridge rules, we can combine these into a new
operator ‘B on a family of T-boxes as follows:

B({T}ier) = {7; ulJ %(7;-)}

J#i

If I is finite and each ‘B;; is finite, then there is a positive integer b such that for every
family of T-boxes T, B°(T) = B*"!(T). Let us then define B*(T) as B°(T), where b is
the first positive integer such that B%(T) = B (T). Furthermore let B**!(T);, be the
i-th T-box in B*+(T).

Theorem 14.3.2 For every ¥ = (T,B), T =, j : X C Y ifand only if the j-th T-box of
B*(T) entails X C Y.

Applications to Caching A number of researchers have considered the idea of caching
locally the necessary information from the imported ontology 7., since this is assumed
to be both more efficient (there is no need to interrupt local reasoning, while waiting for
answers from the other ontology), and more perspicuous from the point of view of the
local user: in order to understand an imported concept F', it is not necessary to understand
all of 7T,,.,-, only the locally cached part, which is presumed to be much smaller. (This
idea is also known as ““subsetting”, and there is considerable research on this topic in the
ontology community .)

Theorem 14.3.2 above indicates that it is possible to finitely pre-compile in a sound
and complete manner the subsumption information imported into a local ontology 7, by
the bridge rules in a DTBox ¥: compute and store it.

In a similar vein, [SK03a] takes the set of imported concept definitions { Ny, = other :
Dy | k = 1,...,n}, and then computes and caches the subsumption hierarchy of the
{Ny}. Since we have explained in Section 14.2 that the module mechanism in [SK03a]
can be represented as a DDL, Lemma 14.1.2 indicates that if the language contains at
least ALC, and if it is possible to ask subsumption queries about complex concepts com-
posed using the imported definitions, then it is not sufficient to cache only subsumptions
of the form Djy; T Dyo, since there may be additional subsumptions entailed, involving

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 79



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

disjunctions. On the other hand, by Theorem 14.3.2 it is sufficient to cache all sub-
sumptions of the form N, © N, L ... L Ny, , whose definitions satisfy the condition’
Tother =Dy T Dy, U...U Dy, .

144 Distributed Tableaux Algorithm for DDL

In this section we describe a tableaux-based decision procedure for ¥ =, i : X C Y,
for DTBoxes whose bridge graph G5 is acyclic. The cyclic case is left for future work,
pending the identification of a loop blocking strategy that preserves the independence of
the local proofs.

To simplify the description, we suppose that local ontologies are expressed in (a subset
of) the SHZQ language — one of the most widely known DLs. Also, we will assume
that the consequences of bridge rules are atomic names. (This condition can easily be
achieved by introducing, through definitions, names for the consequent concepts.). We
need the usual notion of axiom internalization, as in [HST99]: given a T-box 7, the
concept C7; is defined as Cr, = [ |g-pey ~F U D; also, the role hierarchy Rz, contains
the role axioms of 7;, plus additional axioms P C U, for each role P of 7;, with U some
fresh role.

The algorithm for testing j-satisfiability of a concept expression X (i.e., checking
T ~c j : X C1) builds, as usual, a finite representation of a distributed interpretation J,
by running local autonomous SHZ Q tableaux procedures to find each local interpretation
Z;of J.

Definition 14.4.1 For each j € I, the function DTab; takes as input a concept X and
tries to build a representation of Z; with X% # () (called a completion tree [HST99]) for
the concept X N Cr, MYU.C'r,, using the SHIQ expansion rules, w.r.t. the role hierarchy
Rt plus the following additional “bridge” expansion rules

"There is no need to iterate if we assume that imported names cannot be used in additional axioms of
the local ontology — only for labeling information on the semantic web, for example.

80 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

Unsat-*B;j-rule
ifl. GeL(x),i:A—=5j:GeDBy, and
2. IsSat;( AN —| |B’) = False, for some H' ¢ L(z),
then L(z) — L(z)U{| |H'}

New-*B;;-rule
ifl. GEE(x),i:Aij :G € B, and
2.BC{Bli: B—+j:H¢c%B;} and
3. forno B’ C Bis IsSat;(AM —| |B’) = False, and
4. for no B’ O B is IsSat;(AM = | |B’) = True,
then if DTab,(A T —| | B) = Satisfiable
then IsSat;(AT —| |B) = True
else IsSat;(AM —| |B) = False

The idea, inspired by bridge operator B;;(-), is that whenever DTab; encounters a node
x that contains a label GG which is a consequence of an onto-bridge rule, then if G C LUH
is entailed by the bridge rules, the label | | H, is added to z. To determine if G = UH is
entailed by bridge rules ®B,;, DTab, invokes DTab; on the satisfiability of the concept ATl
—(UB). DTab; will build (independently from DTab;) an interpretation Z;, as illustrated
in Figure 14.2. To avoid redundant calls, DTab; caches the calls to DTab; in a data
structure IsSat;, which caches the subsumption propagations that have been computed so
far. Specifically, for every C, IsSat;(C') will be set to True/False whenever T (=i : C' C L
is determined.

Theorem 14.4.1 (Termination) For any acyclic DTBox ¥ and for any SHI Q concept
X, DTab;(X) terminates.

Theorem 14.4.2 (Soundness and completeness) j : X is satisfiable in ¥ if and only if
DTab,(X) can generate a complete and clash-free completion tree.

Note that the construction of the distributed interpretation can be parallelized, as each
local tableau procedure can run independently from the others, without checking for
blocking conditions with nodes generated by the other local tableaux. We will overview
the implementation of the distributed algorithm proposed above in the next section.

14.5 DRAGO Reasoning System

In this section we will describe a design and implementation principles that lay in the base
of DRAGO (Distributed Reasoning Architecture for a Galaxy of Ontologies), the system

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 81



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

DTab,(A"— (B,LIB,)) DTab(X)
w
L) =41~ @B,UB)},/2

Vi N

)
y Ly)={G,
Ly =¢a, ..}

Figure 14.2: Illustrative step of the distributed tableaux algorithm: subsumption propaga-
tion forced by bridge rules 7 : A ij G, i By ij :Hyand i : By ij - Hy

for reasoning with multiple ontologies connected by pairwise semantic mappings.®

Vision As depicted in Figure 14.3, DRAGO envisages a Web of ontologies being dis-
tributed amongst a peer-to-peer network of DRAGO Reasoning Peers (DRP).

The role of a DRP is to provide reasoning services for ontologies registered to it, as
well as to request reasoning services of other DRPs when this is required for fulfillment
of distributed reasoning algorithm. The key issue of the DRP is that it provides possibility
to register not just a stand alone ontology, but an ontology coupled with a set of semantic
mappings.

In order to register an ontology to a DRP, the users specify a logical identifier for
it, a Unified Resource Identificator (URI), and give a physical location of ontology on
the Web, a Unified Resource Locator (URL). Besides that, it is possible to assign to an
ontology a set of semantic mappings, providing in the same manner their location on the
Web. As we discussed in the previous sections, attaching mappings to ontology enriches
its knowledge due to the subsumption propagation mechanism. To prevent the possibility
of attaching malicious mappings that can obstruct or falsify reasoning services, only the
user that registered the ontology is allowed to add mappings to it.

When users or applications want to perform reasoning with a one of registered on-
tologies, they refer to the corresponding DRP and invoke its reasoning services giving the
URI of the desired ontology.

Shttp://trinity.dit.unitn.it/drago

82 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

Reasoning Reasoning
Peer Peer

Reasoning

O - ontology |:> - semantic mapping

Figure 14.3: DRAGO vision.

Architecture A DRP constitutes the basic element of DRAGO. The major components
of a DRP are depicted in Figure 14 .4.

A DRP has two interfaces which can be invoked by users or applications:

* A Registration Service interface is meant for creating/modifying/deleting of regis-
trations of ontologies and mappings assigned to them.

* A Reasoning Services interface enables the calls of reasoning services for registered
ontologies. Among the reasoning services can be a possibility to check ontology
consistency, build classification, verify concepts satisfiability and check entailment.

All accessibility information about registered ontologies and mappings is stored by a
DRP in its local Registration Storage.

In order to register an ontology with a collection of semantic mappings attached to
it (both available on the Web) a user or application invokes the Registration Service of a
DRP and sends to it the following registration information:

* URI to which the ontology will be bound.
* URLs of ontology and semantic mappings attached to it, if any.

* If the semantic mappings connect this ontology with ontologies registered to ex-
ternal DRPs then additionally the URLs of these DRPs should be specified. This

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 83



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

DRAGO Reasoning Peer

= DRP
DRP User/ ( )
> Application Parser
c
o
® § | ,| Registration -] Ontology Parser
> DRP 23 Manager :
&) Mapping Parser
L~ DRP Registration Distributed reasoner
Storage
L e ey
Manager

|
— Reasoning
Services

=1
o = e
Application/
DRP |

| — &> Service calls

Control flow |

Figure 14.4: DRAGO architecture.

requirement is explained by the necessity to know who is responsible for reasoning
with these ontologies.

The Registration Service interface is implemented by the Registration Manager. When
the Manager receives a registration request, it (i) consults the Registration Storage and
verifies if the URI has not occupied yet, (ii) if not it accesses ontologies and assigned
mappings from their URLs, (iii) asks Parser component to process them, (iv) initializes
the Distributed Reasoner with the parsed data, and (v) finally adds a new record to the
Registration Storage.

The Parser component translates ontologies and mappings source files to the internal
format used by the Distributed Reasoner. For doing so, the Parser consist from two sub
components: the ontology parser, tailored on ontology language formats (for example,
OWL [BvHH04]), and the mapping parser, tailored on mapping formats (for example,
C-OWL [BGVH103]).

The Reasoning Manager component implements the Reasoning Services interface.
When users, applications or other DRPs invoke this interface sending the URI of requested
ontology, the Manager verifies with the Registration Storage whether the URI is registered
to the DRP and, if yes, asks the Distributed Reasoner to execute corresponding reasoning
task for that ontology.

The Distributed Reasoner represents a brain of a DRP. It realizes the distributed algo-
rithm proposed in the Section 14.4 and reasons on ontologies with attached mappings that
are registered to the DRP. The Distributed Reasoner is built on top of standard tableau
reasoner whose algorithm was extended with the additional Bridge Expansion Rule in
accordance with the distributed tableau algorithm. When the Bridge Expansion Rule is
applied it analyzes semantic mappings and possibly generates reasoning sub tasks that are

84 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

required to be executed in the ontologies participating in mappings.

