——
I

knowledgeweb

realizing the semantic web

D2.1.1 Survey of Scalability Techniques for
Reasoning with Ontologies

Holger Wache (Vrije Universiteit Amsterdam)
Luciano Serafini (Centro per la ricerca scientifica e tecnologica)
Rail Garcia-Castro (Universidad Politécnica de Madrid)

with contributions from:
Perry Groot (Vrije Universiteit Amsterdam)
Asuncion Gomez-Pérez (Universidad Politécnica de Madrid)
Mustafa Jarrar (Vrije Universiteit Brussel)
Yiannis Kompatsiaris (Centre for Research and Technology Hellas)
Diana Maynard (University of Sheffield)
Jeff Pan (University of Manchester)

Rosario Plaza-Arteche (Universidad Politécnica de Madrid)
Floris Roelofsen (Centro per la ricerca scientifica e tecnologica)
Stefano Spaccapietra (Ecole Polytechnique Fédérale de Lausanne)
Giorgos Stamou (National Technical University of Athens)
Andrei Tamilin (Universita degli Studi di Trento)

Ilya Zaihrayeu (Universita degli Studi di Trento)

Abstract.
EU-IST Network of Excellence (NoE) IST-2004-507482 KWEB
Deliverable D2.1.1 (WP2.1)

This deliverable gives an overview of methods necessary for achieving scalability. This includes
general methods for approximating symbolic inference engines and for compiling knowledge
bases, different methods for modularisation and distributed reasoning, and a survey of bench-
marking to evaluate the proposed techniques for the Semantic Web.

Keyword list: state-of-the-art, scalability, approximation, modularisation, distribution, symbolic

reasonin
¢ Document Identifier KWEB/2004/D2.1.1/v1.2
Project KWEB EU-IST-2004-507482
Version vl.2
Date 02. August, 2004
State final
Distribution public

Copyright © 2004 The contributors

Knowledge Web Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European Com-

munities as project number IST-2004-507482.

University of Innsbruck (UIBK) - Coordinator
Institute of Computer Science

Technikerstrasse 13

A-6020 Innsbruck

Austria

Contact person: Dieter Fensel

E-mail address: dieter.fensel@uibk.ac.at

France Telecom (FT)

4 Rue du Clos Courtel

35512 Cesson Sévigné

France. PO Box 91226

Contact person : Alain Leger

E-mail address: alain.leger@rd.francetelecom.com

Free University of Bozen-Bolzano (FUB)
Piazza Domenicani 3

39100 Bolzano

Italy

Contact person: Enrico Franconi

E-mail address: franconi@inf.unibz.it

Centre for Research and Technology Hellas /
Informatics and Telematics Institute (ITI-CERTH)
1st km Thermi - Panorama road

57001 Thermi-Thessaloniki

Greece. Po Box 361

Contact person: Michael G. Strintzis

E-mail address: strintzi@iti.gr

National University of Ireland Galway (NUIG)
National University of Ireland

Science and Technology Building

University Road

Galway

Ireland

Contact person: Christoph Bussler

E-mail address: chris.bussler@deri.ie

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Computer Science Department

Swiss Federal Institute of Technology

IN (Ecublens), CH-1015 Lausanne

Switzerland

Contact person: Boi Faltings

E-mail address: boi.faltings@epfl.ch

Freie Universitit Berlin (FU Berlin)
Takustrasse 9

14195 Berlin

Germany

Contact person: Robert Tolksdorf
E-mail address: tolk@inf.fu-berlin.de

Institut National de Recherche en
Informatique et en Automatique (INRIA)
ZIRST - 655 avenue de I’Europe -
Montbonnot Saint Martin

38334 Saint-Ismier

France

Contact person: Jérome Euzenat

E-mail address: Jerome.Euzenat@inrialpes.fr

Learning Lab Lower Saxony (L3S)
Expo Plaza 1

30539 Hannover

Germany

Contact person: Wolfgang Nejdl
E-mail address: nejdl@learninglab.de

The Open University (OU)
Knowledge Media Institute

The Open University

Milton Keynes, MK7 6AA

United Kingdom

Contact person: Enrico Motta
E-mail address: e.motta@open.ac.uk

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo sn

28660 Boadilla del Monte

Spain

Contact person: Asuncién Gémez Pérez
E-mail address: asun@fi.upm.es

University of Liverpool (UniLiv)

Chadwick Building, Peach Street

L697ZF Liverpool

United Kingdom

Contact person: Michael Wooldridge

E-mail address: M.J.Wooldridge@csc liv.ac.uk

University of Sheffield (USFD)
Regent Court, 211 Portobello street
S14DP Sheffield

United Kingdom

Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Vrije Universiteit Amsterdam (VUA)

De Boelelaan 1081a

1081HV. Amsterdam

The Netherlands

Contact person: Frank van Harmelen

E-mail address: Frank.van. Harmelen@cs.vu.nl

University of Karlsruhe (UKARL)

Institut fiir Angewandte Informatik und Formale
Beschreibungsverfahren - AIFB

Universitit Karlsruhe

D-76128 Karlsruhe

Germany

Contact person: Rudi Studer

E-mail address: studer@aifb.uni-karlsruhe.de

University of Manchester (UoM)

Room 2.32. Kilburn Building, Department of Computer
Science, University of Manchester, Oxford Road
Manchester, M13 9PL

United Kingdom

Contact person: Carole Goble

E-mail address: carole@cs.man.ac.uk

University of Trento (UniTn)

Via Sommarive 14

38050 Trento

Italy

Contact person: Fausto Giunchiglia
E-mail address: fausto@dit.unitn.it

Vrije Universiteit Brussel (VUB)

Pleinlaan 2, Building G10

1050 Brussels

Belgium

Contact person: Robert Meersman

E-mail address: robert.meersman@ vub.ac.be

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to writing parts of this document:

Centre for Research and Technology Hellas
Ecole Polytechnique Fédérale de Lausanne
Free University of Bozen-Bolzano

Institut National de Recherche en Informatique et en Automatique
Learning Lab Lower Saxony

Universidad Politécnica de Madrid
University of Karlsruhe

University of Manchester

University of Sheffield

University of Trento

Vrije Universiteit Amsterdam

Vrije Universiteit Brussel

Changes

Version ‘ Date ‘ Author Changes

0.1 10.05.04 | Holger Wache creation

0.2 15.06.04 | Holger Wache updating the three parts

0.3 28.06.04 | Holger Wache including the comments

1.0 29.06.04 | Holger Wache finalized

1.1 18.07.04 | Holger Wache including the comments from WP leader,

p.p- Frank van Harmelen
1.2 02.08.04 | Holger Wache including the comments from quality con-

troller, Jérdme Euzenat

Executive Summary

Scalability is a very important requirement for Semantic Web techniques to be usable in
real world applications. This report gives an overview of techniques which may help to
achieve scalability.

Current proposals for Semantic Web languages such as the Web Ontology Language
OWL are based on formal logic. Consequently they share the advantages and disadvan-
tages of formal logic: a well-founded semantic can be used to derive implicit information,
however, at the price of a high computational complexity.

Techniques of approximate logical reasoning techniques are one option for dealing
with the complexity of reasoning. We look at general approximation techniques for log-
ical theories. This includes anytime algorithms, approximate entailment and abstraction
techniques. In order to be useful on the Semantic Web these techniques need to be exam-
ined and adapted to the particular needs of ontological knowledge encoded in semantic
web languages.

Distribution and parallelization of inference is another option for achieving scalability.
Partitioning and modularisation of ontologies is a first step in this direction. With modu-
larisation the amount of information that must be taken into account at the same time can
be reduced. Techniques from a wide range of different fields like database integration and
modularisation, partition-based reasoning, or ontology coordination are investigated. De-
centralised representations, however, raise the problem of heterogeneity which establishes
a thematic relation to working package 2.2 Heterogeneity.

Benchmarking is needed to evaluate the effectiveness of the proposed approaches to
increase scalability by measuring system performance in a deterministic and reproducible
manner. We give an overview of benchmarking and measurement from relevant research
areas and survey existing work on the evaluation of ontology-based tools.

Contents

1 Introduction 1
2 Approximation 3
2.1 Approximations related to the reasoning method 3
2.1.1 Anytime algorithms 4
2.1.2 Approximate entailment 7
2.13 Abstraction 11
2.2 Approximations related to the knowledgebase 13
2.2.1 Knowledge compilation, 14

2.2.2 Exact knowledge compilation: Prime implicants and prime im-
plicates 17
2.23 Approximate knowledge compilation: Theory approximation . . . 20
224 Approximation in ABox Reasoning 22

3 Distributed and Modular

Knowledge Representation & Reasoning 27
3.1 Introduction 27
32 Frameworks L 28
33 Evaluationcriteria 29
34 Modularisation oL 30
34.1 Database Modularisation 30
3.5 Partition-Based Reasoning oL 33
3.6 Integration e e 34
3.6.1 Ontology Integration 34
3.6.2 Database Integration 36
37 Coordination e 39
3.7.1 Ontology Coordination 39
3.7.2 Database Coordination 44
373 Contextual Reasoning 48
374 XML namespaceso i i e e e 52
3.8 Emergent Semantics L L 54
4 Benchmarking Ontology Technology 56

11

CONTENTS

4.1 Introduction 56
42 Benchmarking L L 57
42.1 Benchmark versus benchmarking 57

422 Benchmarking classifications 59

423 Benchmarking methodologies 59

4.3 Experimental Software Engineering 62
43.1 Definition 62

432 Classification of experiments 62

43.3 Methodologies 63

44 Measurement L e e e e e 66
44.1 Definitionso 66

442 Classification of software measures 66

443 Scales of software measures 67

444 Measurementmethods 68

4.5 Ontology technology evaluation 69
45.1 General framework for ontology tool evaluation 69

45.2 Evaluation of ontology building tools 70

4.5.3 Evaluation of ontology-based annotationtools 72

454 Evaluation of other ontology tools 74

45.5 Workload generation for ontology tools 76

456 RDFand OWL testsuites 77

4.5.77 Description Logics systems comparison 77

45.8 Modal Logics systems comparison 78

459 Automated Theorem Proving systems evaluation 79

5 Conclusion 81

v

02. August, 2004 KWEB/2004/D2.1.1/v1.2

Chapter 1

Introduction

by PERRY GROOT & HOLGER WACHE

To increase the scalability of symbolic problem solving systems, one can use a number
of techniques like approximation, modularisation, or distribution. There is already a vast
amount of research done in these areas. However, there are a number of characteristics of
symbolic problem solving methods applied to the Semantic Web one should keep in mind
before employing those kind of techniques. These characteristics are the following:

Use of logic: Many symbolic problem solving systems — especially those for the Se-
mantic Web — use some form of logic as representation and logical inference to
derive a solution. Hence, we are not dealing with numerical problems. This means
there is no obvious metric that tells us “how far we are” from the right answer to
an inference problem. Furthermore, a logical theory may be simpler to modularise
and distributed.

Multiple components: Scalability in symbolic problem solving can be achieved in more

Knowledge
Base

Reasoning
Input > Method > Output

Figure 1.1: A typical architecture for solving problems in symbolic problem solving.

1. INTRODUCTION

than one way. In general a typical architecture for symbolic problem solving is
shown in Figure 1.1. It consists of a reasoning method (i.e., algorithm), a knowledge
base, and an input, which together produce an output. For example, in diagnosis the
knowledge base consists of rules and facts about the way some system is expected
to behave, while the input consists of the observed behaviour of the system. The
reasoning method can be some form of logical inference that gives a diagnosis as
output, which gives an explanation whenever a discrepancy is found between the
observed behaviour and the expected behaviour.

Hence, to enhance the scalability of a system that fits the architecture in Figure 1.1,
one can apply a technique on three different components: the reasoning method, the
knowledge base, or the input. Either one of the components can be approximated, mod-
ularised, and/or distributed to enhance the scalability of the system. For example, the
inferences can be approximated with the help of anytime algorithms in order to produce
some output when needed. Also the inferences can be partitioned and distributed over a
network of computational resources.

But only to claim the scalability of some new techniques and tools is not enough.
In order to promote the Semantic Web it is also necessary to prove the effectiveness in
general and in particular the scalability. Therefore benchmarking is a fundamental part of
this working package.

The rest of this report gives a background of concepts and methods that can enhance
the scalability of symbolic problem solving methods and how benchmarking can be es-
tablished. First several approximation techniques for inferences and knowledge bases
are investigated. Because appropriate approximation techniques are rare more general
techniques are described. In the modularisation and distribution chapter a wide range
of different techniques and research areas are investigated and sorted into an appropriate
classification schema. Before this report conclude an overview about the benchmarking
is given. Because only a few studies for evaluating ontology-based tools exists and as
benchmarking activities appear all over Knowledge Web, we have chosen to present in
this deliverable a broader viewpoint of benchmarking and its related areas trying to estab-
lish a discussion base.

2 02. August, 2004 KWEB/2004/D2.1.1/v1.2

Chapter 2

Approximation

by PERRY GROOT

There is a large amount of literature dealing in some way with approximation. In our
analysis we dont restrict ourselves to considering approaches which are specifically and
explicitly designed to deal with ontologies. On the contrary, both from a formal and a
practical point of view, we think its relevant to also take into account certain rather more
general approaches, and to study how they can be deployed for reasoning with ontologies.

However, it falls outside the scope of this deliverable to describe this vast amount in
detail. This section is limited to those concepts that have a major influence in the field
of symbolic problem solving which is the fundament of the reasoning techniques for the
Semantic Web. This related work section is divided according to Figure 1.1. Section
2.1 discusses approximations related to the reasoning method where section 2.2 discusses
approximations related to the knowledge base. Approximation related to the input is
omitted because it falls not directly in the scope of this deliverable.

2.1 Approximations related to the reasoning method

Approximating the reasoning method to solve a problem approximately is probably the
most well known form of approximation among the forms of approximation identified
in Figure 1.1. A simple example of an approximation algorithm is demonstrated in the
following two player game. Given an interval [a, b], either continuous or discrete, and two
players A and B, player A picks a number n from the interval [a, b] and player B has to
guess it. Player B may repeatedly pick any number m from the interval [a, b] and player
A will tell him if n < m,n > m or n = m holds. An approximation algorithm for player
B would be to repeatedly pick a number from the remaining interval that contains 7.

Although simple, this algorithm belongs to an important group of approximation al-
gorithms called ‘anytime algorithms’ which will be introduced in the next section. A
more detailed view on anytime algorithms for approximating the logical entailment op-

3

2. APPROXIMATION

erator will follow. Because the key inferences for the Semantic Web are logic-based the
universal logical entailment operator is focused. A general overview over another group
of approximation — abstraction — will be given in the last section.

2.1.1 Anytime algorithms

Anytime algorithms are algorithms that exchange execution time for quality of results.
The term anytime algorithm was coined by Dean and Boddy in the late 1980s in their
work on time-dependent planning [Boddy and Dean, 1989, Dean and Boddy, 1988]. A
similar idea, called flexible computation was introduced in [Horvitz, 1987] in 1987 in
solving time-critical decision problems.

Anytime algorithms are important for symbolic problem solving for two reasons.
First, although many problems require a lot of resources (e.g., time) to solve them, many
systems can already produce good partial solutions in a short amount of time. A system
that can reason about how much time is needed to obtain an adequate result may be more
adaptive in complex and changing environments. Second, a technique for reasoning about
allocating time need not be restricted to the internals of a system. Intelligent agents must
be able to reason about how fast they and other agents can manipulate and respond to their
environment.

Not every algorithm that trades execution time for quality of results is necessarily
an anytime algorithm. The properties desirable for anytime algorithms are the following
[Zilberstein, 1996]:

Measurable quality: The quality of an approximate result can be determined precisely.

Recognisable quality: The quality of an approximate result can easily be determined at
run time.

Monotonicity: The quality of the result is a nondecreasing function of time and input
quality.

Consistency: The quality of the result is correlated with computation time and input
quality.

Diminishing returns: The improvement in solution quality is larger at the early stages
of the computation, and it diminishes over time.

Interruptibility: The algorithm can be stopped at any time and provide some answer.

Preemptability: The algorithm can be suspended and resumed with minimal overhead.

The algorithm described in the beginning of this section satisfies these properties. The
result of the algorithm after each step is the smallest remaining interval that contains the

4 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

number n we seek. By repeatedly choosing a number from the interval that contains 7,
it will become smaller and therefore be a better approximation of n. Let us denote the
interval given as output by the algorithm by I, its length by /(1), and define the quality of
the algorithm by

(b—a) =)

0=

Then () is a non-decreasing function which I
can easily be computed. In fact, when we di- VR
vide the interval each time in half and the num-)
ber n has not be found yet, the quality of the
algorithm can be computed exactly beforehand
without running the algorithm and can graphi- G
cally be represented as is done in Figure 2.1.
This graph clearly demonstrates some of the
desired properties (e.g., monotonicity, dimin- S
ishing returns, etc.). A graph like Figure 2.1 T e
in which the quality of an algorithm is plotted
against execution time is called a performance

profile.

Since the work of Dean and Boddy [Boddy and Dean, 1989, Dean and Boddy, 1988],
the context in which anytime algorithms have been applied has broadened from planning
and decision making to include problems from sensor interpretation to database manip-
ulation, and the methods for utilising anytime techniques have become more powerful.
In 1991, S.J. Russel and S. Zilberstein completed work on composing anytime algo-
rithms into more complicated systems [Russell and Zilberstein, 1991, Zilberstein, 1993,
Zilberstein and Russell, 1996]. By proving composition could be optimally performed
(i.e., using information about the algorithm’s performance to determine the best way to
divide the time between the components), it became possible to build complex anytime
systems by combining simple anytime components.

Figure 2.1: Quality of example algo-
rithm for first seven steps.

2.1.1.1 An Example: Query Approximation
by HOLGER WACHE

An example for anytime algorithms in the context of ontology reasoning was proposed
by Stuckenschmidt and van Harmelen [2002]. They propose an approach for approxi-
mating the answers to terminological queries based on non-equivalent transformations of
increasing exactness.

First ontology based queries as well as the notion of answers to and relations between
queries must be explained. Queries are formalised as conjuncts of predicates that corre-
spond to classes and relations of the ontology. Further, variables in a query may only be
instantiated by constants that correspond to objects/instaces in that ontology.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 5

2. APPROXIMATION

Definition 2.1.1 (Terminological Queries) Let V' be a set of variables then a termino-
logical query () over a knowledge base 'T" is an expressions of the form

Q — qi, N\ .. A G,

where q; are query terms of the form x : C or (z;y) : R such that x;y are variables
or instances, C'is a concept name, and R is a relation name.

The fact that all conjuncts relate to elements of the ontology allows us to determine
the answer to terminological queries in terms of instantiations of the query that are logical
consequences of the knowledge base it refers to. Therefore the set of answers res(Q) for
a query () consists of tuples (i1; ...; i), where i; are instances of the knowledge base.