To dispatch the reasoning tasks generated by a Distributed Reasoner to the responsible
reasoners, the Reasoning Propagator component refers to the Reasoning Manager and
either dispatches reasoning to the local Distributed Reasoner or sends out a request of
reasoning service to the corresponding external DRP.

Implementation The described DRAGO architecture has been implemented for the
case of OWL [BVHH04] ontology space. For expressing semantic mappings between
OWL ontologies we use a C-OWL [BGvVH03, BGv*04]. According to C-OWL, map-
ping consists of references to the source and target ontologies and a series of bridge rules
relating classes between these ontologies. Due to the limitations of introduced distrib-
uted tableau algorithm (see Section 14.4) among the possible C-OWL bridge rule types
DRAGO supports the use of =, C, T rules connecting atomic concepts.

A Distributed Reasoner was implemented as an extension to an open source OWL
reasoner Pellet.” Originally, Pellet parses OWL ontology to a Knowledge Base (T-box/A-
box). To satisfy the needs of DRAGO we extended a Pellet’s Knowledge Base with a
M-box containing parsed C-OWL mappings. Another extension of Pellet was done by
adding a Bridge Expansion Rule to the core tableau algorithm in order to transform it
to the distributed tableau. This rule is called for every node created by the core tableau
algorithm and consist in finding such bridge rules in M-box that are capable of import-
ing new subsumptions from mapping-related ontologies. Although the proposed distrib-
uted tableaux algorithm admits cache-based implementation current version of Distrib-
uted Reasoner was implemented in a straightforward way without advanced optimization
techniques as the caching, for example, is. We left optimizations for the future work and
extensive testing phase.

DRAGO is implemented to operate over HT'TP and to access ontologies and mappings
published on the Web. A DRP represents several java servlets that should be deployed to
a java-enabled Web-server, for example Tomcat.'”

14.6 Preliminary Evaluation of Distributed Reasoning

In order to practically evaluate the proposed distributed reasoning algorithm we per-
formed some preliminary experiments in order to see how distributed algorithm performs
w.r.t. a global tableaux algorithm based on the encoding described in [BS03].

Experimental Methodology We used the following comparison scheme. Given a mod-
ular ontology we load it into DRAGO distributed reasoner, submit to the reasoner 100

’http://www.mindswap.org/2003/pellet
Ohttp://jakarta.apache.org/tomcat

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 85



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

random satisfiability tests, and collect the CPU time spent by the reasoner to verify tests.
Then we encode the modular ontology into equivalent global ontology, load it into a Pellet
OWL reasoner, submit to the reasoner the same set of 100 satisfiability tests, and again
measure the CPU time spent.

As modules to be used for creating a synthetic modular ontology we have used the
OWL version of the biochemistry ontology developed in Tambis project and available at
on-line ontology store.!! Despite the fact that the very same ontology was used as a source
of multiple modules to force the difference between modules we intentionally changed the
internal namespace of ontology in every module.

To interconnect modules into a modular ontology we generated random sets of bridge
rules between concepts of modules (M) and target modular ontology (O). We investigated
three topologies of modular ontology formally corresponding to the following bridge
graphs in DDLs:

o ()
S0 030
()

Bridge graph 1 Bridge graph 2 Bridge graph 3

Results and Comments All tests were made on Intel Pentium M processor 1500MHz
with 512MB RAM running Microsoft Windows XP Professional.

The results of the preliminary evaluation are presented on Figures 14.5, 14.6, and
14.7, where the light bar stands for invocation of distributed reasoner DRAGO and the
solid bar corresponds to the stand alone Pellet OWL reasoner.

We could not proceed the experimenting with the bigger amount of bridge rules since
the global approach in most of cases ran out of memory whereas the distributed approach
continued to work.

14.7 Conclusions and Outlook

In this chapter we have focused on the Distributed Description Logics, the formalism
supporting the representation and providing reasoning support to the case of distributed
and modular ontologies.

We have described the theoretically sound and complete distributed tableau-based rea-
soning technique for DDLs and presented an overview of its prototypical implementation,

""http://protege.stanford.edu/plugins/owl/owl-library/tambis-full

86 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies

IST Project IST-2004-507482

4 Bridge graph 1 Bridge graph 2 Bridge graph 3
gl oo 350 800
§ 50 300 250
% 40 250 200
E| =0 fgg 150
i 100 100
8 10 | 50 50
0 0 0 ; ; .-
10 20 30 40 50 60 70 10 20 30 40 60 70 80 15 30 45 60 75 90
Number of bridge rules _
Figure 14.5: Loading ontologies into reasoners (light - distributed, solid - global).
4 Bridge graph 1 Bridge graph 2 Bridge graph 3
2| oo 40 25
§ 50 gg 20
| 40 25 15
= 30 20
'E 15 10
S| 2 E
= 10 5
ol 1 5 |
0d=mm c—mm 04 o4
10 20 30 40 50 60 70 10 20 30 40 60 70 80 15 30 45 60 75 90
Number of bridge rules _
Figure 14.6: 100 random satisfiability tests (light - distributed, solid - global).
4 Bridge graph 1 Bridge graph 2 Bridge graph 3
2| 100 1000 1000
b= 5
S|s
e
S 100 100
ZIE 1o
= 5 10 4 10 -
z|
5k
1 1 14
020 30 40 50 60 70 10 20 30 40 60 70 80 15 30 45 60 75 9
Number of bridge rules _

Figure 14.7: Total time spent by reasoners (light - distributed, solid - global).

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 87



14. DISTRIBUTED AND MODULAR ONTOLOGY REASONING

DRAGO reasoning system.

Preliminary evaluation of the proposed distributed reasoning approach versus the rea-
soning in the equivalent global ontology forms a first demonstrative impression that the
execution of reasoning tasks with a network of modules is likely to scale against the
same task executed in a single ontology formed by turning modules in a network together.
However, this is just a preliminary step towards investigation of scaling behaviour of the
distributed algorithm.

As promising paths for further research we plan to implement and explore the caching
techniques for improving the distributed algorithm, perform an extensive testing for in-
vestigation of the algorithm’s scaling behaviour, and finally define and implement a cycle
blocking strategy to deal with general distributed T-boxes.

88 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



Chapter 15

Reasoning on Dynamically Built
Reasoning Space with Ontology
Modules

by FABIO PORTO

15.1 Introduction

Reasoning over distributed and autonomous developed ontologies has to face a number
of new challenges. First, current reasoners [HMO03] consider ontology as forming a sin-
gle logical theory. Unfortunately, both distribution and autonomy adversely contribute to
such a view. Therefore in order to use current reasoning software the set of autonomous
developed ontologies must be aligned and integrated into a single consistent ontology.
Second, as in the context of database integration [DPS98], and to allow building a single
logical theory, definition on different ontologies must be aligned by the use of correspon-
dence expressions. Thirdly, the set of involved ontologies may get to a quite voluminous
amount of data. As a result, a naive solution of transferring all ontologies to a location and
then proceed with local reasoning does not scale up. Finally, autonomously defined on-
tologies may assert contradictory definitions, which some authors classify as conflicts in
the integration process. Conflicts identification is, in fact, a tool for fixing correspondence
assertions and applying ontology alignment. So, reasoning under this setting should be
capable of identifying such conflicts and acting appropriately.

In Chapter 14, Serafini and Tamilin, present an approach for distributed reasoning, in
the context discussed in the previous paragraph, based on global subsumption. The main
result of their work is to deduce global subsumption based on local ontology subsumption
and bridge rules [BGVHT03, BGv*04]. Their approach is scalable as it keeps reasoning
to single ontologies.

In this contribution, we propose a different approach based on global reasoning over

89



15. REASONING ON DYNAMICALLY BUILT REASONING SPACE WITH ONTOLOGY MODULES

relevant ontology entities, with respect to an ontology query, extracted from ontology
modules. Ontology modules are supported by peers that provide reasoning and ontology
processing. It is assumed that a set of mapping expressions exist in each module seman-
tically associating local ontology entities to corresponding definitions in other ontology
modules.

Ontology queries submitted to peers are answered by reasoning over a dynamically
built reasoning space comprising relevant ontology entities captured among autonomous
developed ontologies. We give some initial ideas on how to dynamically build a reasoning
space and point to further research issues.

The rest of this contribution is structured as follows. Section 15.2 presents the con-
cepts of ontology spaces and ontology modules. Next, section 15.3 develops the strategy
of building a reasoning space to answer reasoning queries over an ontology space. Section
15.4 uses a scenario of web services discovery to illustrate the approach. Finally, section
15.5 gives our conclusions and points to some future work.

15.2 Ontology Space and Modules

Autonomously developed ontologies emerge quite naturally in different business areas.
However as business evolves, interactions among partners promote the extension of each
one’s activities towards a network of interrelated process and data. If automation is re-
quired to support the business process, the independent developed ontologies may prove
useful in solving semantic misunderstandings by offering independently a wider semantic
cover for reasoning tasks.

We name a set of autonomously specified ontologies over which an hypothetical rea-
soner could evaluate an ontology query an ontology space (OS). Given two ontologies
taking part in a OS, we say that they intersect if there is a known correspondence asser-
tion associating entities against both ontologies.

The set of entities specified in a ontology together with a set of correspondences ex-
pressed with entities in other ontologies define an ontology module (M). The underlying
ontology of a module is named its base ontology. An ontology entity in a module is either
defined in its base ontology, local entity, or added to it by an equivalence correspondence
with an external entity, specified in a different ontology. The concept of modules is similar
to context in C-OWL [BGVHT03, BGvt04].

Definition 15.2.1 A module is a tuple Mo = <id, D, L, C, Oy, Os>, where id corresponds
to a Unique Resource Ildentifier (URI) for the module, D is the description of the module,
either expressed in natural language or by means of an ontology language; L is the on-
tology language used in Mo; C'is a set of correspondences (defined below) associating
local entities with entities defined in external modules; Oy, is the base ontology and Oy is
the set of external ontologies to which correspondences with local entities are specified.

90 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

The ontology description should aid both humans and machines in selecting modules.
Such descriptions may include domain characteristics, non-functional properties, and as-
sumptions. The latter can be used, for instance, in deciding which modules to consider in
answering a query.

Definition 15.2.2 below specifies valid correspondences between ontology entities
[BGVH'03, BGv'04].