Based on the possible answers to a query, semantic relations between different queries
can be defined that will later be used to characterise approximations.

Definition 2.1.2 (Query Containment and Equivalence) Let T' be a knowledge base
and (Q1; Q)2 conjunctive queries over I'. ()1 is said to be contained in another query (),
denoted by ()1 T Q- if for all possible sets of object definitions of a terminological knowl-
edge base the answers for)1 is a subset of the answers for Q3 : (res(Q1) C res(Q2)).
The two queries are said to be equivalent, denoted as ()1 = Qs iff Q1 € Q2 and Q5 = Q4

The underlying assumption of their approach is that less complex queries can be an-
swered in shorter time. Following this idea, Stuckenschmidt and van Harmelen propose to
compute a sequence ()1; ...; (), of queries starting with very simple ones while gradually
increasing their complexity. In order to use these simpler queries as approximations for
the original query they ensure the following properties of the sequence of queries:

2. Qn=0

The first property ensures that the quality of the results of the queries is not decreas-
ing (refer to “Monotonicity” in the previous section). The second claims that the last
query computed returns the desired exact result. Together, these properties ensure that the
sequence of queries approximate the exact result in an anytime behaviour.

Stuckenschmidt and van Harmelen discussed how to determine queries to be used for
the approximation. The process starts with the universal query @)y that returns all objects
in the knowledge base and successively adds conjuncts from the original query which
leads to a sequence of subsumed query. Further, as the original query has a finite number
of conjuncts, adding conjuncts necessarily leads to the original query after a finite number
of steps.

6 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

The critical part is the step of deciding which conjunct(s) to add next in order to
generate the next query in the sequence. This choice has a strong influence on the qual-
ity of the approximation. Stuckenschmidt and van Harmelen investigated two different
strategies for determining sequences of subsuming queries that try to avoid the problem
mentioned. They argue, that the next conjuncts added to the query expression have to
directly apply to the objects in the answer set. This in turn depends on the dependen-
cies between the variables in the query. The proposed approaches base on a query graph
[Horrocks and Tessaris, 2000], which they restrict to a query tree. The approaches dif-
fer in how the tree is traversed. [Stuckenschmidt and van Harmelen, 2002] gives more
details.

2.1.2 Approximate entailment

In the beginning of this introduction we stated that a characteristic of systems in symbolic
problem solving is the use of logic. This section looks at some approximate reasoning
methods that can be used to approximate any logical inference problem that uses the
logical entailment operator.

2.1.2.1 Boolean Constraints Propagation

One of those methods is Boolean Constraints Propagation (BCP) which is a variant of
unit resolution [McAllester, 1990]. BCP is a sound, but incomplete linear-time reasoner
that can be used to approximate the logical entailment relation. Sometimes BCP is also
called clausal BCP, because BCP is usually restricted to clauses. This restriction makes
BCP tractable. If BCP is not restricted to clauses, but general formulae are allowed, the
reasoner is called formula BCP and the method becomes intractable.

In [de Kleer, 1990] two techniques are suggested for using clausal BCP for theories
containing arbitrary formulae. In one, CNF-BCP, the formulae are first converted into
CNF, and in the other, Prime-BCP, clausal BCP is applied to the prime implicants of each
formula. Since computing prime implicants is itself an intractable problem, Prime-BCP
is also inherently intractable.

For CNF-BCP there are two methods to transform the formulae into CNF. If no new
symbols are added, then the conversion to CNF may lead to an exponential increase of
the size of the given theory. The transformation of a theory to CNF can be done in linear
time and space if new symbols are allowed to be added to the theory [Cook, 1971]. Each
new symbol will be used to represent some sub-formula of the theory. However, with this
method, reasoning with CNF-BCP is strongly inhibited.

Another method that extends BCP to non-clausal theories is Fact Propagation (FP)
[Dalal, 1992]. FP can be specified using a confluent rewrite system, for which an algo-
rithm can be written that has quadratic-time complexity in general, but is still linear-time
for clausal theories. Another advantage of FP is that it sometimes performs more infer-

KWEB/2004/D2.1.1/v1.2 02. August, 2004 7

2. APPROXIMATION

ences than CNF-BCP. A restricted form of FP (RFP) also exists which infers exactly the
same literals as CNF-BCP.

All the discussed methods (i.e., BCP, FP, and RFP) are incomplete reasoners. In
[Dalal, 1996a, Dalal, 1996b] a general technique is presented that can extend any in-
complete propositional reasoner satisfying certain properties to a family of increasingly-
complete, sound and tractable reasoners. Such a family of increasingly-complete, sound
and tractable reasoners is called an ‘anytime family’ of propositional reasoners, which, as
the name implies, can be used as an anytime algorithm.

These BCP-methods have not yet been studied in the specific context of reasoning with
ontologies. In particular, questions must be answered on how the inherent incompleteness
of these methods affects the typical logical structures that are found in ontologies (such
as class hierarchies), and in general a logical fragment restricted to unary and binary
predicates with only limited forms of quantification and negation.

2.1.2.2 S-1- and S-3-entailment

Another method for approximating logical inferencing was devised by Cadoli and Schaerf
and is called S-1- and S-3-entailment [Schaerf and Cadoli, 1995]. This method uses a
semantic approach and is based on a ‘classic’ method for incomplete reasoning, which
has been introduced by Levesque [Levesque, 1984, Levesque, 1988, Levesque, 1989] and
has since been studied by many other authors.

The method of Cadoli and Schaerf allows both sound approximations and complete
approximations and the approximate answers can be improved when more resources (e.g.,
computation time) are given to the reasoner. The approximate answer will converge to the
right answer provided there is enough time and motivation. Cadoli and Schaerf proposed
the following guidelines which are fulfilled by S-1- and S-3-entailment and may be de-
sirable for any approximation method:

Semantically well-founded: Approximate answers should give semantically clear infor-
mation about the problem at hand.

Computationally attractive: Approximate answers should be easier to compute than
answers to the original problem.

Improvable: Approximate answers can be improved, and eventually they converge to
the right answer (provided there is enough time and motivation).

Dual: Both sound approximations and complete ones should be described.

Flexible: The approximation method should be general enough to be applicable to a wide
range of reasoning problems.

8 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

For a precise definition of the approximate entailment operators by Cadoli and Schaerf
[1995] we assume that there is an underlying finite language L used for building all the
sentences. Symbols ¢ and f are used for denoting special propositional letters, which are
always mapped into 1 and 0, respectively. In the following we denote with S' a subset of
L.

Definition 2.1.3 (S-3-interpretation) An S-3-interpretation of L is a truth assignment
which maps every letter | of S and its negation —l into opposite values. Moreover, it does
not map both a letter | of L \ S and its negation —l into 0.

Definition 2.1.4 (S-1-interpretation) An S-I-interpretation of L is a truth assignment
which maps every letter | of S and its negation —l into opposite values. Moreover, it maps
every letter | of L\ S and its negation —l into 0.

The names given to the interpretations defined above can be explained as follows. For
an S-1-interpretation there is one possible assignment for letters outside S, namely false
for both x and —x. For an S-3-interpretation there are three possible assignments for
letters outside S, namely the two classical assignments, plus true for both x and —x. (As a
classical interpretation allows two possible assignments for letters, such an interpretation
is sometimes referred to as a 2-interpretation.)

Satisfaction of a formula by an S-1- or S-3-interpretation is defined as follows. The
formula is satisfied by an interpretation o if o evaluates the formula written in Negated
Normal Form (NNF) into true using the standard rules for the connectives.

The notions of S-1- and S-3-entailment are now defined in the same way as classical
entailment: A theory 7' S-1-entails a formula ¢, denoted by T |=; ¢, iff every S-1-
interpretation that satisfies 7" also satisfies ¢. S-3-entailment is defined analogously and
denoted by T' =5 ¢.

Let S,S" C L, T a generic propositional CNF formula, and ¢ a generic proposi-
tional clause not containing both a letter [and its negation —/. We use the shorthand
=9==5" denote T =7 ¢ = T =" ¢. These definitions then lead to the following result
[Schaerf and Cadoli, 1995]:

Theorem 2.1.5 (Approximate Entailment) Ler S, S’ C L, such that S C S', then
R e e T

This theorem tells us that =5 is a sound but incomplete approximation of the clas-
sical entailment =5, whereas [~y is a sound but incomplete approximation of %, (i.e.,
¥ =~y =~,). Furthermore, the theorem states that the accuracy of the approxima-
tions can be improved by increasing the parameter S until the approximations coincide
with the classical entailment.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 9

2. APPROXIMATION

Theorem 2.1.5 holds even if 7" is a NNF formula and ¢ is a generic formula in CNF.
This aspect has been analysed in [Cadoli and Schaerf, 1995], which analyses other normal
forms for which the result holds.

We will continue with some results, which show that S-i-entailment can be reduced
to S-i-satisfiability. Before doing so we introduce the following definition:

Definition 2.1.6 We denote with letters(vy) the set {I € L |l occurs in v} U {l €
L | =l occurs in ~}.

The next two theorems show that S-1- and S-3-entailment can be reduced to S-1- and
S-3-satisfiability, respectively.

Theorem 2.1.7 (Reducing S-1-entailment to S-1-satisfiability) Let v be ysU~g, where
both letters(vys) C S and letters(vg) NS = @ hold. T =¥ ~ holds iff T U {—ys} is not
S-1-satisfiable.

Theorem 2.1.8 (Reducing S-3-entailment to S-3-satisfiability) Let letters(y) C S hold.
T =5« holds iff T U {—} is not S-3-satisfiable.

Note that the condition letters(y) € S in Theorem 2.1.8 is not a restriction since
[Schaerf and Cadoli, 1995] also prove that 7’ }:5 v iff T }:gLJIEttev-s(ry) 5

These results extend the well-known relation existing between classical entailment
and satisfiability, namely 7' |= iff T' A — is unsatisfiable. The importance of such a
result is that S-3-satisfiability can be tested in the following way:

1. replace by ¢ all occurrences (both positive and negative) in 7' of letters which belong
to L \ S, thus obtaining the formula [T5.
2. test standard (2-valued) satisfiability of [T7]5.

In a similar way S-1-satisfiability can be tested in the following way:

1. replace by f all occurrences (both positive and negative) in 7" of letters which be-
long to L \ S, thus obtaining the formula [T];.
2. test standard (2-valued) satisfiability of [T

Hence, considering the above tests we can clarify S-1- and S-3-satisfiability by the
following syntactic operations. For a theory 7" in clausal form, 7" is S-1-satisfiable iff T’
is classically satisfiable after removing from every clause any literals with a letter outside
S. When this results in an empty clause, the theory becomes the inconsistent theory L.
Similarly, 7" is S-3-satisfiable iff 7" is classically satisfiable after removing every clause

10 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

from the theory that contains a literal with a letter outside S. This may result in the empty
theory T. Because of the close correspondence between S-1-, S-3-satisfiability and these
syntactic operations, we prefer to write - instead of =2

Cadoli and Schaerf present an algorithm that can be used to compute the S-1-satisfi-
ability and S-3-unsatisfiability of a generic formula. This algorithm runs in time exponen-
tial in |.S| and uses polynomial space. Furthermore, the algorithm can benefit from previ-
ous computations. More precisely, when S’ O .S, computing satisfiability with respect to
S’ can be done by using information gained in a previous step when the satisfiability was
computed with respect to S. Hence, the method can be used to approximate the classical
entailment operator from two directions (by using /¥ and I3 instead of the i operator)
in a stepwise fashion and is not harder (and usually easier) to compute than the original
problem. Furthermore some applications of this method to approximate diagnosis are
reported in [ten Teije and van Harmelen, 1997, ten Teije and van Harmelen, 1996].

In their original 1995 paper, Cadoli and Schaerf themselves already studied the use
of S1,3-entailment for Description Logics, and the provide the straightforward extension
of their method to first-order theories that is required for this. They are able to give a
precise approximate semantics for approximating a concept by a sequence of ever weaker
and stronger sub- or super-concepts. They apply their method to languages like ALC,
which are much weaker in expressivity then the languages currently being proposed for
ontology modelling on the Semantic Web such as OWL. Questions on the applicability of
their method to OWL are still open.

2.1.3 Abstraction
by HOLGER WACHE

Another possible way to approximate a reasoning method is abstraction. The ear-
liest and “undoubtedly one of the most influential work”[Giunchiglia et al., 1997] was
proposed by Sacerdoti [1973] with his ABSTRIPS. The complexity is reduced while ab-
stracting the operator descriptions in order to simplify the planning process finding a valid
sequence of operators which achieves some goals. Then the generated abstract plan can be
refined to a concrete plan solving the concrete problem. Most abstraction techniques fol-
low this principle: solving a problem on an abstract, simple level and refining the abstract
solution to the concrete problem to receive a concrete solution.

Abstraction is a very general techniques applied in a wide range of application do-
mains. Therefore the meanings and the intuitive understanding of the term “abstractions”
differ from application to application and from domain to domain. In this deliverable we
shall concentrate on abstraction for logical reasoning systems [Giunchiglia et al., 1997,
Nayak and Levy, 1995, Giunchiglia and Walsh, 1992] because as already mentioned they
are the key inferences in the Semantic Web.

Giunchiglia and Walsh [1992] were the first who developed a general framework
which unifies past work and provides a vocabulary to discuss different types of abstrac-

KWEB/2004/D2.1.1/v1.2 02. August, 2004 11

2. APPROXIMATION

tion [Nayak and Levy, 1995]. They define abstraction as a syntactic mapping of a problem
representation (the “base” representation > z) into a simpler one (the “abstract” represen-
tation X 4) that satisfies some desirable properties and simplifies the complexity of the
inference task [Frei and Faltings, 2000]. Formally they use the notion of a formal system
Y. = (A, ©) for representing problems, which consists of a set of formulae © written in
the language A.

Definition 2.1.9 (Syntactic Abstraction [Giunchiglia and Walsh, 1992]) An abstraction
[Xp = X4 is a pair of formal systems (X5, Y. 4) with the languages Ag and A 4 resp.
and a total function fn : Agp — A 4.

This definition allows to classify abstractions according to the relationship between
the set of theorems of the abstract theory TH (3 4) = {«| =, a} and the set of theorems
of the base theory TH(Xg). If TH(X,) is a subset of (resp. superset of or equal to)
T H(Xp), then the abstraction is called a TD (resp. TT or TC abstractions). Consequently
the set of theorems which would make a theory ¥ inconsistent (i.e. NTH(X) = {a|X U
{a}inconsistent} can be used to define NTD, NTI, and NTC abstractions respectively.

The theory of Giunchiglia and Walsh [1992] captures some important aspects of many
abstractions. For example any T* abstraction with additional property f(a —) =
f(a) — f(B) preserves the deducibility. Also for refutation systems it can be shown that
NT* abstractions which preserve negation (i.e. f(—a) = —f(«)) also preserve inconsis-
tency.

[Giunchiglia and Walsh, 1992] pointed out that in literature most practical abstrac-
tions are related to the (N)TT abstraction. For example, most complete and well developed
abstractions for resolution systems developed by Plaisted [Plaisted, 1981, Plaisted, 1980]
are excellent examples for NTI-abstraction. The complete discussion of the theory of
abstraction and more examples can be found in [Giunchiglia and Walsh, 1992].

However, Nayak and Levy argue in [Nayak and Levy, 1995] that viewing abstractions
as syntactic mappings as introduced by Giunchiglia and Walsh [1992] captures only one
aspect of abstractions — it omits to “capture the underlying justification that leads to that
abstraction”. As consequence the syntactic theory does not allow to compare or to rank
different (TD) abstractions e.g. in order to determine which is more natural. Therefore
Nayak and Levy introduce MI-abstractions, a strict subset of the TD abstractions. The MI
abstraction is performed in two steps: first, the domain model is abstracted and then the
intension of the abstraction is captured with some additional formulae which justify the
domain model abstraction. These additional formulae can be seen as a formalisation of

the semantic which bias the interpretations of the ground and abstract language Ap and
Ag.

Definition 2.1.10 (Semantic Abstraction [Nayak and Levy, 1995]) A semantic abstrac-
tion is defined as f : 1(Ag) — I(Aa), where I(A) is the set of interpretations of the
language A.

12 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

The MI abstraction provides some nice features. The resulting abstraction can be
proven to be the strongest one. Furthermore the MI abstraction can be determined auto-
matically [Nayak and Levy, 1995]. However, Giunchiglia et.al. [1997] like to see this as
a drawback because it complicates the process of defining an abstraction and generating
the abstract theory.

One of the motivation for using abstraction for approximating logical inferences is the
reduction of complexity. Korf [1990] was the first who shows that a search could be re-
duced from polynomial to linear in a planning domain. Knoblock [1989] and Giunchiglia
and Walsh [1990] discovered similar results. However, Biackstrom and Jonsson [1995]
argue that some abstractions can also slow down the planning process exponentially. In
practice this result is only of a technical matter which says in the set of all possible ab-
stractions there are some (namely //; and H> cf. [Bickstrom and Jonsson, 1995]) with
exponential growth of search space (Hy w.r.t. ;). But there will also be some abstrac-
tions with better complexity reduction [Giunchiglia ef al., 1997].

2.2 Approximations related to the knowledge base

One can enhance the scalability of a system by reducing the complexity of inferencing
from a knowledge base, as the computational complexity of reasoning is a well known
problem in symbolic problem solving. An area that deals with this problem for knowledge
bases written in some logical language is knowledge compilation. The underlying idea of
knowledge compilation is that a knowledge base does not change much over time. The
goal of knowledge compilation is to translate the knowledge into (or approximate by)
another knowledge base with better computational properties. This ‘compiled’ knowledge
base can be re-used to solve many problem instances (so-called ‘on-line’), thereby saving
time and computational resources when compared to solving the problem instances with
the original knowledge base.

However, it is not always possible to make on-line reasoning more efficient in all
cases. For some important problems the requirements are unlikely to be achieved. Two
classical approaches have been developed for addressing the computational hardness of
reasoning problems, which are language restriction and theory approximation. Tradition-
ally these methods have been used for achieving tractability in reasoning problems. They
can be described as follows:

Language restriction. The language used to represent knowledge may be restricted.
Then knowledge is compiled into the restricted language. One can still represent
interesting cases and one can compile the resulting problems.

Theory approximation. One can compile the theory into another “easier” theory. Dur-
ing the compilation one give up the soundness or completeness in the answer to the
original reasoning problem. This means that either certain information is lost in the

KWEB/2004/D2.1.1/v1.2 02. August, 2004 13

2. APPROXIMATION

compilation phase, or that the theory is compiled into an equivalent theory and the
soundness or completeness in the answer is lost in the on-line reasoning phase.

The language restriction has not been considered often in the knowledge compilation
setting. On the other hand, the theory approximation approach has had some success.

In section 2.2.1 we look at knowledge compilation techniques in general; the next
sections gives an example how to achieve knowledge compilation. Approaches for exact
knowledge compilation are presented in the section 2.2.2. Approximation techniques
come in the following section 2.2.3. In section 2.2.4 we refer to the most promising
approach restricting the representation language.