Definition 15.2.2 An ontology correspondence is a relation in one of the following forms:

D (for class equivalence)
D (for subsumption)

e CDOD (for superset)
S

* R= (for relationship equivalence)

V=t (for instance equivalence)

where (C, R, v) and (D, S, t) are, respectively, local and external entities with respect
to a module. C'is of type class, D is a class expression of the form f(ti,...,t,), where
the terms t; are either class names or class expressions and f is an n-ary class builder
operator, R and S are ontology relationships, and v and t are instances [BGvH'03,
BGvt04].

Correspondences are specified from a module designer point of view. They contribute
to the semantic autonomy of each module by giving local interpretation to external en-
tities, with no impact on their semantics in the original ontologies. We further consider
that the ontology correspondences complements the base ontology’s definitions and can
be locally validated indicating eventual conflicts.

We also define a peer P=<Mo,QL> that models a software component capable of
answering ontology queries expressed in QL language over an ontology module Mo. A
peer system is a set PS= U P;, where 1 < ¢ < n is the identification of each peer in the
set.

15.3 Reasoning Space

We use the term reasoning space (RS) to denote a virtual ontology that is dynamically
built to answer an ontology query over an ontology space.

A reasoning space includes the base ontology associated to a module that receives
the query and complementary elements gathered from external ontologies. Entities of a
reasoning space share the same ontology language and form a single ontology.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 91



15. REASONING ON DYNAMICALLY BUILT REASONING SPACE WITH ONTOLOGY MODULES

Definition 15.3.1 A Reasoning space RS is defined as: RS C {O U C}, where O is an
ontology space and C is the set of correspondences associating elements in O.

Definition 15.3.2 We also define a reasoning space mapping function f{Q,RS,0):RS’ that
given: a ontology query (), a reasoning space RS and a ontology space O, produces a
new reasoning space RS’.

The mapping function f expands RS during query evaluation. Reasoning on a RS is
done incrementally as relevant entities in external ontologies are identified and added to
it. As soon as the query is decided, the incremental process terminates.

...........

— subsumption

---+correspondence

Figure 15.1: Ontology space.

Let us motivate the discussion on reasoning space by aid of a simple example, as
illustrated in Figure 15.1. The picture presents an ontology space O, comprised of two
ontologies, O; and Oy. Module M; = {O;, C}} includes its base ontology O; and a set
of equivalence type of correspondences (', associating entities defined in Oy. One may
clearly identify that the complete logical theory is inconsistent as the subsumption relation
between O : y; and O; : x; should also hold in O, as a result of ;. Unfortunately,
as a result of the evolution of autonomously managed ontologies, we should expect that
inconsistencies like this one are prone to emerge and should be considered when reasoning
over the ontology space.

In order to complete the example, a ontology query (), Q = x; C x5, is submitted' to
ontology module M. Query () can not be decided using uniquely entities specified in M;
base ontology O, therefore the mapping function f(Q, O, UCy, O) : RSy is computed to
extend the original reasoning space comprised initially of the union of ontology O; and
the correspondence set C;. The mapping function f identifies a set of relevant entities

"We consider the existence of a query answering system on top of each module forming a P2P network

92 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

in O, to be included into the reasoning space of query (). Relevant entities are those in
O, associated to entities in C} that appear in Q, RE = {yi, 2, 3, y1 C 23, 2 C w3,
x1 C x3}. The reasoning space RS is augmented with relevant entities in R, RS* = O,U
R, and reasoning over RS’ can proceed. Having all the entities relevant for query (), RS’
has sufficient knowledge for deciding the query. As a matter of fact, RS’ will bring up
the existing inconsistency in the ontology space, providing an opportunity for alignment
between ontologies and correspondences.’

15.3.1 Ontology Query Model

We consider boolean DL conjunctive queries where users want to check on satisfiabil-
ity with respect to a ontology space. These query types are important for applications
like web service discovery, where a matching process requires to verify subsumption and
equivalence between goals and web service description terms, as well as satisfiability of
instance of concept expression [LRKO04].

Our approach is based on set theory, as adopted in [BLRTO05], in the context of web
service discovery. In this context, a query expresses a conjunction of disjoint sets of
objects.

Definition 15.3.3 An ontology query is in reduced clause form RCF [BLRTOS5] if given
0= g1/ g2/ ... N qn, where q; is a clause modeling a set of objects, then g;N q; = 0, i
#j, 1<i,j<n.

In our example, the query Q=x; C x, includes a single clause, restricting the concept
X2.

A query in RCF is satisfied if we can prove that each of its disjoint sets is a subset of
some set of objects in RS.

15.3.2 Finding Relevant Entities on the Ontology Space

As discussed above, the mapping function identifies relevant entities on the ontology
space to be considered in extending the reasoning space. A strategy for identifying the
set of relevant entities is the objective of this section.

Identifying relevant entities is achieved in two steps. In the first step, we check for
relevant correspondences in the current reasoning space and, in the second step, a new
query for obtaining relevant entities is submitted to the respective ontology module.

Definition 15.3.4 A relevant correspondence defines a set of objects with a non empty
intersection with a RCF query clause.

2We do not address in this contribution solutions to conflicting situations.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 93



15. REASONING ON DYNAMICALLY BUILT REASONING SPACE WITH ONTOLOGY MODULES

As an example, for query @) and correspondences C;={0;: x; = O3: x1,01: y; =
O y1}, we have that x; C x; and x; C y;. Therefore the relevant correspondence set
RC=C;.

Next, we need to query the corresponding ontology modules for relevant entities. Sim-
ilarly with Definition 15.3 .4, the set of relevant entities in ontology modules, RE, are those
concepts and roles whose corresponding object set intersects with objects in the RC set.

In our initial example, RE= OoN RC, thus RE= {y, X2, X3, y1 C X2, X2 C X3, X1 C

X3}

15.3.3 Answering Queries over the Reasoning Space

A reasoning space is obtained by successively extending a prior version. The extension
includes the relevant entities obtained in the process as described in Section 15.3.2 and
the correspondences fetched from the target module.

Once obtained, a traditional reasoner evaluates the query over the reasoning space.
The process finishes when, either the query has been decided or there is no more possible
extension of the reasoning space.

In case an inconsistency is detected a user intervention may be requested to allow for
process continuation.

15.3.4 Dealing with Global Interpretation

In a ontology space made of autonomous independent ontologies, reasoning has to con-
sider how to interpret definitions to which explicit correspondences have not been speci-
fied. In the running example, analyzing the satisfiability of query Q=x; C x2, depends on
the given interpretation for both x; and x,. If a local interpretation is assumed, by prefix-
ing each ontology entity with a local identification, then satisfiability is only achieved if
explicit correspondences associate query terms interpretation with ontology entities used
for reasoning.

On the other hand, one may be interested in possible answers for the reasoning query.
In this scenario, entities computed as relevant that present the same term are considered
as having an implicitly equivalence correspondence. The motivation for such assumption
is that relevant entities are taken from the intersection set of query clause with relevant
correspondences (see Section 15.3.2) in the remote ontology. This reinforces that both
terms share the same semantic context and, thus, may be equivalent. Producing possible
answers may include providing users with a list of assumed correspondences, so that
further processing may analyze its pertinence.

94 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

154 Applying the Reasoning Space Approach into a Use
Case

In this section, we illustrate the procedure for reasoning over a reasoning space as pre-
sented in Section 15.3 above. We consider a use case in which users search for Web
services that provide car rental services.

We take the approach presented in [KLP*04] in which Web service functionality (or
capability in WSMO terms [LRKO04]) is described by means of conjunctive formulae
[CGLI0] indicating the objects involved in the functionality provided by the Web ser-
vice and relationship between these objects. Correspondingly, user queries are grounded
conjunctive queries that express the desired service, which in WSMO is called a Goal.

Thus, finding a Web service that satisfies the user corresponds to matching the user
goal against descriptions of Web service functionality. Unfortunately, very often, termi-
nologies used in describing the goal and the web service functionality may be different.
This is where the ontology space comes into the game. It provides the means to verify the
correspondences between terms used in the goal and web service functionality definitions.

In this context, let us consider an ontology space OS={0;,0,}, with its corresponding
modules M={M;, My} that are used by the matching algorithms to eliminate ambiguities
and heterogeneities in between goal and web service description terminology.

An agent looking for booking a sportscar in the city of Lausanne, as part of a tourism
package, would initiate a Web service discovery process by submitting a corresponding
goal to the system. Let’s assume that a single Web service has been advertised by offering
as one of its functionalities the rental of a set of car models in Europe.

The agent’s goal g and Web service description ws would be expressed as below:

g=carRental and model(sportscars) and place(Lausanne)
ws = carRental and model(Ferrari) and place(Europe)

Based on this input, the discovery process initiates a matching function which ana-
lyzes the correspondences between predicates carRental, model and place in g and ws.
These, however, cannot be directly matched because of the semantic heterogeneity be-
tween the goal and the web service description. Ontological support is needed to over-
come the semantic gap. Thus, the matching function submits a query to module M; to
find out whether Ferrari is a model of sportscar and Lausanne is a place in Europe, which
would lead to a successful match between the goal g and the web service description ws.
The query to M; is expressed as:

q: Ferrari C sportscar and Lausanne C Europe

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 95



15. REASONING ON DYNAMICALLY BUILT REASONING SPACE WITH ONTOLOGY MODULES

The reasoning task is evaluated considering the module M1=<1,d,1,C;,0;,05 >, ex-
emplified in Tables 15.1 and 15.2.

Table 15.1: Ontologies O; and O,.

01 02

Concept(Car) Concept(vehicle)
Concept(turbo_engine_car) | Concept(sportscar)
Concept(Lausanne) Concept(Ferrari)
Concept(EU) Concept(Europe)
Turbo_engine_car C Car sportscar C vehicle
Lausanne C EU Ferrari C sportscar

Table 15.2: Ontology Correspondence Definitions ¢,

c11: Oq: turbo_engine_car O O,: Ferrari ‘
c12: O1: EU = O,: Europe |

Query ¢ is in RCF, presenting clauses t;= Ferrari C sportscar and to= Lausanne C
Europe. The evaluation of ¢ initially considers the reasoning space RS= O, U C;. In
this context, clause ¢, can be decided by using correspondence c;-, the same not being
observed with respect to the clause ¢; that remains undecided. The evaluation of ¢ pro-
ceeds by extending the initial reasoning space towards relevant entities defined in O, , with
respect to ¢;.