Please note that the techniques presented here are most often concerned with proposi-
tional languages.

2.2.1 Knowledge compilation

Many systems in symbolic problem solving for the Semantic Web use logic as representa-
tion language. However, the logical approach also has some drawbacks. The complexity
of logical entailment is such a drawback. It is well known that deduction in a logical
formalism is very much demanding from a computational point of view. Many problems
and tasks (e.g., planning, diagnosis, and configuration) that we are typically dealing with
in symbolic problem solving are already intractable for the simple varieties. Since such
tasks still have to be performed, several methods were developed to deal with this kind of
problem.

A technique called knowledge compilation is such a method that can be used to deal
with computational difficulties. The underlying idea of knowledge compilation is that
many reasoning problems can be split into two parts: a knowledge base and a query.
For example, in diagnosis the knowledge base consists of rules and facts about the way
some system is expected to behave. When there exists a discrepancy between the ob-
served behaviour and the way the system is expected to behave, the knowledge base is
queried to give a cause for this discrepancy. In this case the query can be a conjunction of
specific facts reflecting the current state (i.e., observations), which implies the cause for
discrepancy (in the context of the knowledge base). More specifically, in diagnosis the
knowledge of the expected behaviour of a system is represented by a theory 7', the current
state is represented by some formula /' (e.g., a conjunction of facts), and some cause is
represented by a literal /. The problem of determining 7" U F' I [is logically equivalent
to T' = ' = [. This problem can be considered to have two parts: the theory 7" is the
‘knowledge base’, and F' = [is the ‘query’ of the problem.

In a typical scenario, the knowledge base remains unchanged over a long period of
time and is used to answer many queries. In knowledge compilation the idea is to split
this kind of reasoning into two phases:

14 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

1. In the first phase the knowledge base is pre-processed by translating it into an ap-
propriate data structure, which allows for more efficient query answering. (This
phase is also called off-line reasoning.)

2. In the second phase, the data structure, which resulted from the previous phase, is
now used to answer the query. (This phase is also called on-line reasoning.)

The goal of the pre-processing is to make on-line reasoning computationally easier with
respect to reasoning in the case when no pre-processing is done at all.

Pre-processing is quite common in Computer Science. For example, compilers usually
optimise object code or a graph can be pre-processed to obtain a data structure that allows
for a fast node reachability test. However, in Computer Science pre-processing is usually
done for problems, which are already solvable in polynomial time. What characterises
the same study of such techniques in the context of symbolic problem solving is that
reasoning problems are often NP-hard.

The rest of this section is divided as follows. Next we give the terminology we will
use as well as some formal definitions. Thereafter, we discuss several methods used in
knowledge compilation. These methods are divided into exact methods and approximate
methods.

2.2.1.1 Knowledge compilation: terminology

First we introduce a simple reasoning problem which will be used as running example. A
reasoning problem is always specified by means of (1) its instances, and (2) the question
we are expected to solve. The Literal Entailment problem, which is our running example,
is specified as follows:

Instance: Finite set L of Boolean variables, a propositional formula in Conjunctive Nor-
mal Form 7', and a literal [(both 7" and [are built using variables in).

Question: Is it true that all models of 7" are models of [(i.e., that T' |= [)?

Usually a problem is represented as a pair Instance/Question. However, this
representation does not tell us which part of Instance is fixed. Another representation
is therefore needed that clearly splits an instance into a fixed and a variable part. For
example, we stated before that many reasoning problems can be considered to consist of
two parts: a knowledge base and a query. The knowledge base is not changed often and
can therefore be pre-processed and used to answer many problem instances. The query
on the other hand is posed to the knowledge base and will be different for each instance.
To address the pre-processing aspects in knowledge compilation, we will therefore use
the following terminology [Cadoli, 1993, Cadoli, 1996]:

KWEB/2004/D2.1.1/v1.2 02. August, 2004 15

2. APPROXIMATION

Fixed part of a problem: The part of a problem that goes to pre-processing when a prob-
lem is compiled (e.g., a propositional formula 7" in CNF). !

Variable part of a problem: The part that does not go through pre-processing (e.g., a
literal [).

(Structured) problem: A triple consisting of the type of question that we ultimately
want to solve, its fixed part, and its variable part (e.g., [T = [, T, (]).

Which part of the problem is considered fixed or variable may depend on the knowl-
edge about the domain.

We stated before that the goal of knowledge compilation is to make on-line reasoning
easier with respect to reasoning in the case when no pre-processing is done at all. An
example problem for which this goal can be attained is our running example the Literal
Entailment problem. Without pre-processing, the Literal Entailment problem is coNP-
complete, but after compiling it, the problem [T" = [, T, 1] can be solved on-line in time
polynomial in |7'| + |I|. This can be done as we can record on a table, for each literal
[occurring in 7', whether 7' |= [or not. The size of the table is in O(n), where n is
the cardinality of the alphabet L of 7'. The table can be consulted in O(n) time. Note
that creating the entire table means solving O(n) instances of a coNP-problem, but this
is done off-line and in knowledge compilation one is not concerned with these off-line
computational costs.

The compilation of our running example [7" |= [, T', [] contains two aspects which are
important:

1. The output of the pre-processing part is a data structure (e.g., a set of propositional
formulae), which has size polynomial with respect to the fixed part.

2. On-line reasoning takes time polynomial in the size of the data structure and the
size of the variable part.

Furthermore, it is believed that the same pre-processing should facilitate the answer to
a whole class of queries — not just one. Intuitively, the effort spent in the pre-processing
phase pays off when its computation time is amortised over the answers to many queries.
Finally, even if the compilation process can take a substantial amount of time, it must
always terminate. The aspects mentioned above can be used as guidelines to formalise
the notion of a compilable problem. The following definition is from [Cadoli ef al., 1994]:

Definition 2.2.1 (Compilable problem) A problem [P, F, V] is compilable if there exist
two polynomials p,, ps and an algorithm ASK such that for each instance f of F there is
a data structure D such that:

Note that the vague term ‘the part’ is intentionally used as knowledge compilation can be used on many
kinds of data structures (e.g., formulae, models). However, within this report we only consider knowledge
compilation of propositional formulae and ‘the part’ can be considered to be a set of propositional formulae
representing for example a knowledge base.

16 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

1. |Dysl < pu(If])-
2. for each instance v of V the call ASK(Dy,v) returns yes if and only if (f,v) is a

“ves” instance of P.
3. ASK(Dy,v) requires time < ps(|v| + | D¢|).

Remember, that in Definition 2.2.1 P stands for the type of question we ultimately
want to solve. For example, does the knowledge base entail a certain literal, or can a
certain cause explain the discrepancy between observations and system description. Fur-
thermore, in Definition 2.2.1 F' stands for the fixed part of the problem, and V' stands for
the variable part of the problem. In Definition 2.2.1, Constraint 1 states that the size of
some data structure D; is polynomial in the size of some instance f of F'. Constraint
2 states that D can be used to answer an instance (f,v) of P for any instance v of V.
Hence, from Constraints 1 and 2 follows that D stands for the compilation of f. Finally,
Constraint 3 states that any instance (f, v) can be answered in time polynomial in the size
o] + Dy .

In case Definition 2.2.1 does not hold for a problem [P, F, V] such a problem is said
to be incompilable.

In the rest of this section, we will describe various knowledge compilation methods
(for propositional theories). The methods are divided into methods which exactly translate
the original theory into another form (Section 2.2.2) and methods which translate the
original theory into a form that approximates the original theory (Section 2.2.3).

2.2.2 Exact knowledge compilation: Prime implicants and prime im-
plicates

A knowledge compilation method is called exact when the original theory is compiled
into a logically equivalent theory. Proposals for exact knowledge compilation can be
classified in three main methods [Cadoli, 1993]:

1. use prime implicants or prime implicates.

2. add to the knowledge base only those prime implicates that make any deduction
possible by unit resolution.

3. use prime implicates with respect to a tractable theory.

Note that an implicant of a theory X is a conjunction of literals D such that D = > and
D does not contain two complementary literals; a prime implicant is a minimal implicant
with respect to set containment. An implicate of a theory ¥ is a disjunction of literals C'
(a clause) such that ¥ = C and C' does not contain two complementary literals; a prime
implicate is a minimal implicate with respect to set containment.

The simplest proposals on exact knowledge compilation use the fact that knowledge
bases have normal forms (e.g., CNF and DNF) from which consequences can be easily
computed.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 17

2. APPROXIMATION

For example by taking the disjunction of all prime implicants Dy, ..., D; of a knowl-
edge base K B one obtains a DNF formula D; V ---V Dj which is equivalent to KB
[Quine, 1959], such that for every query @), KB = Q iff for every prime implicant D;,
D; E Q. If @ is in CNF this amounts to verify that every clause of () has a non-empty
intersection with each D;. Hence, entailment of CNF queries can be computed in time
polynomial in the size of the set of prime implicants plus the size of the query.

Dually one can take the conjunction of all prime implicates Cj, ..., C} of a knowl-
edge base K B to obtain a CNF formula C; A --- A C} which is equivalent to KB
[Reiter and de Kleer, 1987]. For every CNF query @), KB |= @ iff for each nontau-
tologous clause C” of () there is a prime implicate C' of KB such that C' = (', ie.,
C' C (. Hence, the entailment of CNF queries can be computed in time polynomial in
the size of the set of prime implicates plus the size of the query.

Intuitively all prime implicates of a CNF knowledge base can be found by resolving
clauses (each resolvent is an implicate) and discarding implicates which are not prime.
However, this method may require too many resolution steps. Research on algorithms for
computing prime implicates already started a long time ago and can be found for example
in [Tison, 1967, Jackson and Pais, 1990, de Kleer, 1992, Simon and del Val, 2001].

However, the number of prime implicants and prime implicates of a knowledge base
with n variables was shown in [Chandra and Markowsky, 1978] to be exponential in 7 in
the worst-case. In [Schrag and Crawford, 1996b] an experimental study of the number of
prime implicants and prime implicates for CNF knowledge bases of increasing size was
performed.

Unit-resolution-complete compilation Since the number of prime implicates can be
exponential an enhanced method was proposed in [del Val, 1994]. The method is based on
the observation that entailment of a CNF query and a prime-implicates-compiled knowl-
edge base can be done by checking whether each query clause is contained in a prime
implicate. This check for containment is a form of unit-resolution refutation, which is
defined as follows:

Definition 2.2.2 Unit resolution is a form of resolution where at least one of the two
clauses to be resolved is a single literal.

Unit resolution is sound, but incomplete, i.e., not all refutations can be found by unit
resolution. Negating a clause in the query yields a set of negated literals, and by unit
resolution one obtains the empty clause if and only if there is a prime implicate made by
a subset of the literals in the clause.

By substituting the set-containment check with unit resolution refutation, one does not
need to keep all prime implicates, but only the subset of prime implicates from which each
prime implicate can be derived by unit resolution. Since every unit resolution refutation
needs polynomial time in the size of the initial clauses to be refuted, this method also

18 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

turns a coNP-complete method into a problem solvable in polynomial time with respect
to the size of the formula produced by pre-processing.

In [del Val, 1994] cases are given in which unit refutation can discard an exponential
number of prime implicates. However, the method is limited to CNF knowledge bases
(i.e., although any formula can be translated into an equivalent CNF formula, this may
increase its size exponentially).

Theory prime implicates Another method was developed by Marquis [1995]. He starts
observing that prime implicants and prime implicates methods are based on transforming
the problem K B |= @ (Q being a clause), involving the entire knowledge base K B, into
local tests involving one prime implicant/implicate at a time. He proposes to enhance
such local tests with a theory, while keeping its complexity to be polynomial-time.

Definition 2.2.3 A theory prime implicate of a knowledge base K B with respect to a
theory ® is a clause C such that K BU® |= C and for each other clause C' if KBU® =
C"and @ U C'" = C thenalso U C = C'.

The theory prime implicates of a knowledge base K B with respect to a theory ® will
be denoted by TPI(/K B,P). Note that when @ is an empty knowledge base one obtains the
definition of prime implicate, i.e., TPI(K B,&) = PI(K B). Hence, theory prime implicates
extend prime implicates.

Observe that checking ® U {C'} |= C" is equivalent to check, for each literal [; € C,
whether ® = —l; U C". The key point is that if deduction in the theory ® can be done in
polynomial time entailment of CNF queries can be computed in time polynomial in the
size of the set of theory prime implicates.

Marquis suggests as good candidates for ® the set of all Horn clauses of K B, the set
of all binary clauses of K B, and many others. In general, any subset of K B such that
entailment is tractable can be used. However, for a knowledge base K B and two theories
® and ¢’ such that KB = ¢’ and &' = ® holds we have that the number of clauses
of TPI(K B,®) can never be larger than TPI(K B,®’) (Corollary 2 in [Marquis, 1995]).
Hence, to get the best theory prime implicate compilation we only have to consider the
largest subsets (with respect to set inclusion) of a knowledge base K B.

Marquis gives examples in which the number of theory prime implicates is exponen-
tially smaller than the number of del Val’s filtered prime implicates. Furthermore, in
[Marquis and Sadaoui, 1996] Marquis and Sadaoui give an algorithm for computing the-
ory prime implicates, which is based on Binary Decision Diagrams. With this algorithm,
the initial knowledge base does not need to be in CNF, and the prime implicates of KB
need not be generated. This reduces considerably compilation operations, as shown in
some experiments.

In summary, the three classes of exact knowledge compilation methods given in the
beginning of Section 2.2.2 are ordered according to the effectiveness of the method.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 19

2. APPROXIMATION

Each method is at least as good as its predecessors, and for each method there exists
a theory that can be compiled exponentially smaller than when using one of the ear-
lier described knowledge compilation methods. However, according to a theorem in
[Selman and Kautz, 1996] it is highly unlikely that one of the described methods (or any
exact knowledge compilation method) can compile every theory into a polynomial data
structure.

To overcome some of the drawbacks of exact knowledge compilation methods some
of the requirements might be weakened. We will look at some of these methods in the
following section.

2.2.3 Approximate knowledge compilation: Theory approximation

The theory approximation approach is analogous to optimisation problems. In both cases,
we are interested in approximate solutions that are meaningful. However, in Knowledge
Representation we are not dealing with numerical problems. This means there is no obvi-
ous metric that tells us “how far we are” from the right answer to an entailment problem.
The approximation of the answer to an entailment problem should therefore be grounded
on a semantical basis.

The underlying idea in approximate knowledge
S = a? compilation is that answers to a query can be ap-
proximated from two sides. Either with an answer
that is sound but incomplete or with an answer that
Return . :
yes' is complete but unsound. A sound-but-incomplete
answer approximates the correct answer as a ‘yes’
answer is correct while a ‘no’ answer is in fact
a ‘don’t know’. A complete-but-unsound answer
oo approximates the correct answer as a ‘no’ answer
is correct while a ‘yes’ answer is in fact a ‘don’t
know’. Obviously, in both cases one wants to
have an approximation that can be computed us-
ing fewer resources.

Figure 2.2: 'Fas'F querying using The ideas mentioned above can be formalised
theory approximations. as follows. An approximation A of a knowledge

base X is sound when for every query Q,if A = Q)
then ¥ = . In this case A is called an upper bound for 3. Observe that A is an upper
bound (UB) for ¥ if and only if > = A holds. Dually, an approximation B of a knowledge
base X is complete when for every query @, if B [~ @ then X [~ (). In this case, B is
called a lower bound (LB) for ¥, and B |= ¥ holds.

The approximations can be used to improve the efficiency of query answering. Sup-
pose we have a knowledge base > and we want to determine if a formula « is implied by
the knowledge base Y. This can be done as depicted in Figure 2.2 where ;5 is an upper

Return "don’t know" or
fall back on original theory

20 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

bound of > and X 5 is a lower bound of Y. First, the system tries to answer the query
quickly by using the approximations. If X5 = « then it returns ‘yes’, or if ¥, 5 £ «
then it returns ‘no’. In case no answer is obtained, the system could simply return ‘don’t
know’, or it could decide to spend more time and use a general inference procedure to de-
termine the answer directly from the original theory. In the latter case, the approximations
could still be used to prune the search space of the inference procedure. For example, in
[Kautz and Selman, 1994] queries are answered using a knowledge base > and also an-
swered using the knowledge base > conjoined with its unit LUB. The latter is shown to
speed up the query answering in their experimental setup.

2.23.1 Anytime versions of exact compilation methods

Any of the exact knowledge compilation methods discussed previously in Section 2.2.2
can be turned into an approximate method by stopping it before it is completed, because
these methods are anytime algorithms. In fact, we can be a bit more precise about the
approximations of some algorithms.

The methods based on implicates as del Val’s [1994] and Marquis’ [1995], yield upper
bounds when stopped before the entire compilation is finished. As for each implicate C'
by definition ¥ = C holds, it also holds that ¥ |= PI,(X), with PI,,(X) denoting all
implicates computed after n steps of one of the algorithms described in Section 2.2.2.
Hence P1,(X) is an upperbound of .

The methods computing implicants like Schrag’s [1996a], yield lower bounds when
stopped before the entire compilation is finished. As for each implicant D of Y it holds
by definition that D |= ¥, it follows that whenever D [~ @ for each already computed
implicant and for some query () that > [~ (). Hence, the computed implicants form a
lowerbound of the theory ..

2.2.3.2 Horn approximations

In [Selman and Kautz, 1991] an original method to approximate knowledge bases was
developed which was extended in [Selman and Kautz, 1996]. The idea is to compile
a knowledge base into a formula which belongs to a syntactic class which guarantees
polynomial-time inference.

In the method developed in [Selman and Kautz, 1991] a knowledge base is approx-
imated by a Horn formula. The basic idea is to bound a set of models of the original
theory from below (i.e., complete) and from above (i.e., sound) which is formalised in the
following definition.

Definition 2.2.4 Let 3. be a set of clauses. The set X1, and Yy of Horn clauses are
respectively a Horn lower bound and a Horn upper bound of Y. if and only if

KWEB/2004/D2.1.1/v1.2 02. August, 2004 21

2. APPROXIMATION

M(Erp) € M(X) € M(Zyg)

or, equivalently,

ELB IZ hy): EUB.

Instead of using any pair of bounds to characterise the original theory, we would like
to use the best possible bounds. This leads to a greatest Horn lower bound and a least
Horn upper bound.

Definition 2.2.5 Let Y. be a set of clauses. The set g of Horn clauses is a greatest
Horn lower bound of ¥ if and only if M(YXcrp) C M(X) and there is no set ¥ of Horn
clauses such that M(X¢rp) C M(X') C M(Z).

Definition 2.2.6 Let X be a set of clauses. The set Y15 of Horn clauses is a least Horn
upper bound of ¥ if and only if M(X) C M(Xyp) and there is no set 3 of Horn clauses
such that M(X) C M(¥') C M(ZLug).

Each theory has a unique LUB (up to logical equivalence), but can have many different
GLBs.