The logical expression in ¢; specifies the set of objects where Ferrari is a subset of
sportscar. Analyzing the set of relevant correspondences in Cy, ¢y, is identified as provid-
ing the set of objects where Ferrari is a turbo_engine_car, thus cy; Nt;# () and is chosen to
compose the set of relevant correspondences. The relevant entities of O, with respect to
¢y is obtained by evaluating RE= {O,N ¢q; } => {Concept(vehicle), Concept(sportscar),
Concept(Ferrari), Ferrari C sportscar, sportscar C vehicle}.

Finally, the reasoning space RS is augmented with RS= RS U RE and the evaluation
of t; can take place.

An attentive reader may argue that the query rewriting approach [8] could be used to
decide on query g without the burden of formulating a global RS. This would be the case
if we could guarantee consistency over ontologies in the ontology space. As discussed in
Section 15.1, conflicting definitions among participating ontologies may raise as a result
of autonomous ontology evolution. In this context, if queries are rewritten and evaluated
over single ontologies, such conflicts would be impossible to detect, bringing eventually

96 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

to users contradictory answers, which justifies the proposed approach for reasoning over
a single logical theory that is incrementally extended.

15.5 Conclusion

Reasoning over distributed and heterogeneous ontologies is not an easy task. First, there
are no currently available distributed reasoners. Second, keeping correspondences be-
tween ontology entities up to date is hard as ontologies evolve. Third, as ontologies cover
more complex domains their size augments precluding a complete transfer of whole on-
tologies to the queried peer. Finally, inconsistencies among ontologies may offer users
contradictory answer that would be hard to detect once the whole result has been pro-
duced.

In this contribution, we presented a strategy for reasoning over a set of autonomously
managed ontologies with correspondences defining local interpretations for foreign de-
fined ontology entities. In our approach, a reasoning space is built including relevant
ontology entities, with respect to a ontology query, found in foreign ontologies. Rele-
vant entities are obtained by computing intersections among ontology entities and query
clauses. Entities thus after discovered fill the reasoning space allowing the use of efficient
and available reasoner tools.

The approach presents solutions to all identified problems but also brings to light new
questions. As a matter of fact, deciding on inconsistencies on such an autonomous settings
is not easy as it has been discussed with respect to non-explicit correspondences. Clearly,
a more precise comparison of our approach with other distributed ontology reasoning
based on query rewriting is of primordial importance to evaluate the benefits of building
a reasoning space. This is in our list of future work. We also plan to implement our
approach in a P2P system developed in the context of the DIP project. Finally, we also
want to investigate a cost model for expanding the reasoning space. The main intuition is
that there are innumerous equivalent paths to follow in exploring the ontology space. A
cost model based on previous reasoning tasks and statistics regarding individual ontology
entities should certainly contribute to reduce the query elapsed-time.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 97



Chapter 16

Decentralized Case-Based Reasoning
with an Application to Oncology

by MATHIEU D’AQUIN, JEAN LIEBER, AMEDEO NAPOLI

Ontology modularization is generally concerned with the decomposition of the knowl-
edge about a domain in several parts, called modules, that are considered to be significant
with respect to this domain. Centralized reasoning systems are then replaced by distrib-
uted mechanisms for reasoning over modular ontologies. In order to be efficient, these
mechanisms exploit the distribution of the knowledge into modules and, as well, the re-
lations between these modules. This chapter addresses the issue of the practical use of
modular ontologies for a given domain: oncology. Case-based reasoning (CBR, see e.g.
[LBSBWO98, AP94]) is the reasoning methodology used for decision support in this frame-
work. Following the principle of decentralized artificial intelligence [DM89], we propose
a decentralized CBR (DzCBR) mechanism based on modular ontologies in the C-OWL
formalism [BGvH04].

16.1 Introduction and Motivation: Adaptation Within Mul-
tiple Viewpoints in Oncology

Oncology is a complex domain where several specialties, e.g. chemotherapy, surgery
and radiotherapy, are involved in several treatment phases. In most cases, the adequate
therapeutic decision is given according to a protocol that associates standard patient char-
acteristics with a recommended treatment. Even if it is designed to take into account
the majority of the medical cases, a protocol does not cover all the situations. Decisions
concerning patients out of the protocol are elaborated within a multi-disciplinary expert
committee, and rely on the adaptation of the solutions provided by the protocol for simi-
lar cases. Furthermore, specialties in oncology organize their background knowledge and
past experiences in different ways. Indeed, a protocol is structured according to the on-

98



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

cology specialties and, during a meeting of an expert committee, each expert from each
specialty supplies a personal view on the solution as a part of a collective solution. For
each specialty, a particular type of treatment is requested, in a particular treatment phase,
and the patient characteristics used to elaborate the solution change from a specialty to
another. Thus, oncology specialties provide different viewpoints on oncology, and these
viewpoints are related to each other. Information about a problem, e.g. finding a ther-
apeutic decision for a patient, can be shared across specialties, and decisions taken in a
particular specialty may influence decisions taken in another one.

CBR is a type of analogical reasoning in which problem-solving is based on the adap-
tation of the solutions of similar problems, already solved and stored in a case base. In
particular, knowledge-intensive CBR (KI-CBR [AamO04]) relies on a knowledge base in-
cluding domain knowledge and, as well, knowledge units exploited for the retrieval and
adaptation operations of CBR (called adaptation knowledge hereafter). In the perspec-
tive of decision support for out of the protocol cases, a KI-CBR mechanism relying on a
formalized protocol may be applied. In this way, the knowledge used by expert commit-
tees is represented and operationalized in the form of adaptation knowledge to become
sharable and reusable.

C-OWL (for context-OWL) is a formalism that has been proposed by [BGVH*04] for
the representation of mappings between several OWL ontologies. A local ontology in C-
OWL is considered as a context, having its own language and its own interpretation. Map-
pings are made of bridge rules that express semantic relations between classes, properties
and individuals of the local ontologies. In this way, mappings between ontologies using
C-OWL allow the coordinate use of these ontologies, keeping the knowledge contained in
each of them in its local context. Then, C-OWL allows us to represent modular ontologies
for combining the multiple viewpoints involved in oncology, and a KI-CBR mechanism
may be used with profit for exploiting such decentralized knowledge. The framework of
DzCBR is proposed here for this purpose. In DzCBR, several CBR processes are carried
out, each of them exploiting domain knowledge and adaptation knowledge locally in a
particular context, treating the problem according to a particular viewpoint. Collabora-
tion between viewpoints is then achieved thanks to bridge rules between contexts, on the
basis of global reasoning in distributed description logic as studied in [STOS] and reported
in Chapter 14.

The next section contains a brief introduction to CBR. It also indicates how CBR
is integrated within the semantic Web framework using OWL. The Section 16.3 details
the knowledge and reasoning models of DzCBR, and how problem-solving is carried
out by combining several decentralized viewpoints represented by C-OWL contexts. An
application of DzCBR to a breast cancer treatment problem is presented in Section 16.4.
Finally, the related work is discussed in Section 16.5.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 99



16. DECENTRALIZED CASE-BASED REASONING WITH AN APPLICATION TO ONCOLOGY

16.2 Case-Based Reasoning with OWL

16.2.1 Principles of Case-Based Reasoning

A case is a problem solving episode usually represented by a problem pb and a solution
Sol(pb) of pb. A case base is a (usually structured) set of cases, called source cases. A
source case is denoted by (srce, Sol(srce)). CBR consists in solving a target prob-
lem, denoted by tgt, thanks to the case base. The classical CBR process relies on two
steps, retrieval and adaptation. Retrieval aims at finding a source problem srce in the
case base that is considered to be similar to tgt. The role of the adaptation task is to
adapt the solution of srce, Sol(srce), in order to build Sol(tgt), a solution of tgt.
Then, the solution Sol(tgt) is tested, repaired, and, if necessary, memorized for future
reuse.

In knowledge intensive CBR (KI-CBR, see e.g. [Aam04, GAGCDAFC99, LN98]),
the CBR process relies on a formalized model of domain knowledge. This model may
contain, for example, an ontology of the application domain, and can be used to organize
the case base for case retrieval. KI-CBR may also include some knowledge for adaptation,
as explained in the following.

16.2.2 Reformulations: an Approach for Representing Adaptation
Knowledge

Reformulations are basic elements for modeling adaptation knowledge for CBR [MLNO9S].
A reformulation is a pair (r,.A,) where r is a relation between problems and A, is an
adaptation function: if r relates srce to tgt —denoted by “srce r tgt”- then any
solution Sol(srce) of srce can be adapted into a solution Sol(tgt) of tgt thanks
to the adaptation function .4, —denoted by “Sol(srce) A, Sol(tgt)”.

In the reformulation model, retrieval consists in finding a similarity path relating
srce to tgt,i.e. a composition of relations ry, introducing intermediate problems pb,,
between the source and the target problems. Every rj relation is linked by a reformula-
tion to an adaptation function Ay, . Thus, the sequence of adaptation functions following
the similarity path may be reified in an adaptation path (see figure 16.1).

The model of reformulations is a general framework for representing adaptation knowl-
edge. The operations corresponding to problem relations r;, and adaptation functions A,
have to be designed for a particular application. Generally, these operations rely on trans-
formation operations such as specialization, generalization and substitution, that allow
the creation of the pb;, problems for building the similarity path and of the Sol(pb;)
solutions for the adaptation path: relations of the form pb; r pb, and adaptation like
Sol(pb;) A, Sol(pb,) correspond to applications of such transformations.

Moreover, the reformulation framework follows the principle of adaptation-guided re-

100 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

r
srce T pb; 2 pb, ces pb, 4 7 tgt
j “41‘1 l Ar2 l l Arq \L
Sol(srce) Sol(pb,) Sol(pb,) . Sol(pb, ;) —— Sol(tgt)

Figure 16.1: A similarity path from srce to tgt (first line) and the corresponding adap-
tation path (second line).

trieval [Smy96]. A CBR system using adaptation-guided retrieval retrieves the source
cases whose solution is adaptable, i.e. for which adaptation knowledge is available. Ac-
cording to this principle, similarity paths provide a kind of symbolic reification of simi-
larity between problems, allowing the case-based reasoner to build understandable expla-
nation of the results.