As shown in Figure 2.2, inference can be approximated by using the Horn GLBs and
Horn LUBs. In this way, inference could be unsound or incomplete, but it is always
possible to spend more time and use a general inference procedure on the original theory.

Similar to Horn bounds other bounds can also be used. In [Selman and Kautz, 1996]
the GLB and LUB are computed, which only contain unit clauses (i.e., substitute in the
definitions above unit clause for Horn clause). Their experimental results show that such a
restricted language for the bounds can already lead to a substantial savings in computation
time.

2.24 Approximation in ABox Reasoning
by JEFF PAN

The W3C recommendation OWL is a recently emerged standard for expressing on-
tologies in the Semantic Web. One of the main features of OWL is that there is a direct
correspondence between (two of the three “species” of) OWL and Description Logics
(DLs) [Horrocks and Patel-Schneider, 2003].

Unfortunately, while existing techniques for TBox reasoning (i.e., reasoning about
concepts) seem able to cope with real world ontologies [Haarslev and Moller, 2001a,
Horrocks, 1998], it is not clear if existing techniques for ABox reasoning (i.e., reasoning
about individuals) will be able to cope with realistic sets of instance data. This difficulty

22 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

arises not so much from the computational complexity of ABox reasoning, but from the
fact that the number of individuals (e.g., annotations) might be extremely large — even in
scenarios where scalability matters.

In this section, we describe an approach to ABox reasoning that restricts the language
and deals with role-free ABoxes, i.e., ABoxes that do not contain any axioms asserting
role relationships between pairs of individuals. The result, which we call an Instance
Store, is a system that can deal with very large ABoxes, and is able to provide sound and
complete answers to instance retrieval queries (i.e., computing all the instances of a given
query concept) over such ABoxes.

Although this approximation may seem a rather severe restriction, the functionality
provided by the Instance Store is precisely what is required by many applications, and in
particular by applications where ontology based terms are used to describe/annotate and
retrieve large numbers of objects. Examples include the use of ontology based vocabulary
to describe documents in “publish and subscribe” applications [Uschold et al., 2003], to
annotate data in bioinformatics applications [GO,] and to annotate web resources such
as web pages [Dill ef al., 2003] or web service descriptions [Li and Horrocks, 2003] in
Semantic Web applications.

2.2.4.1 Instance Store

An ABox A is role-free if it contains only axioms of the form x : C'. We can assume
without loss of generality that there is exactly one such axiom for each individual as
x : C'LU—=C holds in all interpretations, and two axioms z : C' and = : D are equivalent to
asingle axiom z : (CT1D). It is well known that for a role-free ABox, instantiation can be
reduced to TBox subsumption [Hollunder, 1996, Tessaris, 2001]; i.e., if £ = (7, A), and
Aisrole-free,then K = x: Diffz: C € Aand 7 = C C D. Similarly, if € = (7, A)
and A is a role-free ABox, then the instances of a concept D could be retrieved simply
by testing for each individual = in A if K = x : D. This would, however, clearly be very
inefficient if 4 contained a large number of individuals.

An alternative approach is to add a new axiom C, = D to 7 for each axiom x : D in
A, where C, is a new atomic concept; such concepts will be called pseudo-individuals.
Classifying the resulting TBox is equivalent to performing a complete realisation of the
ABox: the most specific atomic concepts that an individual x is an instance of are the most
specific atomic concepts that subsume C, and that are not themselves pseudo-individuals.
Moreover, the instances of a concept D can be retrieved by computing the set of pseudo-
individuals that are subsumed by D.

The problem with this latter approach is that the number of pseudo-individuals added
to the TBox is equal to the number of individuals in the ABox, and if this number is
very large, then TBox reasoning may become inefficient or even break down completely
(e.g., due to resource limits). The basic idea behind the Instance Store is to overcome
this problem by using a DL reasoner to classify the TBox and a database to store the

KWEB/2004/D2.1.1/v1.2 02. August, 2004 23

2. APPROXIMATION

ABox, with the database also being used to store a complete realisation of the ABox,
1.e., for each individual x, the concepts that x realises (the most specific atomic concepts
that x instantiates). The realisation of each individual is computed using the DL (TBox)
reasoner when an axiom of the form x : C'is added to the Instance Store ABox.

A retrieval query to the Instance Store (i.e., computing the set of individuals that
instantiate a query concept) can be answered using a combination of database queries and
TBox reasoning. Given an Instance Store containing a KB (7, .4) and a query concept
@, the instances of () can be computed using the following steps:

1. use the DL reasoner to compute C, the set of most specific atomic concepts in 7
that subsume (), and D, the set of all atomic concepts in 7 that are subsumed by

Q;

2. use the database to compute A, the set of individuals in .4 that realise some concept
in D, and Ac, the set of individuals in 4 that realise every concept in C;

3. use the DL reasoner to compute A, the set of individuals x € A such that z : B
is an axiom in 4 and B is subsumed by Q);

4. return the answer Ag U Ag,.

It can be shown that the above procedure is sound and complete. Note that if () is
equivalent to an atomic concept X, then {X} C C C D, and the answer Ag can be
returned without computing Ag,.

2.24.2 An Optimised Instance Store

In practice, several refinements to the above procedure are used to improve the perfor-
mance of the Instance Store. In the first place, as it is potentially costly, one should try
to minimise the DL reasoning required in order to compute realisations (when instance
axioms are added to the ABox) and to check if individuals in Ao are instances of the
query concept (when answering a query).

One way to (possibly) reduce the need for DL reasoning is to avoid repeating com-
putations for “equivalent” individuals, e.g., individuals x1, x5 where x; : C and x5 : Cs
are ABox axioms, and (' is equivalent to C5 (concepts C' and D are equivalent, written
C = D,iff C C Dand D C (). As checking for semantic equivalence between two
concepts would require DL reasoning (which should be avoided), the optimised Instance
Store only checks for syntactic equality using a database lookup.? Individuals are grouped
into equivalence sets, where each individual in the set is asserted to be an instance of a

2The chances of detecting equivalence via syntactic checks could be increased by transforming concepts
into a syntactic normal form, as is done by optimised DL reasoners [Horrocks, 2003], but this additional
refinement has not yet been implemented in the Instance Store.

24 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

syntactically identical concept, and only one representative of the set is added to the In-
stance Store ABox as an instance of the relevant concept. When answering queries, each
individual in the answer is replaced by its equivalence set.

Similarly, repeated computations of sub and super-concepts for the same concept (e.g.,
when repeating a query) can be avoided by caching the results of such computations in
the database.

Finally, the number and complexity of database queries also has a significant impact
on the performance of the Instance Store. In particular, the computation of A can be
costly as D (the set of concepts subsumed by the query concept () may be very large. One
way to reduce this complexity is to store not only the most specific concepts instantiated
by each individual, but to store every concept instantiated by each individual. As most
concept hierarchies are relatively shallow, this does not increase the storage requirement
too much, and it greatly simplifies the computation of A: it is only necessary to compute
the (normally) much smaller set D’ of most general concepts subsumed by (), and to query
the database for individuals that instantiate some member of D’. On the other hand, the
computation of Ac is slightly more complicated as Ag must be subtracted from the set
of individuals that instantiate every concept in C. Empirically, however, the saving when
computing Ag seems to far outweigh the extra cost of computing A¢.

2.24.3 Implementation

The Instance Store has been implemented using a component based architecture that is
able to exploit existing DL reasoners and databases. The core component is a Java appli-
cation that implements an API and, for test purposes, a simple user interface. The Instance
Store connects to a DL reasoner via the DIG interface [Bechhofer, 2003], and can there-
fore use one of several DIG compliant reasoners, including FaCT [Horrocks, 1998] and
RACER [Haarslev and Moller, 2001b]. It also connects to a DB via standard interfaces,
and has been tested with HSQL?, MySQL* and Oracle®.

initialise(Reasoner reasoner, Database db, TBox t)
assert(Individual i, Description D)

remove (Individual i)

retrieve(Description Q): Set(Individual)

Figure 2.3: Instance Store basic functionality

The basic functionality of the Instance Store is illustrated by Figure 2.3. The four
basic operations are initialise, which loads a TBox into the DL reasoner, classifies
the TBox and establishes a connection to the database; assert, which adds an axiom
i : D to the Instance Store; remove, which removes any axiom of the form i : C

3http://hsqldb.sourceforge .net/
“http://www.mysql.com/
Shttp://www.oracle.com/

KWEB/2004/D2.1.1/v1.2 02. August, 2004 25

2. APPROXIMATION

(for some concept C') from the Instance Store; and retrieve, which returns the set
of individuals that instantiate a query concept (). As the Instance Store ABox can only
contain one axiom for each individual, asserting 7 : D when ¢ : C'is already in the ABox
is equivalent to first removing ¢ and then asserting 7 : (C' 11 D).

In the current implementation, we make the simplifying assumption that the TBox
itself does not change. Extending the implementation to deal with monotonic extensions
of the TBox would be relatively straightforward, but deleting information from the TBox
might require (in the worst case) all realisations to be recomputed.

Our experiments show that the Instance Store provides stable and effective reasoning
for role-free ABoxes, even those containing very large numbers of individuals. In con-
trast, full ABox reasoning using the RACER system exhibited accelerating performance
degradation with increasing ABox size, and was not able to deal with the larger ABoxes
used in this test.®

Tt may be possible to fix this problem by changing system parameters, but we had no way to investigate
this.

26 02. August, 2004 KWEB/2004/D2.1.1/v1.2

Chapter 3

Distributed and Modular
Knowledge Representation &
Reasoning

by LUCIANO SERAFINI

3.1 Introduction

A promising way to deal with large ontologies is to decompose them into a collection
of smaller, more specific ontologies, which, together with the relations between them,
constitute a representation that is semantically equivalent to the original ontology. Con-
versely, it may be desirable to compose a set of ontologies into a coherent network of
ontologies that can be referred to as a single entity.

In both cases, the ultimate ontology is modular - it comprises a set of autonomous
modules, which are interrelated by semantically meaningful links. Figure 3.1 depicts a
very high level reference model of such a modular ontology.

The objective of this section of the report is to give an overview of the frameworks that
have been developed in various ontology-related fields of computer science and artificial
intelligence in order to represent and reason with modular and distributed knowledge.

Like in the previous chapter we don’t restrict in our analysis ourselves to consider-
ing approaches which are specifically and explicitly designed to deal with ontologies.
Moreover it’s relevant to also take into account certain rather more general approaches
to distributed knowledge bases, distributed knowledge representation, and distributed
databases.

27

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

5
3
=
g
®

Figure 3.1: Modular ontology reference model
3.2 Frameworks

We distinguish between modularisation (decomposition), integration (compile time com-
position), and coordination (run time composition) based approaches. With respect to this
classification we consider the following frameworks:

e Modularisation

— Database Modularisation

— Partition-Based Reasoning
* Integration

— Ontology Integration

— Database Integration
* Coordination

— Ontology Coordination

x Distributed Description Logics
x* C-Owl

— Database Coordination

x Peer to Peer Databases
x Local Relational Model
x Cooperative Information Agents

— Contextual Reasoning

« Propositional Logic of Context
x Multi-Context Systems

— XML namespaces

— Emergent Semantics

28 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

3.3 Evaluation criteria

We summarise each of these frameworks with respect to the following criteria (the abbre-
viations will be used in a unified table at the end of each section):

COMPOS Does the framework provide for composition or decomposition of ontologies,
or knowledge in general? Or does it enable both?

SYNTAX Does the framework provide a formal language for the specification of modu-
lar ontologies and relations between them?

SEMANT Does this language come with a formal semantics?

HETERO Does the framework allow for heterogeneous representation of individual mod
ules?

REASON Is the framework equipped with concrete decision procedures?

SYSTEM Are there any systems that implement these decision procedure?

The first criterion asks for the basic principle behind a framework. This fundamental
criterion is a first characterisation of the different frameworks and helps to separate the
frameworks.

One of the central questions in an modularisation/distribution framework is how the
distributed resources/modules are related. The next two criteria gather the formal char-
acteristics of the formalism in which the relationship can be expressed. Only approaches
with a clear and formal syntax and semantics are useful for the semantic web because the
definition should not depend on the behaviour of an implementation.

Also in the semantic web it can not be ensured that all information is represented in
one formalism. Therefore the framework should be able to handle resources with hetero-
geneous representations. The forth criterion asks for this ability.

The last two criteria are concerned with the implementation. They allow to identify
those approaches which solve their feasibility and try to prove their usefulness in practical
situations.

The table 3.1 gives an overview of this summarisation.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 29

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

APPROACH (DE)COMPOS | SYNTAX | SEMANT | HETERO | REASON | SYSTEM
g)(l)g)tginlsnformation compose yes yes yes no no
C-OWL compose yes yes yes no no
DFOL both yes yes yes yes yes
DB Modularisation decompose yes yes yes no no
DB Integration compose yes yes yes no no
ggglttén%ontext both yes yes yes yes no
Partitioned repres. decompose yes yes yes yes yes
lélz%)téxt()gic of none yes yes no no no
E?(r)téglogned Theorem | jocompose no no yes yes yes
P2P Datbases compose no no yes no yes
XML namespaces compose yes no no no yes

Table 3.1: Overview of the characterisation of all frameworks

3.4 Modularisation

3.4.1 Database Modularisation
by STEFANO SPACCAPIETRA

Motivation Traditional database technology has addressed modularisation in different
ways and under different headings. At the data instance level, the work on fragmentation
in distributed databases corresponds to a modularisation aiming at splitting the database
into possibly overlapping subsets to be stored as local databases at different sites. This
type of modularisation is basically human-driven (i.e., defined by the database designer),
although a number of algorithms have been proposed to optimise data distribution versus
access requirements. This technology is currently available in major commercial DBMS.
At the metadata (schema) level, modularisation is a concern in the management of large
schemas, with hundreds or even thousands of object and relationship types. Clearly, no
human DB administrator can handle such complexity at a glance, and no normal brows-
ing techniques can provide an easy-to-understand visualisation of such huge schemas.
Finally, another form of modularisation is personalisation, a technique leading to mod-
ules defined by their owner.

Description Modularisation is often seen as cutting something into pieces, like when
using scissors to cut a newspaper page into its components (articles and advertisements).
Yet modularisation does not exclude cutting a whole into overlapping parts, as in the
process of defining data fragments for distributed storage. This is specifically the case
when defining a distributed database, i.e. a database that is centrally managed but whose
data is split into sub-databases stored at multiple sites. In this setting, each element of
the database schema (e.g., a relational table, an object type) is candidate for fragmenta-
tion. Fragments are defined by a combination of selection criteria (known as horizontal

30 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

splitting) and projection criteria (known as vertical splitting). Fragments overlap: all frag-
ments need to include a key that allows correct re-composition of the whole from the frag-
ments. Each fragment may also be stored in multiple sites if duplication is desirable for
performance reasons. Modularising a huge database schema to make it more manageable
can be done automatically or based on manual specifications. In automatic approaches,
concepts of semantic closeness are defined to determine which elements of the schema
can be clustered together to build a higher-level element. For example, an object type and
its subtypes can be clustered together [Teorey et al., 1989]. Clustering can be done iter-
atively by applying a sequence of criteria. Clusters at each level can be seen as modules
in the original schema. In object-oriented databases, identification of interesting clusters
may additionally take into account use relationships showing which methods use which
object types. Thus, an object type can be clustered with the other object types that are
accessed while executing its associated methods. In terms of modularisation through per-
sonalisation, the traditional database approach relies on the view definition mechanism.
In relational databases, views can be freely defined as SQL queries. The subschema that
is relevant for a given user can then be composed by gathering all tables and views that are
accessible to the user (as specified by the definition of access rights attached to each table
and view). To a certain extent, modularisation, contextualisation (i.e., modules defined as
all elements relevant to a given context), and personalisation (where the context is the data
owner) can all be subsumed by a generic technique that: 1) identifies the different pieces
(and combinations of pieces) we are interested in (module, context, person or agent), and
2) defines for each data item (e.g., an axiom, a value, an object type, an ontology) for
which piece (or combination of pieces) it is relevant for or belongs to (e.g., this axiom be-
longs to module m1, this contribution is relevant for contexts Kweb2.1 and DIP1.5). Such
a generic technique has been developed at EPFL-LBD to enhance conceptual data mod-
els with support of multiple coexisting perceptions, leading to multiple representations
of the same real world phenomena (e.g., objects, links, properties) in the same database.
The basic mechanism that is used is to associate to each element the identification of the
perceptions it is relevant for. This is done from the meta-level (data descriptions in the
database schema) down to the data level (instances and values). The technique allows
defining any component of the database as perception-varying. For example, a schema
item that is shared by many perceptions may have two or more definitions, up to one per
perception, and still be understood as a single data item. Similarly, the set of instances of
a class as well as the value of an instance may be different from one perception to another
perception. Whenever multiple perceptions lead to multiple representations, these repre-
sentations may be organised separately or integrated into a single container. For example,
if two perceptions of hotels coexist and require different representations, it is possible
to define a single object type Hotel and have the two representations merged within the
object type. This is relatively easy to achieve if one hotel in one perception maps to
at most one hotel in the other perception (partial or total bijective mapping). Alterna-
tively, it is possible to define two separate object types, and link them with a relationship
type whose semantics is to express that the two linked instances represent the same real
world hotel. Both solutions allow the system to be aware of the existence of multiple

KWEB/2004/D2.1.1/v1.2 02. August, 2004 31

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

representations for multiple perceptions (just as an is-a link between two object types in-
structs the system that the related instances result from alternative classifications of the
same real world object). Consistency rules are defined to guarantee that the database is
designed so that, when restricted to a single perception, the database schema is a tradi-
tional database schema and the data instances form a traditional database. Similar rules
govern how transactions see the database. When a transaction adheres to a single per-
ception, it sees a traditional database. When a transaction uses multiple perceptions, it
has an integrated vision of the corresponding collection of single-perception databases
and the inter-perception data that spans over the visible perceptions. In all cases, the data
that is returned in response to queries is consistent and visible to the transaction (i.e.,
it belongs to the perception that the transaction holds). The proposed technique offers
two advantages over traditional personalisation techniques such as views and roles (in
the object-oriented sense). First, it allows implementing the concept of perception as a
consistent subset of the whole database. In this sense a perception may be seen as a
module. Second, it allows establishing bridges between perceptions and using them for
multi-perception applications, including applications checking the semantic consistency
of the different representations. Third, it allows keeping into a single schema and database
all the perceptions, so that an integrated view is possible, in particular for the database ad-
ministrator. This has immediate benefits in reducing error risk in defining the database
and in making its definition evolutionary. Fourth, as the technique applies to all database
items, it can straightforwardly be ported to data models that have non-standard features,
such as constructs for the description of spatial and temporal information. Finally, the
technique does not depend on the underlying data model. It may be implemented as an
extension to any data model. For instance, its application to an ontology language has
been proposed as a solution to support context-dependent ontologies.