16.2.3 CBR within OWL ontologies

In OWL, problems and solutions are represented as instances of the Problem and the
Solution classes. The link between a problem pb and its solution Sol(pb) is materi-
alized by a property called hasSolution. OWL axioms are used to relate Problem
and Solution to classes of the domain knowledge. For example, in an application
for breast cancer treatment, the Patient and Treatment classes correspond respec-
tively to the Problem and Solution classes, and thus, the two axioms Patient C
Problemand Treatement C Solution are added to the ontology. Furthermore, the
hasSolution property relates patients to the recommended treatments. Problem rela-
tions, adaptation functions and reformulations are also formalized in OWL. The specific
underlying mechanisms are made by Web services implementing transformation opera-
tions like specialization, generalization and property substitution on OWL individuals.

Given two classes C and D, the subsumption test in OWL is defined by C is subsumed
by D (C is more specific than D) if, for every model Z of O, ¢ C D?. Based on the
subsumption test, classification consists in finding for a class C, the most specific classes
in the ontology subsuming C, and the most general classes subsumed by C. Classification
organizes the classes of the ontology in a hierarchy. Regarding CBR, the class hierarchy
is used as a structure for the case base, where a class represents an index for a source
problem. Every index is considered as an abstraction of a source problem, containing the
relevant part of the information leading to a particular solution.

Instance checking tests whether an individual a is an instance of a class C, i.e. if for
every model Z of O, a’ € CZ. It supports the instantiation reasoning service that consists
in finding the most specific classes of an individual. It is used during the retrieval step of
CBR for finding index classes of source problems. A source problem srce is an instance
of its index class idx (srce), and its solution Sol(srce) is considered to be reusable

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 101



16. DECENTRALIZED CASE-BASED REASONING WITH AN APPLICATION TO ONCOLOGY

for any problem pb that is an instance of idx (srce),i.e. Sol(srce) can be reused to
solve tgt whenever tgt is recognized as an instance of idx (srce).

Instantiation is used to infer new pieces of information about an individual on the
basis of its class membership, and of constraints contained in class definitions. For ex-
ample, if an individual named bob is an instance of the class Man, if Man is declared to
be more specific than Human (Man C Human), and if the capability of intelligence is
associated with humans (Human C dcapability.Intelligence), then, bob has
to be capable of intelligence. The information known about bob is automatically com-
pleted, thanks to constraints inherited from Human. This reasoning service has proved to
be useful for CBR in [GAGCDAFC99], where it is called instance completion. Particu-
larly, it is used in the problem elaboration operation, to extend the available information
on the target problem with respect to the domain knowledge. Moreover, since a partic-
ular index idx (srce) may lead to a particular solution Sol(srce), this solution can
be directly attached to the index class through a problem-solution axiom of the form:
I C JhasSolution.S. This means that, based on instance completion, any instance
of the index class I is related to an object of the solution class S by the hasSolution

property.

16.3 Decentralized Case-Based Reasoning with C-OWL

Decentralized artificial intelligence, as defined by [DM89], is concerned with the activity
of autonomous intelligent agents that coexist and may collaborate with other agents, each
of them having its own goals and its own knowledge. In the same way, the DzCBR
mechanism is:

1. local to a context in the sense that it is carried out in each context, not in a central-
ized manner,

2. collaborative in the sense that it relies on knowledge sharing between contexts.

16.3.1 CBR with Contextualized Knowledge

Contextualized ontologies in C-OWL are local representations of a domain, named con-
texts, that are semantically related with other contexts thanks to mappings [BGVH104]. In
C-OWL, the knowledge about a domain is contained in a set of contexts, called a context
space. Each context O; of a context space is an OWL ontology, with its own language and
its own interpretation. Mappings are expressed by bridge rules that are used to declare
correspondences between the interpretation domains of two different contexts. An into

. . . C . . .
rule is a bridge rule of the form 1:C — j:D, where i:C and j:D are classes respec-
tively from O; and O;. This type of rule means that the class i:C of O; is considered,

102 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

from the viewpoint of O;, to be more specific than the class j :D [STO5]. The onto rule

iic =4 j :D means that O; considers the class i:C to be more general than j:D. In
addition to the basic into and onto rules between classes, we also use another form of
bridge rules for specifying correspondences between individuals. i:a — j:b means
that, according to O, the individual i :a in O; corresponds to the individual j :b.

Using C-OWL for DzCBR, a context is used to represent a particular viewpoint on
the domain. A global target problem is represented by a set {i:tgt}; of local tar-
get problems, with a problem i:tgt in each context O;. In addition, a bridge rule
istgt — j:tgt is declared for each O; and O, of the context space, i.e. i:tgt
in O; is viewed as j:tgt in O;.

A context O; includes knowledge and cases which allows to find a local solution
i:Sol(tgt) for the local problem i:tgt. Thus, a local problem i:pb is solved by a
solution i:Sol(pb) inside the context O;. The adaptation knowledge used for solving
a local problem i:tgt is also represented within the context O;. Local reformulations
i:(r, Ay) are the basic adaptation knowledge units for solving i :tgt in the O; context.

In a context O;, there is a class hierarchy where a class represents the index of a
source problem to be reused. An index i:idx(srce) is an abstraction of the problem
i:srce,retaining the relevant information according to the viewpoint of the O; context,
ie. 1:S0l(srce) can be reused to solve i:tgt whenever i:tgt is an instance of
i:idx(srce) (in accordance with the solving schema described in the section 16.2.3).

Then, in O;, the instantiation reasoning service is used in a localized retrieval process
for finding the index i:idx (srce) of the source problem i :srce to be reused. More
precisely, the retrieval process consists in finding a similarity path between the target
problem i:tgt and the index i:idx(srce) that is composed of relations defined in
OZ‘Z

. 154 . . isa . . . .
i:srce — i:idx(srce) «— i:pb; i:r;...1:r,i:tgt

where the “isa” arrows mean “is an instance of”’. In addition, a localized adaptation
process has to build an associated adaptation path using reformulations and adaptation
functions defined in O; for building i :Sol(tgt). Using contextualized knowledge and
cases, the CBR process is then “contained” in a context. A detailed example of this
localized CBR process is given at the end of the next section.

16.3.2 Combining Viewpoints Thanks to Bridge Rules

[STOS] presents an extension of the standard tableau algorithm for the computation of the
global subsumption test. Global subsumption uses the principle of subsumption propaga-

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 103



16. DECENTRALIZED CASE-BASED REASONING WITH AN APPLICATION TO ONCOLOGY

tion which, in its simplest form, can be expressed as:

. . . I . . cC .
if the mapping M;; contains 1:A — j:Cand i:B — j:D
then J satisfies i : A C B implies that J satisfies j:C C D.

where J is a distributed interpretation containing a local interpretation for each context
of the context space and semantic relations for interpretating bridge rules. Intuitively,
this means that subsumption in a particular context can be inferred from subsumption
in another context thanks to bridge rules. Similarly, we consider here a global instance
checking based on an instantiation propagation rule:

if M;; contains i:C £, j:Dandi:a — j:b
then J satisfies 1 :C (a) implies that J satisfies j:D(b).

Instantiation is extended in order to use global instance checking. Based on bridge rules,
information known about an individual in a particular context can be completed using
inferences made in another context.

In the following, we present an example of a DZCBR process that is distributed among
contexts and that takes advantage of this distribution for building a global solution for a
target problem.

Let us introduce three contexts named O, O, and O3, where a source problem is rep-
resented by its index class, and each association between a problem and its solution is rep-
resented by a problem-solution axiom. For example, the expression 1: I1 = Problem[]
Jp1l.C1 defines a source problem in the context O;,and 1:I1 C JhasSolution.S1
associates an instance of the solution class 1:S1 to an instance of the problem class
1:I1. In the same way, the source problems 2:I2 and 3:I3 are respectively defined
in the contexts O, and O3, together with their problem-solution axioms (1% and 2" lines
of the figure 16.2). Bridge rules have been declared between the three local target prob-
lems 1:tgt, 2:tgt and 3:tgt, making precise the fact that these local problems are
three views about a single problem (3 line of the figure 16.2). Moreover, bridge rules
between classes indicate the subsumption constraints between the contexts (4" line of the
figure 16.2). Finally, a set of assertions is given for the three local target problems (5%,
61 and 7™ lines of figure 16.2).

When the DzCBR process is run in each context, the three local target problems
l:tgt, 2:tgt, and 3:tgt are instantiated in their respective contexts.

Dz1l. Inthe O, context, 2 :tgt is recognized as an instance of the class 2 : 3p21.C21.
Dz2. The bridge rules 2:3p21.C21 =1 :Jpl.Cland 2:tgt — 1:tgt allow the
completion of the instance 1:tgt. 1:tgt is recognized as an instance of the class

1:dpl.C1, and thus of the class 1:I1.

104 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

O O Os
I1 =Problem[1Jpl.C1 I2 = Problem[13p21.C21 M 3p22.C22 | I3 = Problem(13p3.C3
I1 C JhasSolution.S1 I2 C JhasSolution.S21 I3 C JhasSolution.S31
2:tgti>1:tgt 1:tgti>2:tgt 2:tgti>3:tgt

2:3p21.€21 —=> 1:3p1.c1 | 1:3hasSolution.S1 —= 2:3p23.C23 | 2:FhasSolution.522 —=
3:JhasSolution.S32
Problem(tgt) Problem(tgt) Problem(tgt)

c21(a)

p21(tgt,a)

Dz1. 3p21.C21(tgt)

Dz2. Jp1.Ci(tgt)
Dz3. JhasSolution.S1(tgt) | Dz4. Ip23.C23(tgt)
Dz5. JhasSolution.522(tgt) Dz6. JhasSolution.532(tgt)

Figure 16.2: A DzCBR example. 1% and 2" lines define some sources problems. 3™ and
4™ Jines describe mappings associated with the contexts. 51 to 7 lines describe the target
problem. 8™ to 11" lines show 6 DzCBR inference steps.

Dz3. Through the problem-solution axiom, a solution 1:S1 is associated with 1:tgt,
that in turn becomes an instance of the class 1 : dhasSolution.S1.

Dz4 . The instance completion process is run through the bridge rule

1:JhasSolution.S1 — 2: Jp23.C23, and the local target problem 2:tgt
is recognized as an instance of the class 2:9p23.C23.

Dz5. Asitisexplained below, let us assume that the CBR process in the context O, builds
a solution that is an instance of 2 : S22 and that is associated with 2:tgt. 2:tgt
becomes an instance of 2 : JhasSolution.S22 in Os.

Dz6 . Finally, based on the bridge rule

2:JhasSolution.§22 —» 3:JhasSolution.S32, it can be inferred in O3
that 3:tgt is an instance of 3:JhasSolution.S32.

The solution of the target problem, represented by the three local target problems 1:tgt,
2:tgt,and 3:tgt,is aset of local solutions, represented as instances of 1:S1,2:522,
and 3 :S532, that have been built in a decentralized way.

Relying on this example, two main operations may be distinguished in the DzCBR
process:

(1) localized CBR that applies local knowledge for building a solution to the local prob-
lem i:tgt. The steps Dz3. and Dz5. are examples of such a local operation in
DzCBR, respectively carried out in O; and O,.

(ii) case completion represents the collaborative part of DzCBR. It is based on bridge
rules and completes the local target case —either the problem or the solution part—

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 105



16. DECENTRALIZED CASE-BASED REASONING WITH AN APPLICATION TO ONCOLOGY

thanks to knowledge sharing with the other contexts. The steps Dz2., Dz4 . and
Dz6 . are examples of this collaboration, using bridge rules for combining view-
points.

These two operations are run in each context, until no more inferences can be drawn. The
solution set {i:Sol(tgt)}; is then delivered.

16.3.2.1 Details of the localized CBR Process Dz5 .

The O, context contains a reformulation of the form 2 : (r, .A,) that is used in the local-
ized CBR operation in this context (see figure 16.3). During the retrieval step, the 2:r
relation creates an intermediary problem 2 : pb; from 2 : tgt such that the difference be-
tween these two individuals lies in the fact that 2 : pb; is an instance of 2 :3p22.C22,
whereas 2:tgt is an instance of 2:3p23.C23. Thus, 2:pb, is recognized as an in-
stance of 2:I2, and is associated with a solution 2:Sol(pb,) from 2:S21, as stated
by the problem-solution axiom in Os. The 2 : A, adaptation function is used in the adap-
tation step for creating the solution 2 : Sol(tgt) from 2:Sol(pb;). 2: A, is such that
the difference between 2 : Sol(pb;) and 2 :Sol(tgt) lies in the fact that 2: Sol(pb;)
is an instance of 2:S21, whereas 2:Sol(tgt) is an instance of 2:S22. Therefore,
2:S01(tgt), instance of 2: S22, becomes a solution of 2 : tgt.

2:r

2:12<L2:pb1 —  2:tgt
L isa l 2: Ar l
2:821 =<————— 2:S0l(pby) —————— 2:Sol(tgt)

Figure 16.3: The similarity path and the adaptation path of the localized CBR process in
Os.

164 Application to Breast Cancer Treatment

The task of finding the right treatment for a patient ill with breast cancer is supported by
a protocol. This protocol can be seen as a set of rules Cond = T'tt where C'ond is a set
of conditions on patients and 7'tt is a description of the type of treatments recommended
for the patients satisfying C'ond. Several specialties are involved in this decision, and the
protocol is structured according to these specialties. The protocol rules may be directly
applied in 60 to 70 % of the situations (with respect to the characteristics of the patients).
In situations not considered by the protocol, the decision is taken by a multi-disciplinary
expert committee. This committee adapts the protocol rules to find a solution, taking into
account the characteristics of the considered patient.

106 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

In our research work, decision support for breast cancer treatment relies on DzCBR,
where a problem is a description of the characteristics of a patient, and a solution is a
treatment proposition. The case base and the domain model rely on a formalized repre-
sentation of the protocol in C-OWL. In the following example, three different contexts,
namely O,, O, and O., standing for the radiotherapy, surgery and chemotherapy view-
points, are considered. These contexts correspond respectively to the Oy, Oy and O3
contexts of the example of section 16.3.2. A protocol rule C'ond = T'tt is represented
and implemented as a problem-solution axiom of the form PC C JhasSolution.T,
where PC and T are classes respectively representing the C'ond and T'tt parts of the
protocol rule. For example, O, contains a problem class corresponding to the patients
having a tumor that is smaller than 4cm. For the members of this class, a radiotherapy
of the internal mammary chain is recommended. Therefore, the problem solution axiom
1:I1 C JhasSolution.S1 of the preceding example is restated as :

r:Patient M JtumorSize.lessThand4cm C JdJhasSolution.IntMamChainRadio
In the same way, O, contains the problem-solution axiom :

s:Patient 1 JhasTumor.(dsize.moreThandcm) N Jradiotherapy.IntMamChain
C JhasSolution.TotalAblation

meaning that, for patients having a tumor greater than 4cm and for whom a radiotherapy
of the internal mammary chain may be applied, a total ablation of the breast is recom-
mended. In O,, the axiom:

c:Patient M dJlymphNode.infected C JhasSolution.PreSurgicalChemo

means that for patients having infected lymph nodes, some cures of chemotherapy should
be applied before the surgical treatment in order to prepare the patient for a partial abla-
tion.

The bridge rules of the example of the section 16.3.2 are now redefined on the classes
of O,, O and O, :

C
s:JhasTumor.(dsize.lessThan4cm) — r:JtumorSize.lessThandcm

. . . c . .
r:JhasSolution.IntMamChainRadio — s:dradiotherapy.IntMamChain

. . C . .
s:JdhasSolution.TotalAblation — c:—-JhasSolution.PreSurgicalChemo

The first one allows the surgery context to share the information about the size of the
tumor with the radiotherapy context. Problem-solving in surgery can reuse the solution
found in radiotherapy thanks to the second bridge rule. The third bridge rule expresses
that, when a total ablation is recommended, a chemotherapy must not be applied before
surgery.

Moreover, the Oy context contains some adaptation knowledge in the form of a refor-
mulation s : (r, A, ). The s : r relation holds between an instance of Patient having a
little-sized tumor (less than 4 cm) that covers a large part of the breast (more than 60%)

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 107



16. DECENTRALIZED CASE-BASED REASONING WITH AN APPLICATION TO ONCOLOGY

and an instance of Patient having a larger tumor (more than 4cm). In other terms, a
patient with a small tumor in a small breast is considered for surgery to be similar to a
patient having a large tumor. The s : A, adaptation function simply consists in a copy of
the solution.

The target problem is represented by three local target problems denoted by r: tgt,
s:tgt and c:tgt, that are linked by bridge rules. Each of these individuals is an
instance of the patient class, i.e. the assertions r: Patient(tgt), s:Patient(tgt)
and c:Patient(tgt) are stated in the O,, O and O, contexts respectively. Moreover,
s:tgt is described as a patient having a small tumor in a small breast, i.e. the assertion
s:JhasTumor.(dsize.lessThan4cmllJcover.MoreThan60%)(tgt) is stated in
Os.

The DzCBR process for solving this problem corresponds to the six steps of the sec-
tion 16.3.2 example. The information about the tumor size is first shared between surgery
and radiotherapy, and so, a radiotherapy of the internal mammary chain is recommended
in O,. In Oy, the reformulation s : (r, A;) is applied, considering s : tgt as similar to a
patient having a large tumor. According to the problem-solution axiom contained in Os,
the solution for a patient with a large tumor is a total ablation. This solution is copied
through A, for s:tgt. Finally the solution found in surgery, the total ablation, implies
that no chemotherapy has to be applied before surgery. It must be remarked that the target
problem is treated differently in O, and O,.. Indeed, it has been considered as a patient
with a small tumor for radiotherapy, whereas it has been considered as a patient with a
large tumor in surgery.

16.5 Discussion and Related Work

A CBR system based on the reformulation model has been implemented in the form of
a generic Web service manipulating OWL ontologies. This architecture based on Web
services is very helpful in the implementation of localized CBR. For global reasoning
in C-OWL, we are using the system described in [STOS5] that is currently under devel-
opment. A complete protocol for breast cancer treatment has also been formalized in
C-OWL. The lesson learned from this experiment is that building and managing multiple
contexts that reflect existing viewpoints in the domain appear to be simpler than finding
and maintaining a consensual representation for these viewpoints all together.

Considering related work, description logics have been used for KI-CBR in several
systems (see e.g. [GAGCDAFC99, KLG98]). These systems consider a single knowledge
model, and take into account a single way of interpreting and using cases. DzCBR com-
bines several viewpoints on the problems and solutions, thanks to multiple inter-related
contexts. Some systems use several views on cases to retrieve several local best cases.
Generally, a single global case is build from these sub-cases. For example, in [AL97] a
choice is made between cases that are retrieved using different case representations, called

108 July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

perspectives. In [NLL96], several agents retrieve local best cases that are assembled in a
global best case thanks to negotiation between agents. Since there is no centralized mech-
anism in DzCBR, a CBR process is carried out in each context and collaborates with the
other contexts through bridge rules. In this way, among contexts, several local source
cases are retrieved and used independently for adaptation.

Our interest for a DzCBR process exploiting semantic Web technologies and prin-
ciples has started with the design of a semantic portal for oncology [dBB*05]. The
goal of this portal is to give an intelligent access to standard knowledge for a geograph-
ically distributed community of oncologists. There are many other situations, like adap-
tive query answering, case-based ontology alignment or flexible Web service invocation,
where CBR would be useful for the semantic Web. Some studies have been interested
in defining markup languages for case representation, on the basis of XML [CDC04] or
RDF [CWO03]. But, to our knowledge, there are no works concerned with the design of
CBR systems in the semantic Web framework.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 109



Chapter 17

Conclusion

This deliverable reported on the continued effort by WP 2.1 to clarify the issues related to
ontology modularization and explore the research directions that aim at making the mod-
ularization idea operational. Clarification was felt necessary as ontology modularization
is a new problem, only recently tackled, and many different paths are being explored,
with no single dominant approach emerging. This deliverable has explored many of the
potential avenues, and should be seen as explorative research.

The first part of the deliverable aims at making clear that there are alternative percep-
tions of what ontology modularization means. In particular, we identified a composition
versus a decomposition approach to modularization. In the former, a set of existing source
ontologies are apprehended as modules of a larger ontology that is built from the pre-
existing sources using some integration technique. In the latter, it is the global ontology
that pre-exists, and modularization is seen as the process of producing a consistent set of
sub-ontologies, the modules, using some decomposition technique.

Beyond this major split within the set of approaches that deal with modularization,
we identified a number of issues, from the precise definition of the module concept to
how different modules can be interconnected to show complementarities of their semantic
content.