Results and Applications Modularisation as fragmentation in distributed database sys-
tems is part of the functionality routinely supported by major DBMS on the market-
place. Similarly for modularisation as personalisation through the view mechanism. As
far as we know, modularisation as schema decomposition has interesting results at the
academic level only [Massart, 1997]. Modularisation through definition of perception-
varying schemas has been implemented in a prototype and tested in two case studies as
part of an EEC sponsored project [Consortium, 2000].

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS | SYNTAX | SEMANT | HETERO | REASON | SYSTEM
decompose yes yes yes no no

32 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

3.5 Partition-Based Reasoning
by FLORIS ROELOFSEN & HOLGER WACHE

Motivation There is a growing interest in building large (common sense) knowledge
bases [Lenat and Guha, 1990, Cohen et al., 1998, Fikes and Farquhar, 1999]. General-
purpose reasoners for such knowledge bases tend to suffer from combinatorial explosion.
One promising approach to resolving this problem, pursued at the Knowledge Systems
Laboratory at Stanford University, is to structure knowledge bases into multiple domain-
or task-specific partitions, and then to exploit that structure so as to make reasoning more
focused and efficient.

Description The basic idea is to partition a first-order or propositional theory 7" into
tightly coupled subtheories 71, ..., 7, which are related by (and should agree on) the
overlap between the signatures of their respective languages. Amir and Mcllraith [2004]
describe a greedy algorithm that automatically establishes such a partitioning. The al-
gorithm optimises the size of each partition and the overlap between partitions. The al-
gorithm manipulates a graphical representation of the axioms that constitute the initial
theory, which resembles a dual constraint graph in constraint satisfaction problems. It
yields a graph, whose nodes represent partitions and whose arcs represents the languages
shared by overlapping partitions. Efficient graph-based algorithms can be applied to con-
vert this representation into a tree structure.

A family of message-passing (MP) algorithms has been developed for reasoning with
such tree-structured partitions of propositional or first-order axioms. Reasoning is per-
formed locally in each partition, and relevant results are propagated toward the goal par-
tition so as to provide a global solution. Different (possibly special-purpose) reasoning
engines may be used in different partitions. Global soundness and completeness follow
from the soundness and completeness of each local reasoner. Performance is shown to be
linear in the tree structure, and worst-case exponential within the individual partitions. To
maximise the effectiveness of the algorithms, (1) the coupling between partitions should
be minimised, in order to reduce information being passed between them, and (2) local
inference within individual partitions should be maximally “focused”, that is, it should
involve a minimised set of tightly related variables.

It is useful to observe that the semantics of a partitioned theory can be seen as the
projection of a global semantics for 7" onto each local language 7;. Or, the other way
around, a model for 7" is the combination of one model for each 7;. In other words,
a model of 7} is partial in the sense that it concerns only part of the total knowledge
base, but it is complete in the sense that it expresses a unique interpretation (complete
knowledge) of that part of the knowledge base. As regards the inter-partition relationships,
it is worth remarking that the approach is limited to considering overlap between pairs
of partitions, which is exclusively described by symmetric (as opposed to directional)
relations.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 33

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

Results This approach has only fairly recently been initiated. Amir and Mcllraith
[2004] provide a comprehensive presentation of the theoretical results obtained so far.
Another reliable source of information is the project’s website:
http://www.ksl.stanford.edu/projects/RKF/Partitioning/.

A first empirical analysis [MacCartney et al., 2003] shows that using message-passing
algorithms on partitions which are generated automatically does in general not yield any
efficiency improvements. Only when specialised and adapted to the particular process of
inference the algorithms are shown to be more efficient than global reasoning systems.

Applications Prototypes of the algorithms was implemented into Stanford and SRI’s
high-performance knowledge bases [Fikes and Farquhar, 1999, Cohen et al., 1998]. De-
tailed results, however, have not been reported yet. Initial efforts have been directed
toward the development of a partition-based theorem prover [MacCartney et al., 2003] as
well as a partition-based planner [Amir and Engelhardt, 2003].

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS | SYNTAX | SEMANT | HETERO | REASON | SYSTEM
decomp. yes yes yes yes yes

3.6 Integration

3.6.1 Ontology Integration
by LUCIANO SERAFINI

Motivation With the growing availability of large and specialised online ontologies, the
questions about the combined use of independently developed ontologies have become
even more important. Michel Klein in [Klein, 2001] proposes an exhaustive list of tasks
that have to be taken into account in managing heterogeneous and partially autonomously
developed ontologies. In this list ontology integration is defined as

“... Creating a new ontology from two or more existing ontologies with over-
lapping parts, which can be either virtual or physical”.

The most critical point in ontology integration is the problem of discovering the overlap-
ping parts between two or more ontology. This problem, however, is out of the scope of
this work-package. Actually, it is the main task of the Work-Package WP2.2 Heterogene-
ity. As it is explained in the deliverable D2.2.1 of this WP the overlapping between two
ontologies can be expressed via mappings. Roughly speaking a mapping is an expression

34 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

stating that the semantics (meanings) of term; in an ontology O; and terms in the on-
tology O, are in a certain semantic relation. (e.g., more-general-than, less-general-then,
equivalent, disjoint, etc.).

The problem In this document, therefore, we are not interested in the approaches that
allow to discover the mappings. We suppose a set of ontologies with a set of mappings
between them, and we look at the approaches that allow us to integrate these ontologies
using mappings.

Proposed solutions An overview of the state-of-the-art methodologies and tools for
ontology integration can be found in [Wache et al.,2001]. In the following we report
only a subset of the most significant approaches to ontology integration.

From our perspective, the approaches of finding commonalities between two different
ontologies A and B and generating a new integrated ontology C' in which these com-
monalities are represented, can be clustered in two groups depending on whether the new
ontology C replaces A and B, or it is used only as a mediator between A and B which
are parts of the integrated ontology.

Ontology Merging The result of the integration is a unique ontology, in which every
source ontology is explicitly represented together with the mappings between them.
The tools for ontology merging usually integrate also an alignment algorithm which
is capable of finding matches between the two ontologies. Examples of these tools
are:

PROMPT [Noy and Musen, 2001] by Natasha Noy. PROMPT allows the man-
agement of multiple ontologies in Protégé, mainly to compare versions of the
same ontology, move frames between included and including project, merge
two ontologies into one extract a part of an ontology.

MoA by Jachong Kim. MoA [Kim,] is an OWL ontology merging and align-
ment library and tool composed by a set of basic libraries for add, remove,
merge and align operations on an ontology model, and similarity comparison
between two concepts.

HCONE by Konstantinos Kotis and George A. Vouros. The HCONE approach
[Kotis and Vouros, 2004] to ontology merging is based on (a) capturing the
intended informal interpretations of concepts by mapping them to WordNet
senses using lexical semantic indexing, and (b) exploiting the formal seman-
tics of concepts definitions by means of description logics reasoning services.

Ontomerge by D. Dou, D. McDermott and P. Qi. Ontomerge [Dou et al., 2002] is
a tool for ontology translation which is based on a method for ontology merg-
ing. The merge of two related ontologies is obtained by taking the union of the
terms and the axioms defining them, and by adding bridging axioms. Bridging

KWEB/2004/D2.1.1/v1.2 02. August, 2004 35

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

axioms not only expresses bridges between the semantics of the terms in two
related ontologies but also make this merge into a complete new ontology for
further merging with other ontologies.

FCA-merge by G. Stumme and A. Maedche. Ontologies can be merged by FCA-
merge [Stumme and Maedche, 2001] following a bottom-up approach which
offers a global structural description of the merging process. For the source
ontologies, it extracts instances from a given set of domain-specific text doc-
uments by applying natural language processing techniques. Based on the
extracted instances it applies Formal Concept Analysis techniques to derive a
lattice of concepts The produced result is manually transformed to the inte-
grated ontology, and acts as a global ontology that allows access to the local
“federated ontologies”.

Ontology Mediation! The result of the integration is a global ontology that allow ac-
cess to the source ontologies via mappings between global ontologies and source
ontologies. An example that can be classified under this cluster is

Formal Framework for Ontology Integration Calvanese et. al in [2001] pro-
vides a formal framework for specifying the mapping between the global on-
tology and the source ontologies. In this paper it is argued that mappings
should be viewed as queries from the global ontology to the local ones. This
approach is supported by the intuition that a concept in the global ontology
corresponds to a view (i.e., a query) over the other ontologies.

3.6.2 Database Integration
by STEFANO SPACCAPIETRA

Motivation The need for integrating digital data residing in different data stores exists
since networks have offered functionality to transfer data from one site to another. Con-
sequently, research on database integration has a long history, starting back in the 70s,
and is still ongoing. Among the many commonalities that exist between ontologies and
databases, the areas of ontology integration and database integration clearly share quite
many issues and solutions. Ontology composition, as defined in section 1, is thus very
similar to the approach that deals with building a federated database from a set of existing
databases. Federated databases correspond to modern requirements from organisations
and enterprises whose work calls for data coming from a variety of sources (the most
frequent pattern today). Data warehousing is another approach that heavily depends on
successful data integration. It is foreseeable that ontology integration becomes an equally
essential component of future information management systems. It is therefore worth
investigating which achievements from the database community may be reusable in ad-
dressing issues related to distributed and modular knowledge representation.

36 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

Description Despite the variety of approaches and proposals to be found in the over-
whelming literature on database integration, a methodological consensus seems to exist
for decomposing the information integration process into three steps:

* Source homogenisation: in this step all data sources are described using the same
data model (i.e., existing descriptions, based on heterogeneous data models, are
translated into equivalent descriptions using a single common data model). Wrap-
pers, for instance, are tools designed to implement this homogenisation process
[Wiederhold, 1992]. Homogenisation could also include other considerations, such
as, for instance, conforming the schemas of the input sources to agreed design rules
(e.g., normalisation). Some integration methodologies use meta-modelling tech-
niques to enable skipping the homogenisation step [Nicolle and Yetongnon, 2001],
or just achieve the same goal by directly building semantic bridges among source
schemas [Parent and Spaccapietra, 2000].

* Schema and data matching: this step aims at finding and describing all semantic
links between elements of the input schemas and the corresponding data. Fully au-
tomated matching is considered impossible, as a computer process can hardly make
ultimate decisions about the semantics of data. But even partial assistance in dis-
covering of correspondences (to be confirmed or guided by humans) is beneficial,
due to the complexity of the task. All proposed methods rely on some similar-
ity measures that try to evaluate the semantic distance between two descriptions
[Rahm and Bernstein, 2001]. Notice that schema matching is frequently termed
alignment in works on ontology integration.

* Integration: this step takes as input the data sources and the mappings in-between
and produces an integrated schema and the mappings between the (global) inte-
grated schema and the (local) existing sources. The global-to-local mappings are
needed to support queries on the integrated schema. This integration step relies on
the definition of a set of generic integration rules, which state how to solve all types
of semantic conflicts that may exist between two data sources. Integration rules
need not be deterministic, 1.e. there may be alternative solutions to the same se-
mantic conflict. The designer responsible for the integrated schema should choose
an integration policy stating which solutions have to be preferred [Dupont, 1994].
Research has identified two methods to set up mappings between the integrated
schema and the input schemas [Cali et al., 2003]. One method is called GAV for
Global As View, and proposes to define the integrated schema as a view over input
schemas. The other method is called LAV, and proposes to define the local schemas
as views over the integrated schema. GAV is usually considered simpler and more
efficient for processing queries on the integrated database, but is weaker in support-
ing evolution of the global system through addition of new sources. LAV gener-
ates issues of incomplete information, which adds complexity in handling global
queries, but it better supports dynamic addition and removal of source. Proposals
also exist that suggest merging the two techniques.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 37

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

A current trend is to develop ontology-based integration techniques. Here, one or
more ontologies play the role of the human expert in assessing the likeliness of a seman-
tic similarity, or in suggesting alternatives (e.g., synonyms) in measuring similarity. This
technique is likely to lead to solutions that could in particular be used to implement infor-
mation services for mobile users. In a mobility context, it is not possible to rely on advice
from human experts to solve semantic heterogeneity. Everything has to be done by agents
that rely on locally available information to provide the requested service. There is a need
for integration, but the process has to be done on the fly, which means that completeness
and to some extent correctness has to be traded off for quick response. Finally, database
integration issues and their solutions are currently being transferred to the very similar
problem of ontology integration (also called ontology fusion or merging). Although in
ontology integration the focus has been on terminological comparisons, it is clearly evolv-
ing towards the full complexity of semantic conflicts as identified by research in database
integration. The only tangible difference between database integration and ontology in-
tegration seems to be in the fact that more often, in the ontology world, some ontologies
may take a form of leadership (e.g., WordNet for ontologies about terminology) over the
other ontologies. In this case, the integration process (which usually gives no preference
to a source over the others) may turn into a conformance process, where integration means
that a new source is used to enrich an existing reference ontology.

Results Results in information integration include the development of a large know-
how for the domain as well as tools and prototypes for the various tasks composing the
integration process. There is, however, no tool that provides a single compete solution
for the whole process. Regarding homogenisation, there is abundance of prototypes for
data model translation (e.g., between the relational data model and the object-oriented
data model) and wrappers. In terms of tools, there is a family of CASE database design
tools that accept ER-like specifications and turn them into relational schemas. UML is a
broader approach that allows expressing specifications for both static and dynamic aspects
in data and process modelling and generates a relational design. DBMain [Hainaut, 1999]
[Thiran and Hainaut, 2001] is a more flexible approach, which can convert a variety of
input formats into one of many possible output formats. Similar goals are achievable
with tools and languages oriented towards data exchange (e.g., XML and, in the ge-
ographic domain, FME). Regarding tools helping in finding semantic links among in-
put sources, a number of prototypes have been developed. A significant recent effort
is the Rondo project [Melnik et al., 2003]. A detailed discussion on the nature of se-
mantic links that can be established, and how to characterise them, can be found in
[Parent and Spaccapietra, 2000]. Matching algorithms that operate at the instance level
have been developed for geographic databases [Badard, 1999]. Regarding the final inte-
gration step, the variety of semantic conflict that can arise has been largely investigated
[Larson et al., 1989], [Sheth and Kashyap, 1992] and the issue can be considered as com-
prehensively analysed. Integration rules have also been extensively discussed (e.g., in
[Parent and Spaccapietra, 2000]).

38 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

Applications As stated above, a number of tools exist that are used in one of the phases
of the information integration process. Full integration in real applications remains a
basically manual activity.

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS

SYNTAX

SEMANT

HETERO

REASON

SYSTEM

compose

yes

yes

yes

no

no

3.7 Coordination

3.7.1 Ontology Coordination

3.7.1.1 Distributed Description Logics
by ANDREI TAMILIN

Motivation The current situation on the web is characterised by a steady proliferation
of local ontologies. We use the term local” to emphasise the fact that each ontology
describes the domains of interest from its local and subjective point of view, using the
language of desired complexity. In this circumstances, the same domain can be covered
by different local ontologies in heterogeneous ways. The common solution for resolv-
ing semantic interoperability problem between such ontologies is based on the discovery
of semantic mappings relating concepts of these ontologies. Having a set of ontologies
related via semantic mappings is not enough to guarantee the interoperability. One has
to provide the capability of reasoning within such system. Reasoning is necessary for
checking consistency of mappings, discovering new ones, and computing new ontologi-
cal properties that derive from the combination of ontologies and mappings. To reflect the
situation given above, the reason-able formalisation for dealing with multiple ontologies
interrelated via semantic mappings is required.

Description The main purpose of Distributed Description Logics (DDL) is to provide
a syntax and semantics, formalising the case of multiple local ontologies pairwise linked
by semantic mappings. In DDL, local ontologies are represented by description logic
theories (T-boxes), while semantic mappings are represented by bridge rules. We briefly
recall the definition of DDL as given in [Borgida and Serafini, 2003].

Given a nonempty set of local ontologies {O; }ics, let {DL;};c; be a collection of
description logics, and 7; be T-boxes in DL;. T-boxes 7; are formalisations of ontologies
O; in description logics DL;. To avoid confusions, every description C' of 7; is labelled
with its index, written 7 : C.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 39

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

Semantic mappings between pairs of ontologies represented in DDL by bridge rules
between pairs of corresponding T-boxes. A bridge rule from i to j is an expression of the
following two forms:

1.i:C ij : D, an into-bridge rule
2.1:C ij : D, an onto-bridge rule

where C and D are two concepts of 7; and 7; respectively. Bridge rules from i to j express
relations between ¢ and j as viewed from the subjective point of view of the j-th ontology.

Intuitively, the into-bridge rule i : C' =, j : D states that, from the j-th point of view
the concept C'in i is less general than its local concept D. Similarly, the onto-bridge rule

1 : C'— j: D expresses the fact that, according to 7, C' in ¢ is more general than D in j.

A collection of T-boxes {7;};cs, and a collection of bridge rules between them B =
{%ij}iijel’ form a distributed T-box in DDL ¥ = <{I];}Z‘€[, gB> .

The semantics of DDL represents a customisation of the Local Models Semantics
for Multi Context Systems [Ghidini and Giunchiglia, 2001a, Ghidini and Serafini, 2000].
The underlying idea, is that each ontology 7; is locally interpreted on its local domain,
and characterised by local interpretation Z;. Local domains are pairwise connected by
a set of domain relations r;;, representing a possible way of mapping the elements of
i-th local domain into j-th local domain, seen from j’s perspective. Domain relations,
therefore, give a semantics for bridge rules.

A collection of local interpretations Z; for each 7; on local domains A%, and a family
of domain relations r;; between these local domains, define a distributed interpretation
J = ({Zi}ier, {rij }izjer) of distributed T-box ¥.

Results [Borgida and Serafini, 2003] introduces basic definitions of DDL framework.
[Serafini and Tamilin, 2004] characterises reasoning in DDL as a problem of calculating a
global subsumption. As well [Serafini and Tamilin, 2004] describes a sound and complete
reasoning procedure, which is based on a distributed tableau and constitutes a method for
combining existing tableaux reasoning procedures for description logics.

Applications Distributed tableau algorithm for computing global subsumption in DDL
is implemented in the distributed reasoning system D-Pellet [Serafini and Tamilin, 2004].
D-Pellet is a mapping-aware extension of open source Pellet OWL DL Reasoner?, imple-
menting description logics tableau reasoning algorithm. Roughly, every D-Pellet main-
tains a set of local OWL ontologies, and C-OWL mappings established between local
ontologies and ontologies of foreign D-Pellets. D-Pellets are organised into a peer-to-
peer network (currently acyclic) and are capable of providing global reasoning within
local ontologies they maintain.

’http://www.mindswap.org/2003/pellet

40 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

To facilitate the process of development of an ontology, mapped via C-OWL mappings
to other ontologies, and to provide mapping-aware ontology classifier, D-Pellet can be
integrated into Protégé development platform as a plug-in [Serafini and Tamilin, 2004].

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS | SYNTAX | SEMANT | HETERO | REASON | SYSTEM
both yes yes yes yes yes

3712 C-OWL
by LUCIANO SERAFINI

Motivation The need for explicit models of semantic information (terminologies and
background knowledge) in order to support information exchange in the semantic web
has been widely acknowledged by the research community. Several different ways of
describing information semantics have been proposed and used in applications. However
we can distinguish two broad approaches which follow somehow opposite directions:

Ontologies are shared models of some domain that encode a view which is common to
a set of different parties [Patel-Schneider et al., 2003];

Contexts are local (where local is intended here to imply not shared) models that en-
code a party’s view of a domain [Giunchiglia, 1993a, Ghidini and Serafini, 1998,
Ghidini and Giunchiglia, 2001b].

Ontologies are best used in applications where the core problem is the use and manage-
ment of common representations. Contexts, instead, are best used in those applications
where the core problem is the use and management of local and autonomous representa-
tions with a need for a limited and controlled form of globalisation (or, using the terminol-
ogy used in the context literature, maintaining locality still guaranteeing semantic compat-
ibility among representations [Ghidini and Giunchiglia, 2001b]). Contexts and ontologies
have both strengths and weaknesses, see [Bouquet et al., 2003a] for a deeper discussion,
and we believe that they should be integrated in the representational infrastructure of the
Semantic Web.

The C-OWL language is an extension of the OWL language for expressing ontolo-
gies, with bridge rules, which allow to relate concepts, roles and individuals in different
ontologies. We call a set of bridge rules between two ontologies a context mapping. Thus
a contextual ontology is an OWL ontology embedded in a space of other OWL ontologies
and related to them via context mappings. C-OWL can be used to express alignment (i.e.,
weak integration) of a set of independently developed ontologies.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 41

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

Description OWL syntax is obtained by extending OWL syntax with expressive map-
pings. The semantics of C-OWL is obtained by modifying the original OWL seman-
tics [Patel-Schneider et al., 2003]. The semantic of C-OWL uses the ideas and notions
originally developed in [Borgida and Serafini, 2003], which is based on the semantics of
context (the, so called, Local Models Semantics [Ghidini and Serafini, 1998]).

The complete description of C-OWL is given in [Bouquet ef al.,2003a]. The main
items defined in C-OWL are:

Ontology An ontology written in OWL

Local interpretation of an ontology Either a model of the T-box and the A-box defined
by the ontology, or a hole i.e., an interpretation of an inconsistent ontology. In a
hole every subsumption is satisfied.

Ontology space: Is an indexed set of local ontologies.

Bridge rule: Is a special kind of inference rules from an ontology O; to an ontology O,
which allow to relate concepts, roles and individuals of the ontology O; with the
concepts, roles and individuals of the ontology O;. We call a set of bridge rules
between two ontologies a context mapping.

Contextual ontology: It is a local ontology plus a set of bridge rules (context mappings).
We sometimes write context meaning contextual ontology.

Context space: A context space is the pair OWL space (i, O;) (of local ontologies) fam-
ily M;; of (context) mappings from ¢ to j, for any pair ¢, j

Interpretation for context spaces . It is a function that associates to each contextual
ontology a local interpretation, and to each pair of local ontologies O; and O; a
domain relation r;; between the domain of interpretation of O; and O;.

Results So far C-OWL is a specification language, an abstract syntax, a concrete syntax
and a semantics. The abstract syntax is based on the description logics for OWL, and
bridge rules. The concrete syntax is OWL extended with mappings. The following is an
example of C-OWL mappings.

<cowl:mapping>
<rdfs:comment>Example of a mapping of wine into vino</rdfs:comment>
<cowl:sourceOntology rdf:resource="http://www.example.org/wine.owl"/>
<cowl:targetOntology rdf:resource="http://www.example.org/vino.owl"/>

<cowl:bridgRule cowl:br-type="equiv">
<cowl:sourceConcept rdf:resource="http://www.example.org/wine.owl#wine"/>
<cowl:targedConcept rdf:resource="http://www.example.org/vino.owl#vino"/>
</cowl:bridgRule>

<cowl:bridgRule cowl:br-type="onto">

<cowl:sourceConcept rdf:resource="http://www.example.org/wine.owl#RedWine"/>
<cowl:targedConcept rdf:resource="http://www.example.org/vino.owl#VinoRosso"/>

42 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

</cowl:bridgRule>

<cowl:bridgRule cowl:br-type="into">
<cowl:sourceConcept rdf:resource="http://www.example.org/wine.owl#Teroldego"/>
<cowl:targedConcept rdf:resource="http://www.example.org/vino.owl#VinoRosso"/>
</cowl:bridgRule>

<cowl:bridgRule cowl:br-type="compat">
<cowl:sourceConcept rdf:resource="http://www.example.org/wine.owl#WhiteWine"/>
<cowl:targedConcept rdf:resource="http://www.example.org/vino.owl#Passito"/>
</cowl:bridgRule>

<cowl:bridgRule cowl:br-type="incompat">
<cowl:sourceConcept rdf:resource="http://www.example.org/wine.owl#WhiteWine"/>
<cowl:targedConcept rdf:resource="http://www.example.org/vino.owl#VinoNero"/>
</cowl:bridgRule>

Applications The need for terminology integration has been widely recognised in the
medical area leading to a number of efforts for defining standardised terminologies. The
notion of contextualised ontologies can provide such an alignment by allowing the co-
existence of different, even in mutually inconsistent models that are connected by seman-
tic mappings. As discussed above, the nature of the proposed semantic mappings satisfies
the requirements of the medical domain, because they do not require any changes to the
connected ontologies and do not create logical inconsistency even if the models are in-
compatible.

In [Stuckenschmidt et al., 2004] an experience from using C-OWL for the alignment
of medical ontologies Galen, Tambis, and UMLS is reported.

Galen One of the results of the GALEN project [Rector and Nowlan, 1993] is their
GALEN Coding Reference model. This reference model is an ontology that covers gen-
eral medical terms, relations between those terms as well as complex concepts that are
defined using basic terms and relations. For the study we used an OWL translation of the
GALEN model that contains about 3100 classes and about 400 relations.

Tambis The Tambis Ontology [Baker et al., 1999] is an explicit representation of bio-
medical terminology. The complete version of Tambis contains about 1800 terms. The
DAMLAOIL version we used in the case study actually contains a subset of the complete
ontology. It contains about 450 concepts and 120 Relations.

UMLS The Unified Medical Language System UMLS [Nelson and Powell, 2002] is an
attempt to integrate different medical terminologies and to provide a unified terminol-
ogy that can be used across multiple medical information sources. Examples of medical
terminologies that have been integrated in UMLS are MeSH [Nelson e? al.,2001] and
SNOMED [Coté, 1993]. In our case study, we used the UMLS semantic network. The
corresponding model that is available as OWL file contains 134 semantic types organised

KWEB/2004/D2.1.1/v1.2 02. August, 2004 43

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

in a hierarchy as well as 54 relations between them with associated domain and range
restrictions.

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS

SYNTAX

SEMANT

HETERO

REASON

SYSTEM

compose

yes

yes

yes

no

no

3.7.2 Database Coordination

3.721 Cooperative Information Agents
by HOLGER WACHE

Motivation The information agent technology in general and cooperative information
agents in particular emerged as response to the continuing information overload where
the data, system and semantic heterogeneity causes one of the problems. The idea behind
information agents is the development and utilisation of autonomous computational soft-
ware entities which access multiple, heterogeneous and distributed information sources
while retrieving, analysing, integrating and visualising of the information [Klusch, 2001].
Especially their abilities for cooperation and to be mobile are very interesting in the con-
text of distributed reasoning.

Description Intelligent agents differ from traditional software systems in their pro-
activeness (taking the initiative to reach given objectives), their reactivity or delibera-
tions (perceiving the environment), and acting social in groups when it is needed (cf.
[Wooldridge and Jennings, 1995]). Information agents are special kinds of intelligent
agents and are defined as agents which have access to one or more heterogeneous and
distributed information sources and acquire, mediate and maintain relevant information
[Klusch, 2001]. In contrast to existing federated database systems information agents
have the ability of pro-active information discovery leading to the area of cooperative
information systems originated from [Papazoglou et al., 1992].

According to one or more of the following features information agents can be classi-
fied into [Klusch, 1999]:

Non-cooperative or collaborating agents have the ability to cooperate and to collabo-
rate for a given task or not.

Adaptive agents are be able to adapt themselves to any changes in the agent network or
in the environment.

Rational agents try to increase their own benefits in an economical sense.

44 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

Mobile agents can travel autonomously through the internet.

Cooperative Information Agents (CIA) are based on a meaningful communication and
coordination. First of all the agents need to understand the meanings of concepts and
notions across multiple domains. Related efforts include (semi-)automated, ontology-
based interoperation with knowledge representation and ontologies also in the area of
intelligent agent technology.

In [Omicini et al.,2001] a comprehensive overview of coordination mechanism is
given. High-level collaboration of an information agent with other agents includes, for
example, brokering, matchmaking, negotiation, coalition formation, and collaborative
(social) filtering. A matchmaker tells a service requester which is the appropriate ser-
vice provider for the request. A broker also forwards the request to the service provider
and returns the answer to the requester. Negotiating allows a couple of agents to agree
on a common and shared statement by applying e.g. trading mechanism like auctions. In
order to gain and share benefits CIAs can also negotiate for stable (temporary) coalitions.
With collaborative filtering agents communicate about the user’s preferences in order to
provide information items to the user which are similar to his previous requests and will
match his interests.

Mobile agents are developed to be able to travel autonomously in the internet. Per-
forming their tasks on different servers allows to balance the server performance and can
exhibit intelligent strategies for actively searching information. They are suitable espe-
cially in dynamically changing environments, where in the case of a wireless network the
connection may be lost sometimes [Klusch, 2001]. A comprehensive overview of mo-
bile agent systems and their application to distributed information retrieval is given in
[Brewington et al., 1999].

Applications and Results Collaborative information agents are successfully applied
to a wide field. Examples are Infosleuth [Woelk and Tomlinson, 1995] and IMPACT
[Subrahmanian et al., 2000] for information retrieval in a distributed and heterogeneous
environment. InfoSpider [Menczer and Monge, 1999] is an example of an adaptive CIA.
Mobile Agents are mainly applied to the area of telecommunications, where agents may
be a part of the decentralised architecture for the next network generation, which inte-
grates mobile devices like smart phones or PDAs with the (wireless) internet in a more
sophisticated way [Pentland, 1998].

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS

SYNTAX

SEMANT

HETERO

REASON

SYSTEM

no

no

no

yes

no

no

KWEB/2004/D2.1.1/v1.2

02. August, 2004

45

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

3.7.2.2 Peer to Peer Databases
by ILYA ZATHRAYEU

Motivation Existing interest from the research community to Peer-to-Peer (P2P) data-
bases is motivated by the promises laying beyond this paradigm. First, it allows for inte-
gration of databases in a totally decentralised distributed manner by specifying mappings
between pairs of databases (e.g., [Giunchiglia and Zaihrayeu, 2004]), also called peers or
nodes, or (small) sets of peers (e.g., [Halevy et al., 2003]). Peers use these mappings in
order to (transitively) propagate queries, query results, and updates to each other. Second,
totally decentralised solution allows for large scalability and fault tolerance of the net-
work. Third, peers are largely autonomous in what data they share and what schema they
use to describe the data, in what other peers they establish mappings with, in when they
are online or offline, etc. All this gives low startup costs (no need to adjust local database),
ease of participation (once online, the service is available), low contribution requirements
for a single party (due to distributed processing), and exhaustive query results (due to
collective query answering).

Due to the high autonomy of peers, adoption of data integration technologies, relying
on the notion of a global schema [Lenzerini, 2002], is not possible. Peers come and go,
import arbitrary schemas to the network, and may change their schemas at runtime. In
such settings maintenance of a global schema becomes too expensive, and even infeasible.
Therefore new methodologies, theories, mechanisms, and technologies must be provided
in order to address the new challenges.

Description The description in this section base on [Giunchiglia and Zaihrayeu, 2004,
Franconi et al., 2004, Serafini et al., 2003, Franconi et al., 2003, Bernstein et al., 2002].
Each peer on a P2P database network provides a source database described by a (source)
schema, or supplies only the schema. In this latter case a node acts as a kind of mediator
in transitive propagation of data. Peers establish pairwise mappings, called coordination
rules, which have the following form:

i:CQ(z) =7 :CQ(x,y)

where 7, j are distinct indices denoting distinct peers, C'Q)(x) is a conjunctive query over
the schema of peer i, CQ(z,y) is a conjunctive query over the schema of peer j, z is
a set of variables, and y is a set of free variables. As from data integration literature
[Lenzerini, 2002], this kind of mapping is called Global-Local-as-View, or GLAV.

Coordination rules solve the heterogeneity problem at the structural level (when for
representing the same concepts, different databases use different names for relations and
attributes, and/or use different number of relations and/or attributes), whereas the instance
level heterogeneity (the same object is assigned different constants in different databases)
is solved with the help of domain relations [Serafini et al.,2003]. A domain relation,
written r; ;(d;) = d;, is a function that specifies that a constant d; from the domain of

46 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

database at peer ¢ is equal to constant d; from the domain of database at peer j. A domain
relation is not necessarily symmetric, i.e. the following may take place r; ;(d;) = d;
r;i(d;) # d;. A typical example of this situation is currency conversion. Consider the
following example:

Example 3.7.1 Suppose we have two peers with the following schemas:

Peer A ‘ Peer B
movies(title, year, genre, budget) | movie(title, budget, year)
credits(name, title) genres(title, genre)

actors(name, title, role)

Peer A is acquainted with peer B w.r.t. the following coordination rule:
A :movies(t,y, g,b), credits(n,t) = B : movie(t, b, y), genres(t, g), actors(n, t,r)

Now suppose that peer A is in Italy and peer B is in USA. Then we need to specify
domain relations function in order to translate values for budget from US dollars to Euro
and vice versa. Below are two examples of such a function:

TA7B(b) =bx 118, ’I“B7A(b) =bx0.84

At each peer, for different queries different coordination rules may be used for prop-
agation. Thus, for any given query, and a node on the network, where the query is sub-
mitted, different propagation graphs, or views on the network, may take place. And, since
“coordination rules graph” may be absolutely arbitrary, a view on the network may con-
tain circles. Moreover, during the propagation of a query, the view may change, i.e. some
nodes may leave the network, some nodes may join, or some coordination rules may be
changed.

Results [Halevy et al., 2003] proposes a language for mediating between peer schemas,
which extends known data integration formalisms to a more complex architecture, and
specifies the complexity of query answering in that language. [Ng et al., 2003] present de-
sign and evaluation of a (relational) data sharing system, where query answering is mainly
supported by mobile agents. [Serafini et al., 2003] proposes a local relational model, that
provides a language and a proper semantics for expressing mappings between databases,
as well as introduces the notion of domain relations. [Giunchiglia and Zaihrayeu, 2004]
proposes a data coordination model, where the main notions are Interest Groups and Ac-
quaintances. The first notion allows for a global aggregation of nodes carrying similar
information, while the second allows for a local logical point-to-point data exchange be-
tween databases. [Franconi et al., 2004] proposes a distributed update algorithm, which is
correct and complete with presence of circles in the coordination rules graph and network
dynamics under certain semantics. The paper reports first experimental results which
involved up to 64 database nodes.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 47

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

Applications To our knowledge, Peer-to-Peer databases have not been yet applied as in-
dustrial applications, but some prototypes exist as testbeds in academia. Examples of such
prototypes are: [Giunchiglia and Zaihrayeu, 2004, Franconi et al., 2004, Ng et al., 2003,
Halevy et al., 2003].

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS | SYNTAX | SEMANT | HETERO | REASON | SYSTEM
yes yes yes yes/no yes/no

3.7.3 Contextual Reasoning

3.7.3.1 Propositional Logic of Context
by FLORIS ROELOFSEN

Motivation Formalising context was first proposed by McCarthy [1987] as a possible
solution to the problem of generality in Artificial Intelligence. He observed that an axiom
is true only with respect to a particular context. In any case, a more general context can
be thought of in which the precise form of the axiom doesn’t hold any more.

Description In the propositional logic of context (PLC), as described by McCarthy,
Buvac, and Mason [Buvac and Mason, 1993, McCarthy and Buvac, 1998], contexts are
represented by sequences of labels. Intuitively, a label sequence k,x9 denotes a context
ko as seen from the viewpoint of context k,. If K is a set of labels and K* the set of finite
sequences over K, then the language of PLC is defined as a multi-modal language over
a set of atomic propositions [P, with modal operators ist(%, ¢) for each label sequence
R = K1 ...k, € K*. The intuitive meaning of a formula ist(r2, ¢), when stated in context
K1, 1s that ¢ holds in context ko, from the standpoint of context ;.

A model 91 for PLC associates to each context x a set of partial truth value assign-
ments M(K). Associating a set of assignments to every context is motivated by intuitions
similar to those which underlie possible worlds semantics. A formula ¢ holds (“is known
to be true”) in context & if it is satisfied by all the assignments associated to .

Allowing partial assignments provides for the simulation of local languages — in each
context, only a fragment of the global language is actually meaningful. Formally, a for-
mula ¢ is meaningful in context % if every assignment in 9t(%) fully determines the truth
of ¢. So 9 defines a function Vocab(t), which associates to every context = a set
Vocab(91)(%) of meaningful formulae.

Now for a model 90, a context &, an an assignment v € (%), and a formula ¢ €
Vocab() (%), satisfaction is defined as follows:

48 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

1. M, v =5 piff v(p) = true

2. My =z ~piff not M, v =% ¢

3. MrvEseDyiffnot M, v = por M, v =5 ¢

4. M, v f=x ist(k, p) iff for all v € M(RFkK), M,V =z. ¢
5. M =5 piffforallv € M(R), M, v = ¢

If the precondition ¢ € Vocab(1)(K) does not hold, then neither 9, v =5 ¢ nor
M, v =% —¢. A formula ¢ is satisfiable in a context % if there is a model 2t such
that 901 }ZE @.

Results The mentioned basic framework is described in [McCarthy and Buvac, 1998,
Buvac and Mason, 1993], building on earlier and still relevant work by Guha [1991].
An extension to incorporate quantifiers in the local languages has been provided by
Buvac [1996a]. The complexity of reasoning with purely propositional contexts has been
investigated by Massacci [1996], and more recently by Roelofsen and Serafini [2004,
2004]. PLC has been shown to be a special instance of the more general multi-context
systems framework discussed in section 3.7.3.2 [Serafini and Bouquet, 2004].

Applications The propositional logic of context has most notably been implemented
into the CYC common sense knowledge base by Lenat and Guha [1990]. Moreover, it
has been applied to fields such as planning [Buva¢ and McCarthy, 1996], machine trans-
lation [Buvac and Fikes, 1995], and word sense disambiguation [Buvac, 1996b].