The second part of the deliverable is devoted to various presentations of different
techniques that in one way or another contribute to modularization. These techniques
range from those addressing design of modular ontologies to those supporting reasoning
over a set of distributed ontologies.

The major result of the reported work, beyond the deliverable itself, is the increased
awareness from the participants about the multiplicity of viewpoints on modularization,
resulting in an effort by each partner to identify the exact assumptions that underlie each
technique so that misunderstanding is avoided. Moreover, several partners have been able
to point at connections between different works, either in terms of similarities or in terms
of complementarities. This paves the way to fruitful cooperation in the future.

110



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

As future work is concerned, each partner has precise plans for the continuation of
the work in the direction they have undertaken. An additional research direction will
complement the ongoing researches described in previous chapters. Its focus is on using
fuzzy techniques to support the possibility to attach different confidence degrees to the
mappings between ontological modules, thus leading to some form of fuzzy ontology. In
summary, we believe the NoE is fully playing its role. Moreover, although it is premature
to talk about future joint work, we are confident that commonalities of interest will arise
and lead indeed to some joint work.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 111



Bibliography

[AamO04]

[AFL99]

[AL97]

[AMO5]

[AP94]

[Bat03]

[BBDD97]

[BCGO4]

A. Aamodt. Knowledge-Intensive Case-Based Reasoning in CREEK.
In P. Funk and P. A. Gonzalez-Calero, editors, Proc. of the European
Conference on Case-Based Reasoning, ECCBR’04, volume 3155 of
Lecture Notes in Artificial Intelligence, pages 1-15. Springer, 2004.

Nicolas Anquetil, Cédric Fourrier, and Timothy C. Lethbridge. Ex-
periments with hierarchical clustering algorithms as software remod-
ularization methods. In Proceedings of the Working Conference on
Reverse Engineering (WCRE’99), pages 304-313, Atlanta, USA, oct
1999.

J. L. Arcos and R. Lopez de Mantaras. Perspectives: a declarative bias
mechanism for case retrieval. In D. B. Leake and E. Plaza, editors,
Proc. of the International Conference on Case-Based Reasoning, IC-
CBR’97, volume 1266 of Lecture Notes in Computer Science, pages
279-290. Springer, 1997.

E. Amir and S. Mcllraith. Partition-based logical reasoning for first-
order and propositional theories. Artificial Intelligence, 2005. Ac-
cepted for Publication.

Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches. AICom -
Artificial Intelligence Communications, 7(1):39-59, 1994.

V. Batagelj. Analysis of large networks - islands. Presented at Dagstuhl
seminar 03361: Algorithmic Aspects of Large and Complex Networks,
August/September 2003.

L.C. Briand, C. Bunse, J.W. Daly, and C. Differding. An experimen-
tal comparison of the maintainability of object-oriented and structured
design documents. Empirical Software Engineering, 2(3):291-312,
1997.

E. Sirin B. Cuenca Grau, B. Parsia. Working with multiple ontolo-
gies on the semantic web. In S. A. Mcllraith, D. Plexousakis, and

112



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

[BCM 03]

[BEE*05]

[BGH99]

[BGv*04]

[BGVH'03]

[BGVH104]

[BKvH02]

[BLRTOS5]

[BMO3]

F. van Harmelen, editors, Proceedings of the Third International Se-
mantic Web Conference (ISWC 2004), volume 3298 of Lecture Notes
in Computer Science, pages 620—634. Springer Verlag, 2004.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

Paolo Bouquet, Marc Ehrig, Jérome Euzenat, Enrico Franconi, Pas-
cal Hitzler, Markus Krotzsch, Luciano Serafini, Giorgos Stamou, York
Sure, and Sergio Tessaris. Specification of a common framework for
characterizing alignment. Technical report, KnowledeWeb Deliver-
able, 2005.

L. Bird, A. Goodchild, and T. Halpin. Object role modelling and xml-
schema. In A. Laender, S. Liddle, and V. Storey, editors, Proceedings
of the 19th International Conference on Conceptual Modeling (ER00),
LNCS. Springer Verlag, 1999.

P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuck-
enschmidt. Contextualizing ontologies. Journal on Web Semantics,
1(4):325-343,2004.

P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuck-
enschmidt. C-OWL: Contextualizing Ontologies. In Proceedings of
the 2d International Semantic Web Conference (ISWC 2003), pages
164-179, 2003.

P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuck-
enschmidt. Contextualizing Ontologies. Journal of Web Semantics,
1(4):1-19, 2004.

Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame:
A generic architecture for storing and querying rdf and rdf schema.
In Ian Horrocks and James Hendler, editors, Proceedings of the First
International Semantic Web Conference (ISWC 2002), pages 54—68,
Sardinia, Italy, jun 2002.

B. Benatallah, M. Hacid Al. Leger, C. Rey, and F. Toumani. On au-
tomating web service description. VLDB Journal, 14:84-96, 2005.

V. Batagelj and A. Mrvar. Pajek - analysis and visualization of large
networks. In M. Juenger and P. Mutzel, editors, Graph Drawing Soft-
ware, pages 77-103. Springer, 2003.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 113



BIBLIOGRAPHY

[BSO3]

[Bur92]

[BVHH*04]

[CDCO04]

[CGL90]

[CWO03]

[dBBT05]

[DIMO2]

[DM89]

[DPS98]

114

A. Borgida and L. Serafini. Distributed description logics: Assim-
ilating information from peer sources. Journal of Data Semantics,
1:153-184, 2003.

R.S. Burt. Structural Holes. The Social Structure of Competition. Har-
vard University Press, 1992.

S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L.. McGuin-
ness, P.F. Patel-Schneider, and L. Andrea Stein. OWL Web Ontol-
ogy Language Reference. W3C Recommendation, February 2004.
www.w3.0rg/TR/owl-ref.

L. Coyle, D. Doyle, and P. Cunningham. Representing Similarity for
CBR in XML. In P. Funk and P. Gonzalez Calero, editors, Advances in
Case-Based Reasoning (Procs. of the Seventh European Conference),
LNAI 3155, pages 119-127. Springer, 2004.

S. Ceri, G. Gottlob, and L.Tanca. Logic Programming and Databases.
Springer-Verlag, 1990.

H. Chen and Z. Wu. CaseML: a RDF-based Case Markup Lan-
guage for Case-based Reasoning in Semantic Web. In B. Fuchs and
A.MilLe, editors, From structured cases to unstructured problem solv-

ing episodes for experience-based assistance. Workshop at ICCBR-
2003,2003.

M. d’Aquin, S. Brachais, C. Bouthier, J. Lieber, and A. Napoli.
Knowledge Editing and Maintenance Tools for a Semantic Por-
tal in Oncology. International Journal of Human-Computer
Studies (IJHCS), 2005. To appear. Also available online
http://authors.elsevier.com/sd/article/S1071581905000285.

Jan Demey, Mustafa Jarrar, and Robert Meersman. A Conceptual
Markup Language That Supports Interoperability between Business
Rule Modeling Systems. In Proceedings of the Tenth International
Conference on Cooperative Information Systems (CooplS 02), pages
pp- 19 — 35. Springer Verlag LNCS 2519, 2002.

Y. Demazeau and J.-P. Mller. Decentralized Artificial Intelligence. In
Y. Demazeau and J.-P. Mller, editors, Decentralized A.I. — Proc. of
the First European Workshop on Modelling Autonomous Agents in a
Multi-Agent World, pages 3—13. North-Holland, 1989.

Thomas Devogele, C. Parent, and S. Spaccapietra. On spatial database
integration. Int. J. Geographical Information Science, 12(4):335-352,
1998.

July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

[GAGCDAFC99] M. Go6mez-Albarran, P.A. Gonzales-Calero, B. Diaz-Agudo, and

[GGO1]

[GPG199]

[GSO00]

[GWO00]

[Hal89]

[Hal97]

[HalO1]

[HMO3]

[HST99]

[Jar05]

C. Fernandez-Conde. Modelling the CBR Life Cycle Using Descrip-
tion Logics. In K.-D. Althoff, R. Bergamnn, and L.K. Branting, edi-
tors, Proc. of the International Conference on Case-Based Reasoning,
ICCBR’99, volume 1650 of Lecture Notes in Artificial Intelligence,
pages 147-161. Springer, 1999.

C. Ghidini and F. Giunchiglia. Local model semantics, or con-
textual reasoning = locality + compatibility. Artificial Intelligence,
127(2):221-259, 2001.

H.H. Gu, Y. Perl, J. Geller, M. Halper, and M Singh. A methodology
for partitioning a vocabulary hierarchy into trees. Artificial Intelligence
in Medicine, 15:77-98, 1999.

C. Ghidini and L. Serafini. Distributed first order logics. In Proceed-
ings of the Frontiers of Combining Systems, pages 121-139, 2000.

N. Guarino and C Welty. Towards a methodology for ontology-based
model engineering. In ECOOP-2000 Workshop on Model Engineer-
ing, (Cannes, France), 2000.

T. Halpin. A logical analysis of information systems: static aspects of
the data-oriented perspective. PhD thesis, University of Queensland,
Brisbane, Australia, 1989.

T. Halpin. An interview- modeling for data and business rules. in:
Ross, 1. (eds.): Database newsletter. IEEE Transactions on Data and
Knowledge Engineering,25(2), 1997.

T. Halpin. Information Modeling and Relational Databases, 3rd edi-
tion. Morgan-Kaufmann, 2001.

V. Haarslev and R Moeller. Racer: An OWL reasoning agent for the
semantic web. In Proceedings of the International Workshop on Appli-
cations, Products and Services of Web-based Support Systems, in con-
junction with the 2003 IEEE/WIC International Conference on Web
Intelligence, pages 91-95, 2003.

I. Horrocks, U. Sattler, and S. Tobies. A description logic with transi-
tive and converse roles, role hierarchies and qualifying number restric-
tion. Technical Report 99-08, Technische Universitit Dresden, LTCS,
1999.

M. Jarrar. Towards methodological principles for ontology engineer-
ing. PhD thesis, Vrije Universiteit Brussel, Belgium, 2005.