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS | SYNTAX | SEMANT | HETERO | REASON | SYSTEM
none yes yes no no no

3.7.3.2 Multi-Context Systems
by FLORIS ROELOFSEN

Motivation The multi-context system (hereafter MCS) framework is motivated by the
work of Giunchiglia [1993b], which emphasises the principle of locality: reasoning based
on large (common sense) knowledge bases can only be effectively pursued if confined to
a manageable subset (context) of that knowledge base. Complementary to this idea is the
principle of compatibility [Ghidini and Giunchiglia, 2001c]: there must be certain con-
straints between reasoning processes in different contexts so as to guarantee their com-
patibility. Together, these two principles have fostered the investigation of contextual

KWEB/2004/D2.1.1/v1.2 02. August, 2004 49

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

reasoning, viewed as an assemblage of heterogeneous reasoning mechanisms that operate
on local, interrelated knowledge fragments.

Description A simple but effective illustration of the intuitions underlying MCS is pro-
vided by the so-called “magic box” example, depicted below.

‘
E% ~__Mr.2

Mrl __—

Figure 3.2: The magic box

Example 3.7.2 Mr.I and Mr.2 look at a box, which is called “magic” because neither of
the observers can make out its depth. Both Mr.1 and Mr.2 maintain a local representation
of what they see. These representations must be coherent — if Mr.l believes the box to
contain a ball, for instance, then Mr.2 may not believe the box to be empty.

The formal description of such interrelated local representations departs from a set of
indices /. Each index ¢ € [denotes a context, which is described by a local formal
language L;. To state that a formula ¢ € L; holds in context ¢ one utilises labelled
formulae of the form 7 : . formulae that apply to different contexts may be related by
bridge rules, which are expressions of the form:

S Y P S AR (3.1

Example 3.7.3 The situation described in example 3.7.2 may be formalised by an MCS
with two contexts 1 and 2, described by propositional languages Ly = L({l,r}) and
Ly = L({l,c,r}), respectively. The constraint that Mr.2 may not believe the box to be
empty if Mr.l believes it to contain a ball can be captured by the following bridge rule:

1:lvr — 2:lVeVr

[Ghidini and Giunchiglia, 2001c] call the proposed semantics for this formalism local
model semantics. An MCS (collection of local languages plus set of bridge rules) is
interpreted in terms of a chain: a collection of sets of local models, one set for each con-
text. A local model is merely a standard interpretation of the language of the context that
it serves to interpret. A chain can be thought of as a set of “epistemic states”, each corre-
sponding to a certain context. The fact that its i*" element contains more than one local
model amounts to L; being interpretable in more than one unique way (partial knowl-
edge). Exactly one local model corresponds to complete knowledge, whereas an empty
set of local models indicates an inconsistent context.

50 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

Example 3.7.4 Consider the situation depicted in Figure 3.2. Both agents have complete
knowledge, corresponding to the chain {{[l,r]},{[l,—c,—r]}}. We can imagine a sce-
nario however, in which Mr.I and Mr.2’s views are restricted to the right half and the
left-most section of the box, as depicted in Figure 3.3.

fﬂ % Mr.2

Mrl _— T

Figure 3.3: A partially hidden magic box.

Now, both Mr.1 and Mr.2 have only partial knowledge. This is reflected by a chain, whose
elements contain more than one local model:

{ {[lv_'TL [_'l7_'r]}’ }
{[t, —e, =], [1, e, r), 1, e, =], [, e, r]}

Satisfaction is a local concept in this framework: a chain c satisfies a labelled formula
i : ¢, regarding context 4, if all the local models comprised by the i*" element of ¢ satisfy
@ in a classical sense. Compatibility of different contexts is captured by the concept of
bridge rule compliance: a chain complies with a bridge rule if it satisfies its consequence
or does not satisfy one of its premises. In order for a chain to consistently satisfy a formula
i : @, 1t should satisfy ¢ : ¢ and comply with all the bridge rules of the system. Moreover,
its i'" element should not be empty (the corresponding context should not be inconsistent).

Results The framework has been worked out and described by Giunchiglia and Ser-
afini [1994]. The local model semantics is due to Ghidini and Giunchiglia [2001c]. Com-
plexity issues and decision procedures have been investigated by Serafini and Roelof-
sen [2004, 2004]. Multi-context systems are the most general framework for contextual
reasoning proposed to date [Serafini and Bouquet, 2004].

Applications Multi-context systems have been successfully applied to various fields of
computer science and artificial intelligence, including

* meta-reasoning and propositional attitudes [Giunchiglia and Serafini, 1994],
* reasoning with different viewpoints [Attardi and Simi, 1995],
e common sense reasoning [Bouquet and Giunchiglia, 1995],

* reasoning about beliefs [Benerecetti ef al., 1998a, Fisher and Ghidini, 1999]
[Ghidini, 1999, Giunchiglia and Giunchiglia, 1996, Giunchiglia et al., 1993],

* multi-agent systems [Benerecetti et al., 1998b, Cimatti and Serafini, 1995],

KWEB/2004/D2.1.1/v1.2 02. August, 2004 51

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

* automated reasoning with modal logics [Giunchiglia and Sebastiani, 2000], and

* contextual ontology design [Bouquet et al., 2003b, also see section 3.7.1.2 of this
report].

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS | SYNTAX | SEMANT | HETERO | REASON | SYSTEM
none yes yes yes yes no

3.74 XML namespaces
by GIORGOS STAMOU & YIANNIS KOMPATSIARIS

Introduction The main aim of this report is to present the use and the operation of
namespaces in Extensible Markup Language (XML). The role of namespaces is very
important and in order to realise this we can think of applications of Extensible Markup
Language (XML) in which a single document may contain elements and attributes that are
defined for and used by multiple software modules. In such cases if a markup vocabulary
exists which is well understood and for which there is useful software available, it is better
to re-use this markup than re-invent it.

But in documents like these, containing multiple markup vocabularies, there is danger
in recognition and collision. Software modules need to be able to recognise the tags and
attributes which they are designed to process, even in the face of “collision” occurring
when markup intended for some other software package uses the same element type or
attribute name.

At that point namespaces are the solution for this problem. The definition given by
W3C is that “an XML namespace is a collection of names, identified by a URI refer-
ence which are used in XML documents as element types and attributes names. XML
namespaces differ from the “namespaces” conventionally used in computing disciplines
that the XML version has internal structure and is not mathematically speaking, a set”.
Furthermore “URI references, which identify namespaces, are considered identical when
they are exactly the same character-for-character, noting that URI references which are
not identical in this sense may in fact be functionally equivalent”.

Names from XML namespaces may appear as qualified names, which contain a single
colon, separating the name into a namespace prefix and a local part. The prefix, which
is mapped to a URI reference, selects a namespace. The combination of the universally
managed URI namespace and the document’s own namespace produces identifiers that
are universally unique and mechanisms are provided for prefix scooping and defaulting.
On the other hand URI references can contain characters not allowed in names so cannot
be used directly as namespace prefixes. Therefore, the namespace prefix serves as a proxy
for a URI reference.

52 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

Declaring Namespaces A namespace is declared using a family of reserved attributes.
Such an attribute’s name must either be xmlns or have xmlns: as a prefix. These
attributes, like any other XML attributes, may be provided directly or by default.

The attribute’s value, a URI reference, is the namespace name identifying the names-
pace. The namespace name, to serve its intended purpose, should have the characteristics
of uniqueness and persistence.

Furthermore if the attribute name matches PrefixedAttName, then the NCName
gives the namespace prefix, used to associate element and attribute names with the names-
pace name in the attribute value in the scope of the element to which the declaration is
attached. Also in some of those declarations, the namespace name may not be empty.

Finally if the attribute name matches DefaultAttName, then the namespace name
in the attribute value is that of the default namespace in the scope of the element to which
the declaration is attached.

Qualified Names In conforming XML documents to the W3C specification some names
may be given as qualified names. Qualified names are declared using a prefix, which
provides the namespace prefix part of the qualified name, and must be associated with a
namespace URI reference in a namespace declaration and also the Local part that provides
the local part of the qualified name.

Applying namespaces to Elements and attributes

The first Namespace Scoping The namespace declaration is considered to apply to
the element where it is specified and to all elements within the content of that element,
unless overridden by another namespace declaration with the same NSAttName part.
Additionally multiple namespace prefixes can be declared as attributes of a single element.

Namespace Defaulting A default namespace is considered to apply to the element
where it is declared and to all elements with no prefix within the content of that ele-
ment. If the URI reference in a default namespace declaration is empty, then unprefixed
elements in the scope of the declaration are not considered to be in any namespace. The
default namespace can be set to the empty string that has the same effect, within the scope
of the declaration, of there being no default namespace.

Uniqueness of Attributes In XML documents conforming no tag may contain two at-
tributes which

¢ have identical names and

KWEB/2004/D2.1.1/v1.2 02. August, 2004 53

3. DISTRIBUTED AND MODULARKNOWLEDGE REPRESENTATION & REASONING

* have qualified names with the same local part and with prefixes which have been
bound to namespace names that are identical.

Conformance of Documents In XML documents that conform to the W3C specifica-
tion, element types and attribute names must match the production for QName and must
satisfy the “Namespace Constraints”.

An XML document conforms this specification if all other tokens in the document
which are required, for XML conformance, to match the XML production for Name
match this specification’s production for NCName.

The effect of conformance is that in such a document

* all element types and attribute names contain either zero or one colon and

* no entity names, PI targets, or notation names contain any colons.

Strictly speaking attribute values which are declared to be of types ID, IDREF(S),
ENTITY(IES), and NOTATION, are also names, and thus should be colon-free. How-
ever the declared type of attribute values is only available to processors which read
markup declaration, for example validating processors. Thus unless the use of a validat-
ing processor has been specified, there can be no assurance that the contents of attribute
values have been checked for conformance to this specification.

Summary With respect to the evaluation criteria proposed in section 3.3 the framework
may be summarised as follows:

COMPOS | SYNTAX | SEMANT | HETERO | REASON | SYSTEM
compose yes no no no yes

3.8 Emergent Semantics
by MUSTAFA JARRAR

In what follows, we summarise the status of a collaborative effort on the develop-
ment of the notion of “emergent semantics”, which has been initiated by the IFIP 2.6
Working Group on Data Semantics. This summary is based on [Aberer ef al., 2004b,
Aberer et al., 2004a].

This approach is motivated by the belief that global semantic interoperability emerges
from large numbers of purely local, pair-wise interactions (see also 3.7.1.2). “Semantic
interoperability is viewed as an emergent phenomenon constructed incrementally, and its
state at any given point in time depends on the frequency, the quality and the efficiency

54 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

with which negotiations can be conducted to reach agreements on common interpreta-
tions within the context of a given task”. This type of semantic interoperability is called
“emergent semantics”.

The key principles of this approach are:

* Agreements as a Semantic Handshake Protocol. Emergent semantics (“Dynamic
ontologies™) can be established on the bases of mutually accepted propositions be-
tween the interacting agents. The quality of “emerged semantics” depends on the
strength of the agreed propositions, and their trustworthiness.

* Agreements emerge from negotiations. Information environments are assumed to
be dynamic. Thus, interactions between agents are necessary to identify and re-
solve semantic conflicts, and to verify whether a consensus leads to the expected
actions. Interactions are message exchanges or references to distributed information
resources.

* Agreements emerge from local interactions. Emergent semantics are assumed to
be established incrementally, based on local agreements. Global agreements are
obtained through aggregations of local agreements.

This approach is currently active in the area of peer-to-peer data management and in-
tegration, where local schema mappings are introduced in order to enable semantic inter-
operability. Local schema mappings can be seen as the local communication mechanisms
for establishing consensus on the interpretation of data.

While the Semantic Web approach uses ontologies for obtaining semantic interoper-
ability, the ambition of the emergent semantics approach is to obtain such interoperability
in a more scalable and decentralised fashion, without necessarily using ontologies.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 55

Chapter 4

Benchmarking Ontology Technology

by RAUL GARCIA-CASTRO

4.1 Introduction

It can be expected, that the Semantic Web will contain large volumes of information and,
as time goes by, this information will increase exponentially. Therefore, a new necessity
arises: to be able to deal with this information size; and scalability will become one of the
main requirements for Semantic Web technology.

Research results (techniques and technology) obtained in the fields of approximation,
distribution, and modularisation of ontologies must be assessed. This is primarily done
by performing experiments that measure the scalability capabilities of these results.

Measurement and experimentation, although being a cornerstone of assessment, just
deal with performing a comparative analysis of different techniques or technology. In
order to learn from the best practices carried out in the area and continuously improve,
benchmarking studies must also be performed over these techniques and technology.

The use of the term benchmarking regarding the search for continuous improvement
and best practices emerged in the industry area. The Software Engineering community has
adopted it and has performed many benchmarking studies in different fields like operating
systems or database management systems.

Benchmarking activities are present all over the Knowledge Web Network of Excel-
lence. Several working packages contain tasks concerning benchmarking. Hence, in this
chapter we present a wide overview of the benchmarking process, experimentation, and
measurement. This way, the contents of this chapter can be useful not only to the par-
ticipants in the scalability work package, but to most of the Knowledge Web partners
involved in benchmarking. This chapter is meant to serve as a possible starting point for
benchmarking Semantic Web tools, techniques, and applications.

In this chapter we review definitions, classifications, and methods of benchmarking, as

56

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

well as of measurement and experimentation in Software Engineering. Then, we present
the state of the art of benchmarking within the Semantic Web area. We have focussed
on ontology-based technology evaluation, presenting a general evaluation framework and
the different studies carried out in the field.

4.2 Benchmarking

Benchmarking has been broadly used in the industry area as a way of continuously im-
proving and searching for best practices. In this section, we will summarise the most
relevant definitions used in benchmarking, the main classifications proposed, and the dif-
ferent methodologies used to perform benchmarking.

4.2.1 Benchmark versus benchmarking

The IEEE Standard Glossary of Software Engineering Terminology [IEEE, 1991] defined
benchmark as:

1. A standard against which measurements or comparisons can be made.

2. A procedure, problem, or test that can be used to compare systems or components
to each other or to the standards as in (1).

3. A recovery file.

A few years later, Sill [1996] complemented the second IEEE benchmark definition
at the comp.benchmarks FAQ by saying that:

A benchmark is a test that measures the performance of a system or subsystem
on a well-defined task or set of tasks.

Although in the above definitions a benchmark is supposed to be used only to assess
systems, Sim and colleagues [2003] expanded the definition to benchmark techniques as
well as systems.

In the last decades, the word benchmarking has become relevant within the business
management community. The definitions widely known are those due to Camp [1989] and
Spendolini [1992]. Camp defined benchmarking as the search for industry best practices
that lead to superior performance, while Spendolini expanded it saying that benchmark-
ing is a continuous, systematic process for evaluating the products, services, and work
processes of organisations that are recognised as representing best practices for the pur-
pose of organisational improvement.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 57

4. BENCHMARKING ONTOLOGY TECHNOLOGY

A few years later, Ahmed and Rafiq [1998] stated that the central essence of bench-
marking is to learn how to improve business activity, processes, and management. They
identified the main benchmarking characteristics as:

e Measurement via comparison.
e Continuous improvement.

 Systematic procedure in carrying out benchmarking activity.

The Software Engineering community does not have a common benchmarking defi-
nition. Some of the most representative benchmarking definitions are:

e Kitchenham [1996] defined benchmarking as a software evaluation method. For
her, benchmarking is the process of running a number of standard tests using a
number of alternative tools/methods and assessing the relative performance of the
tools in those tests.

e Weiss [2002] and Wohlin and colleagues [2002] adopted the business benchmark-
ing definition. For Weiss benchmarking is a method of measuring performance
against a standard, or a given set of standards; and for Wohlin benchmarking is a
continuous improvement process that strives to be the best of the best through the
comparison of similar processes in different contexts.

To sum up, the terms benchmark and benchmarking differ. While benchmarking refers
to a process, the term benchmark refers to a test (maybe used in the benchmarking pro-
cess). Table 4.1 summarises the main differences between benchmark and benchmarking.

Table 4.1: Main differences between benchmark and benchmarking

Benchmark | Benchmarking
ISA Test Continuous process
PURPOSE | Measure Search for best practices
Evaluate - Measure
- Evaluate
Improve
TARGET | Method Product
System Service
Process

58 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

4.2.2 Benchmarking classifications

One of the main purposes of this section is to provide a general understanding of the
vocabulary used to classify benchmarking processes. We present two different classifica-
tions of benchmarking: one is more focussed on the participants involved in it, while the
other is based on the nature of the objects under analysis.

The main benchmarking classification was presented by Camp [1989]. He categorised
benchmarking depending on the kind of participants involved, and this classification has
been adopted later by other authors like Sole and Bist [1995], Ahmed and Rafiq [1998]
and Fernandez and colleagues [2001]. The four categories identified by Camp are:

* Internal benchmarking. It measures and compares the performance of activities
as well as functions and processes within one organisation.

* Competitive benchmarking. In this case, the comparison is made with products,
services, and/or business processes of a direct competitor.

* Functional benchmarking (also called industry benchmarking). It is similar to
competitive benchmarking, except that the comparison involves a larger and more
broadly defined group of competitors in the same industry.

* Generic benchmarking. Its aim is to search for general best practices, without
regard to a specific industry.

Another classification categorises benchmarking according to the nature of the objects
under analysis in the benchmarking. This classification appeared, although not explicitly
separated from the previous one, in Ahmed and Rafiq’s [1998] benchmarking classifica-
tion. A few years later, Lankford [2000] established a separate classification and identified
the following types of benchmarking:

* Process benchmarking. It involves comparisons between discrete work processes
and systems.

* Performance benchmarking. It involves comparison and scrutiny of performance
attributes of products and services.

 Strategic benchmarking: It involves comparison of the strategic issues or pro-
cesses of an organisation.

4.2.3 Benchmarking methodologies

This section presents the traditional methodologies used to perform benchmarking. These
methodologies belong to the business community but, as they are quite general, they can

KWEB/2004/D2.1.1/v1.2 02. August, 2004 59

4. BENCHMARKING ONTOLOGY TECHNOLOGY

be easily adapted to benchmark software. All of them have similar elements and coincide
in the fact that benchmarking is a continuous process. Therefore, the steps proposed are
just an iteration of the benchmarking cycle.

The methodology proposed by Camp [1989] includes the following four phases:

Planning phase. Its objective is to schedule the benchmarking investigations. The
essential steps of this phase are to:

— Identify what is to be benchmarked.

— Identify comparative companies.

— Determine the data collection method and collect data.
Analysis phase. This phase involves a careful understanding of current process
practices as well as of those practices of benchmarking partners. The steps to follow
in this phase are to:

— Determine the current performance gap between practices.

— Project the future performance levels.
Integration phase. This phase involves planning to incorporate the new practices

obtained from benchmark findings in the organisation. The main step of this phase
is to:

— Communicate benchmark findings and to gain acceptance.

Action phase. In this phase, benchmarking findings and operational principles
based on them are converted into actions. The steps recommended are to:

Establish functional goals.