KWEB/2004/D2.1.3.1/v1.1 July 30,2005 115



BIBLIOGRAPHY

[J]DMO02]

[IMO2]

[JVMO3]

[KLG98]

[KLP*04]

[LBSBW9S]

[LNO9g]

[LRKO4]

[Mee99]

[MIO1]

116

M. Jarrar, J. Demy, and R. Meersman. On using conceptual data
modeling for ontology engineering. Data Semantics, 2800:185—
207, October 2002.  Special issue on Best papers from the
ER/ODBASE/COQPIS 2002 Conferences.

M. Jarrar and R. Meersman. Scalability and knowledge reusability in
ontology modeling. In Proceedings of the International conference on

Infrastructure for e-Business, e-Education, e-Science, and e-Medicine
(SSGRR2002), 2002.

M. Jarrar, R. Verlinden, and R. Meersman. Ontology-based customer
complaint management. In M. Jarrar and A. Salaun, editors, Pro-
ceedings of the workshop on regulatory ontologies and the modeling
of complaint regulations, volume 2889 of LNCS, pages 594 — 606.
Springer Verlag, 2003.

G. Kamp, S. Lange, and C. Globig. Related Areas. In M. Lenz,
B. Bartsch-Sprl, H.-D. Burkhard, and S. Wess, editors, [LBSBW9S],
volume 1400 of Lecture Notes in Artificial Intelligence, chapter 13.
Springer, 1998.

U. Keller, R. Lara, A. Pollares, I. Toma, M. Kifer, and D. Fensel.
Wsmo web service discovery. D5.1 v 0.1, wsml working draft, 2004.

M. Lenz, B. Bartsch-Sprl, H.-D. Burkhard, and S. Wess, editors.
Case-Based Reasoning Technology: From Foundations to Applica-
tions, LNAI 1400, volume 1400 of Lecture Notes in Artificial Intel-
ligence. Springer, 1998.

Jean Lieber and Amedeo Napoli. Correct and Complete Retrieval for
Case-Based Problem-Solving. In H. Prade, editor, Proc. of the Eu-
ropean Conference on Artificial Intelligence, ECAI’98, pages 68—72.
John Wiley & Sons Ltd, Chichester, 1998.

H. Lausen, D. Roman, , and U. Keller. Web service modeling ontol-
ogy - standard (wsmo-standard), v. 1.0. Working draft, deri. available
online http://www.wsmo.org/2004/d2/v1.0, 2004.

R. Meersman. The use of lexicons and other computer-linguistic tools.
In Y. Zhang, M. Rusinkiewicz, and Y. Kambayashi, editors, Semantics,
Design and Cooperation of Database Systems, in The International
Symposium on Cooperative Database Systems for Advanced Applica-
tions (CODAS 99), LNCS. Springer Verlag, 1999.

Eduardo Mena and Arantza Illarramendi. Ontology-Based Query
Processing for Global Information Systems. Kluwer, 2001.

July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies

IST Project IST-2004-507482

[MLNO98]

[MMO1]

[MWO5]

[NLL96]

[Par72]

[PSZ05]

[RBG197]

[Rec99]

[Rou04]

[RPR"98]

[RR96]

KWEB/2004/D2.1.3.1/v1.1

E. Melis, J. Lieber, and A. Napoli. Reformulation in Case-Based Rea-
soning. In B. Smyth and P. Cunningham, editors, Proc. of the Euro-
pean Workshop on Case-Based Reasoning, EWCBR’98, Lecture Notes
in Artificial Intelligence 1488, pages 172-183. Springer, 1998.

Brian S. Mitchell and Spiros Mancoridis. Comparing the decompo-
sitions produced by software clustering algorithms using similarity
measurements. In Proceedings of the 17th IEEE International Con-
ference on Software Maintenance (ICSM 2001 ), pages 744—753, Flo-
rence, [taly, nov 2001.

Mala Mehrotra and Chris Wild. Analyzing knowledge-based systems
with multiviewpoint clustering analysis. Journal of Systems and Soft-
ware, 29(3):235 — 249, 1995. Special issue on software quality in
knowledge-based systems.

M.V. Nagendra Prassad, V.R. Lesser, and S.E. Lander. Retrieval and
Reasoning in Distributed Case Bases. Journal of Visual Communica-
tion and Image Representation, 7(1):74-87, 1996.

D.L. Parnas. On the criteria to be used in decomposing system into
modules. Communications of the ACM, 15(12):1053—1058, December
1972.

C. Parent, S. Spaccapietra, and E. Zimanyi. The MurMur project:
Modeling and querying multi-representation spatio-temporal data-
bases. Information Systems, 2005. To appear. Also available online
at http://www.sciencedirect.com/.

A. Rector, S. Bechhofer, C. Goble, I. Horrocks, W. Nowlan, and
W Solomon. The GRAIL concept modelling language for medical
terminology. Artificial Intelligence in Medicine, 9:139-171, 1997.

A Rector. Clinical terminology: Why is it so hard? Methods of Infor-
mation in Medicine, 38:239-252, 1999.

M-C. Rousset. Small can be beautiful. In Proceedings of the 3rd
International Semantic Web Conference (ISWC 2004), volume 3298
of LNCS, pages 6-16,2004.

J.E. Rogers, C. Price, A.L. Rector, W.D. Solomon, and N Sme-
jko. Validating clinical terminology structures: Integration and cross-
validation of read thesaurus and GALEN. Journal of the American
Medical Informatics Association, pages 845-849, 1998.

J. Rogers and A Rector. The galen ontology. In Medical Informatics
Europe (MIE 96), pages 174—178. 10S Press, 1996.

July 30, 2005 117



BIBLIOGRAPHY

[RSB98]

[RWRRO1]

[RZS99]

[SJO2]

[SK93]

[SK03a]

[SKO3b]

[SKO4a]

[SKO04b]

[Smy96]

118

C. Rosse, 1.G. Shapiro, and J.F Brinkley. The digital anatomist foun-
dational model: Principles for defining and structuring its concept do-
main. Journal of the American Medical Informatics Association, pages
820-824, 1998.

A.Rector, C. Wroe, J. Rogers, and A Roberts. Untangling taxonomies
and relationships: Personal and practical problems in loosely coupled
development of large ontologies. In Proceedings of the First Interna-
tional Conference on Knowledge Capture(K-CAP 2001), pages 139—
146. ACM, 2001.

A.L. Rector, PE. Zanstra, W.D. Solomon, J.E. Rogers, R. Baud,
W. Ceusters, J. Claassen Kirby, J.-M. Rodrigues, A.R. Mori, E.v.d.
Haring, and J Wagner. Reconciling users’ needs and formal require-
ments: Issues in developing a re-usable ontology for medicine. IEEE
Tran on Information Technology in BioMedicine,2:229-242,1999.

Kiril Simov and Stanislav Jordanov. Bor: a pragmatic daml+oil rea-
soner. Deliverable 40, On-To-Knowledge Project, June 2002.

A. Sheth and V. Kashyap. So far (schematically) yet so near (seman-
tically). In D.K. Hsiao, E.J. Neuhold, and R. Sacks-Davis, editors,
Interoperable Database Systems (DS-5), pages 283-312. IFIP Trans.
A-25, North-Holland, 1993.

H. Stuckenschmidt and M. Klein. Integrity and change in modular
ontologies. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI 2003), 2003.

H. Stuckenschmidt and M. Klein. Modularization of ontologies. De-
liverable 21. wonderweb project (ist 2001-33052), 2003.

Heiner Stuckenschmidt and Michel Klein. Ontology refinement —
towards structure-based partitioning of large ontologies. Wonderweb
Deliverable, 2004.

Heiner Stuckenschmidt and Michel Klein. Structure-based partition-
ing of large concept hierarchies. In Sheila A. Mcllraith, Dimitris Plex-
ousakis, and Frank van Harmelen, editors, Proceedings of the Third
International Semantic Web Conference (ISWC 2004), pages 289-303,
Hiroshima, Japan, nov 2004.

B. Smyth. Case-Based Design. PhD. thesis, Trinity College, Univer-
sity of Dublin, April 1996.

July 30, 2005 KWEB/2004/D2.1.3.1/v1.1



D2.1.3.1 Report on Modularization of Ontologies IST Project IST-2004-507482

[SP94]

[STOS5]

[SWCHO1]

[SWRR99]

[vVBHvdWOI1]

[WCO1]

[WSC104]

S. Spaccapietra and C. Parent. View integration: A step forward in
solving structural conflicts. IEEE Transactions on Data and Knowl-
edge Engineering, 6(2), 1994.

L. Serafini and A. Tamilin. Drago: Distributed Reasoning Architecture
for the Semantic Web. In A. Gomez-Prez and J. Euzenat, editors, Proc.
of the European Semantic Web Conference, ESWC 2005, LNCS 3532,
pages 361-376. Springer-Verlag, 2005.

K. Sullivan, G. William, Y. Cai, and B. Hallen. The structure and
value of modularity in software design. SIGSOFT Software Engineer-
ing Notes, 26(5):99-108, 2001.

W. Solomon, C. Wroe, J.E. Rogers, and A Rector. A reference termi-
nology for drugs. Journal of the American Medical Informatics Asso-
ciation, pages 152—155, 1999.

P. van Bommel, A.H.M. Hofstede, and Th.P. van der Weide. Se-
mantics and verification of object role models. Information Systems,
16(5):471-495, October 1991.

C. Wroe and J Cimino. Using openGALEN techniques to develop
the hl7 drug formulation vocabulary. In Proceedings of the American
Medical Informatics Association Fall Symposium(AMIA-2001), pages
766-770,2001.

H. Wache, L. Serafini, R. Garcia Castro, P. Groot, M. Jarrar, Y. Kom-
patsiaris, D. Maynard, J. Pan, F. Roelofsen, S. Spaccapietra, G. Sta-
mou, A. Tamilin, and I. Zaihrayeu. Scalability - state of the art. De-
liverable d2.1.1, eu-ist network of excellence (noe) ist-2004-507482
(kweb), 2004.

KWEB/2004/D2.1.3.1/v1.1 July 30, 2005 119



Related deliverables

A number of Knowledge web deliverable are clearly related to this one:

Project | Number | Title and relationship
KW | D2.1.1 | D2.1.1 Survey of Scalability Techniques for Reasoning with
Ontologies gives an overview of methods for modularsiation and
distributed reasoning.
KW | D2.2.1 | D2.2.1 Specification of a common framework for characteriz-
ing alignment discusses also modularisation of large ontologies.
WonderWeb | D2.1.1 | D21 Modularization of Ontologies discusses the infrastructure
and some aspects of modularsiation.

120