Develop action plans.

Implement specific actions and monitor progress.

Recalibrate benchmarks.

Camp also identifies a maturity state that will be reached when best industry practices
are incorporated into all business processes and benchmarking becomes institutionalised.

Another methodology is the one proposed by the American Productivity and Quality
Centre. It has been broken down by Gee and colleagues [2001] in the following four
phases:

60

Plan. Its goal is to prepare the benchmarking study plan, to select the team and
partners, and to analyse the organisational process. The steps to follow are to:

— Form (and train, if needed) the benchmarking team.

02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

Analyse and document the current process.

Identify the area of study on which the team will focus.

Identify the most important customer.

Identify the smaller subprocesses, especially problem areas.

Identify the critical success factors for the area and develop measures for them.
Establish the scope of the benchmarking study.

Develop a purpose statement.

Develop criteria for determining and evaluating prospective benchmarking
partners.

Identify target benchmarking partners.

Define a data collection plan and determine how the data will be used, man-
aged, and distributed.

Identify how implementation of improvements will be accomplished.

* Collect. The goals of the data collection phase are to: prepare and administer
questions, capture the results, and follow-up with partners. The steps to follow are

to:

Collect secondary benchmarking information in order to determine whom to
target as benchmarking partners.

Collect primary benchmarking data from the benchmarking partners.

* Analyse. The goals of this phase are to: analyse performance gaps and identify best
practices, methods, and enablers. The steps to follow are to:

Compare your current performance data with the partner’s data.

Identify any operational best practices observed and the factors and practices
that facilitate superior performance.

Formulate a strategy to close any identified gaps.

Develop an implementation plan.

* Adapt. The goals of this phase are: publish findings, create an improvement plan,
and execute the plan. The steps to follow are to:

Implement the plan.
Monitor and report progress.
Document and communicate the study results.

Plan for continuous improvement.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 61

4. BENCHMARKING ONTOLOGY TECHNOLOGY

Gee and colleagues [2001] also identify the final steps to carry out after the adaptation
phase. These steps are:

Document the benchmarking in a final report, capture any lessons learned that can
be of future value, capturing also a variety of process information.

e Communicate the results of the benchmarking effort to management and staff.

* Send a copy of the final report to the benchmarking partners.

Routinely review the performance of the benchmarked processes to ensure that
goals are being met.

Move on to what is next by identifying other candidate processes for benchmarking.

4.3 Experimental Software Engineering

The need for experimentation in Software Engineering was stated by Basili and colleagues
[1986]. Experimentation helps to better evaluate, predict, understand, control, and im-
prove the software development process and its associated products. In this section, we
summarise the most relevant definitions used in experimental Software Engineering as
well as the different classifications proposed and the different methodologies used to per-
form experimentation.

4.3.1 Definition

Basili [1993] defined experiment as:

An experiment is a test, trial or tentative procedure policy; an act or op-
eration for the purpose of discovering something unknown or for testing a
principle, supposition, etc.; an operation carried out under controlled con-
ditions in order to discover an unknown effect or law, to test or establish a
hypothesis, or to illustrate a known law.

4.3.2 Classification of experiments

Basili and colleagues [1986] classified Software Engineering experiments in terms of the
number of projects evaluated and the number of teams involved in each project. This
classification is adopted by many Software Engineering experiments published. Basili

proposes:

62 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

* Blocked subject-project studies. They examine one or more objects across a set
of teams and a set of projects.

* Replicated project studies. They examine object(s) across a set of teams and a
single project.

* Multi-project variation studies. They examine object(s) across a single team and
a set of projects.

* Single project studies. They examine object(s) on a single team and a single
project.

The DESMET project [Kitchenham et al., 1994] classified experiments according to
the control of the evaluation in the following three groups:

* Formal experiment. It uses the principles and procedures of experimental design
to check whether a hypothesis can be confirmed. Formal experiments are specifi-
cally designed to minimise the effects of extraneous factors on the outcome of the
experiment.

* Case study. It is a trial use of a method or tool on a full scale project. Control of
extraneous factors is much more difficult than in a formal experiment.

* Survey. It is the collection and analysis of data from a wide variety of projects.
The data obtained in a survey are not as controlled as those obtained from a formal
experiment, but they can be analysed statistically to identify important trends.

4.3.3 Methodologies

Basili and colleagues [1986] proposed a framework for conducting experimentation that
includes the following four phases:

* Definition. Its goal is to identify the motivation, object, purpose, perspective, do-
main, and scope of the experiments.

e Planning. Its goal is to design the experiments, choose the criteria to be used
according to the experiments definition, and define the measurement process.

* Operation. This phase consists of the experiment preparation and execution, and
of the analysis of the data obtained after their execution.

* Interpretation. In this phase, the results of the previous phase are interpreted in
different contexts, they are extrapolated to other environments, they are presented,
and the needed modifications are performed.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 63

4. BENCHMARKING ONTOLOGY TECHNOLOGY

A few years later Kitchenham and colleagues [2002] proposed a set of guidelines for
carrying out experiments. These guidelines consider what to do and what not to do in the
following six basic experimentation areas:

* Experimental context

Specify as much as possible the industrial context. Define clearly the entities,
attributes, and measures that are capturing the contextual information.

If a specific hypothesis is being tested, state it clearly prior to performing the
tests and discuss the theory from which it is derived, so that its implications
are apparent.

If the research is exploratory, state clearly and, prior to the data analysis, what
questions the investigation is intended to address, and how it will address
them.

Describe research that is similar to the actual research and how current work
relates to it.

* Experimental design

Identify the population from which the experimental subjects and objects are
drawn.

Define the process by which the subjects and objects are selected and assigned
to treatments.

Restrict yourself to simple study designs or, at least, designs that are fully
analysed in the literature.

Define the experimental unit.

For formal experiments, perform a pre-experiment or pre-calculation to iden-
tify or estimate the minimum required sample size.

Use appropriate levels of blinding.

Make explicit any vested interests, and report what has been done to minimise
bias.

Avoid the use of controls unless you are sure that the control situation can be
unambiguously defined.

Fully define all interventions.

Justify the choice of outcome measures in terms of their relevance to the ob-
jectives of the empirical study.

* Conducting the experiment and data collection

64

Define all software measures fully, including the entity, attribute, unit, and
counting rules.

02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

For subjective measures, present a measure of inter-rater agreement.

— Describe any quality control method used to ensure completeness and accu-
racy of data collection.

— For surveys, monitor and report the response rate, and discuss the representa-
tiveness of the responses and the impact of non-response.

— For observational studies and experiments, record data about subjects who
drop out from the studies. Also record other performance measures that may
be adversely affected by the treatment, even if they are not the main focus of
the study.

* Analysis

— Specify all the procedures used to control multiple testing.

— Consider using blind analysis.

— Perform sensitivity analysis.

— Ensure that the data do not violate the assumptions of the tests used on them.

— Apply appropriate quality control procedures to verify your results.

¢ Presentation of results

Describe or cite a reference for all statistical procedures used.

Report the statistical package used.

Present quantitative results showing the magnitude of effects and the confi-
dence limits.

Present the raw data whenever possible. Otherwise, confirm that they are
available for confidential review.

Provide appropriate descriptive statistics and graphics.
* Interpretation of results

— Define the population to which inferential statistics and predictive models ap-
ply.
— Define the type of study taken into account.

— Differentiate between statistical significance and practical importance.

— Specify any limitations of the study.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 65

4. BENCHMARKING ONTOLOGY TECHNOLOGY

44 Measurement

In order to evaluate and compare software qualitatively and quantitatively, it must be
described through software measurements. In fact, Fenton [1991] stated that assessment
is one of the two broad purposes of software measurement, the other one is predicting.
In this section, we will summarise the most relevant definitions used in measurement, the
different classifications proposed, and the different methodologies used for measurement.

4.4.1 Definitions

Fenton [1991] defined both measure and measurement as follows:

* A measure is an empirical objective assignment of a number (or symbol) to an entity
to characterise a specific attribute.

* Measurement is the process by which numbers or symbols are assigned to attributes
of entities in the real world in such a way as to describe them according to clearly
defined rules.

The concept of metric is highly related to the terms defined above. Fenton set out
that the term metric has been used in distinct ways in the Software Engineering litera-
ture, although every proposed definition could be accommodated within the framework
of scientific measurement. Fenton and Neil [2000] proposed the following definition:

Software metrics is a collective term used to describe the very wide range of
activities concerned with measurement in Software Engineering. These activ-
ities range from producing numbers that characterise properties of software
code (these are the classic software ‘metrics’) through to models that help
predict software resource requirements and software quality.

4.4.2 Classification of software measures

Fenton [1991] proposed two classifications of software measures, one regarding the enti-
ties and attributes of interest involved in the measure, and another regarding the scope of
the measure.

He distinguished three classes of entities whose attributes could be measured:

* Processes. They are any software related activities.

* Products. They are any artefacts, deliverables or documents which are output of
the processes.

66 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

* Resources. They are items that are inputs to processes.
Processes, products, and resources have internal and external attributes:

 Internal attributes of a product, process, or resource are those that can be mea-
sured purely in terms of the product, process, or resource itself.

* External attributes of a product, process, or resource are those that can only be
measured with respect to how the product, process, or resource relates to its envi-
ronment.

Kitchenham and colleagues [1995] also differentiated between direct and indirect
measures, defining them as follows:

* Direct measure. It is the measured value of an entity’s attribute obtained through
a measurement instrument.

* Indirect measure. It is the measure obtained from other measures when applying
equations to them. These equations are also considered as a form of measurement
instrument.

4.4.3 Scales of software measures

Measurement scales are derived from the rules we use for assigning values to attributes.
Thus, different rules lead to different scales. Fenton [1991] classified measurement scales
according to the transformations that can be made to a scale without changing its structure.
Park and colleagues [1996] gave the following definitions to the scales categorised by
Fenton:

* Nominal scale: A nominal scale provides a name or label as the value for an at-
tribute. The order of values on the scale has no significance.

* Ordinal scale: An ordinal scale permits that measured results are placed in ascend-
ing (or descending) order. However, distances between locations on the scale have
no meaning.

* Interval scale: An interval scale adds the concept of distance between values.

* Ratio scale: A ratio scale adds an origin (a meaningful, non arbitrary zero value).
With a true origin, division and multiplication become meaningful, and all the math-
ematical operations we customarily use for real numbers are legitimate.

» Absolute scale: Absolute scales are special cases of ratio scales in which the only
admissible multiplier is 1.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 67

4. BENCHMARKING ONTOLOGY TECHNOLOGY

444 Measurement methods

Grady and Caswell [1987] described the implementation of a software metrics program
in Hewlett-Packard. They proposed the following steps in order to define and implement
metrics in an organisation:

68

To define company/project objectives for the program. The objectives you de-
fine will frame the methods you use, the costs you are willing to incur, the urgency
of the program, and the level of support you have from your managers.

To assign responsibilities. The organisational location of responsibilities for soft-
ware metrics and the specific people you recruit to implement your objectives is a
signal to the rest of the organisation that indicates the importance of the software
metrics program.

To do research. Examining data external to the organisation in order to get ideas
for conducting experiments and set expectations for the results.

To define initial metrics to collect. You can start with a simple set.

To sell the initial collection of these metrics. The success of a metrics program
depends on the accuracy of the data collected, and this accuracy relies on the com-
mitment of the personnel involved and the time required to collect them.

To get tools for automatic data collection and analysis. Such type of tools help
to simplify the task of collection, reduce the time expenditure, ensure accuracy and
consistency, and reduce psychological barriers to collection.

To establish a training class in software metrics. Training classes help ensure that
the objectives for data collection are framed in the context of the company/project
objectives. Training is also necessary to achieve the widespread usage of metrics.

To publicise success stories and to encourage exchange of ideas. Publicity of
success stories provides feedback to the people taking measurements that their work
is valuable. It also helps to spread these successes to other parts of the organisation.

To create a metrics database. A database for collected measurements is necessary
to evaluate overall organisational trends and effectiveness. It also provides valuable
feedback concerning whether the metric definitions you are using are adequate.

To establish a mechanism for changing the standard in an orderly way. As
the organisation understands its development process better, the process and the
metrics you collect will evolve and mature. There must be a mechanism in place
that basically repeats the previous steps.

02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

Grady and Caswell also stated that a software metrics program must not have a strat-
egy into itself. Collecting software metrics must not be an isolated goal, but a part of an
overall strategy for improvement.

Goodman [1993] set up a framework for developing and implementing software met-
rics programmes within organisations. Goodman defined a generic model, in order to be
tailored to each specific environment. The stages proposed for the model are the follow-
ing:

* Initialisation stage. It is caused by some trigger, and it will be driven by an initia-
tor. It is the time when the initial scope of the program is defined.

* Requirements definition. This stage is all about finding out what the various parts
of the organisation want from a software metrics programme. It involves require-
ments gathering and specification.

* Component design. This stage encompasses both the choice of specific metrics
together with the design of the infrastructure that will support the use of those met-
rics.

* Component build. This phase involves building the components of the software
metrics program regarding the requirements and design obtained in the previous
stages.

e Implementation. This phase involves implementing the components that form the
measurement initiative into the organisation.

4.5 Ontology technology evaluation

Ontology technology has improved enormously since the creation of the first environ-
ments in the mid-1990s. In general, ontology technology has not been the object of soft-
ware evaluation studies but, as the use of this technology spreads, in the last few years
many studies involving ontology tools evaluation have been developed.

In this section, we will present a general framework for ontology technology evalua-
tion as well as the different evaluation studies performed.

4.5.1 General framework for ontology tool evaluation
The OntoWeb deliverable 1.3 [OntoWeb, 2002] presented a general framework for com-
paring ontology related technology. This framework identified the following types of

tools: ontology building tools, ontology merge and integration tools, ontology evaluation
tools, ontology based annotation tools, and ontology storage and querying tools. For each

KWEB/2004/D2.1.1/v1.2 02. August, 2004 69

4. BENCHMARKING ONTOLOGY TECHNOLOGY

type of tool, the framework provided a set of criteria for comparing tools in each group
as well as how different tools in each group satisfied these criteria. Table 4.2 shows the
criteria used in the evaluation of each type of tool.

Table 4.2: Ontology tool evaluation criteria [OntoWeb, 2002]

Tools Criteria

Ontology building tools General description

Software architecture and tool evolution
Interoperability with other tools and languages
Knowledge representation expressivity
Inference services attached to the tool
Usability

Ontology merge and integration tools | General description

Software architecture and tool evolution
Information used during the merge process
Interoperability

Work mode

Management of different versions of ontologies
Components that the tool merge
Suggestions provided by the tool
Conlflicts detected by the tool

Support of some methodology and techniques
Help system

Edition & visualisation

Experience using the tool

Ontology evaluation tools Interoperability

Turn around ability

Performance

Memory allocation

Scalability

Integration into frameworks

Connectors and interfaces
Ontology-based annotation tools General description

Documentation

Tutorial material

Available modes of working

Automation

Interoperability

Ontology related points

Kind of documents that can be annotated
Usability

Ontology storage and querying tools Query language

Implementation language

Storage database

Inference support

Update support

API support

Export data format

Scalability

Performance

4.5.2 Evaluation of ontology building tools
Most of the existing literature on evaluation of ontology tools deals with the evaluation

of ontology building tool [Angele and Sure, 2002, Sure et al., 2003, Sure et al., 2004].
While some authors have proposed a general evaluation framework, other authors have

70 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

focused on specific criteria regarding these tools. In this section, we will compile the
work related to the evaluation of ontology building tools.

Duineveld and colleagues [1999] proposed a framework for evaluating different on-
tology building tools (Ontolingua', WebOnto?, ProtégéWin?, Ontosaurus*, and ODE?).
The tools were evaluated on three dimensions: a general dimension, which refers to the
aspects of the tools that can also be found in other types of programs; the ontology di-
mension, which refers to ontology-related issues found in the tools; and the cooperation
dimension, which refers to the tool’s support for constructing an ontology by several peo-
ple at different locations.

Stojanovic and Motik [2002] dealt with the ontology evolution requirements that the
tools provided. They evaluated three ontology editors (OilEd®, OntoEdit’, and Protégé-
2000®%) and the criteria used were the number of ontology evolution requirements that a
platform fulfilled.

Sofia Pinto and colleagues [2002] evaluated the support provided by Protégé-2000 in
ontology reuse processes. The criteria they considered were the usability of the tool and
the time and effort for developing an ontology by reusing another instead of building it
from scratch.

The participants in the First International Workshop on Evaluation of Ontology-based
Tools (EON2002) [Angele and Sure, 2002] performed an experiment that consisted of
modelling a tourism domain ontology in different tools (KAON’, Loom!’, OilEd, On-
toEdit, OpenKnoME!", Protégé-2000, SemTalk'?, Terminae'®, and WebODE!*) and ex-
porting them to a common exchange language (RDF(S)). The criteria used in the evalu-
ation were: expressiveness of the model attached to the tool, usability, reasoning mecha-
nisms, and scalability.

Another general evaluation framework for ontology building tools was proposed by
Lambrix and colleagues [2003]. They evaluated Chimaera'®, DAG-Edit'¢, OilEd, and
Protégé-2000 regarding several general criteria (availability, functionality, multiple in-

Thttp://www ksl.stanford.edu/software/ontolingua/
Zhttp://kmi.open.ac.uk/projects/webonto/
3http://protege .stanford .edu/
“http://www.isi.edu/isd/ontosaurus.html
Shttp://delicias.dia.fi.upm.es/webODE/
®http://oiled.man.ac.uk/
http://www.ontoprise.de/products/ontoedit_en
8http://protege stanford .edu/
“http://kaon.semanticweb.org/
Ohttp://www.isi.edu/isd/LOOM/
"http://www.topthing.com/openknome .html
http://www.semtalk.com/
Bhttp://www-lipn.univ-paris13.fr/%7Eszulman/TERMINAE .html
“http://delicias.dia.fi.upm.es/webODE/
Shttp://www ksl.stanford .edu/software/chimaera/
1Shttp://godatabase.org/dev/

KWEB/2004/D2.1.1/v1.2 02. August, 2004 71

4. BENCHMARKING ONTOLOGY TECHNOLOGY

stance, data model, reasoning, sample ontologies, reuse, formats, visualisation, help,
shortcuts, stability, customisation, extendibility, and multiple users) and user interface
criteria (relevance, efficiency, attitude, and learnability).

In the Second International Workshop on Evaluation of Ontology-based Tools (EON-
2003) (see [Corcho et al., 2003, Isaac et al., 2003, Calvo and Gennari, 2003, Fillies, 2003]
and [Knublauch, 2003]), the experiment proposed was to evaluate the interoperability of
different ontology building tools. This was performed by exporting and importing to an
intermediate language and assessing the amount of knowledge lost during these trans-
formations. The tools evaluated were: DOE!?, OilEd, SemTalk, Protégé-2000, and We-
bODE; and the intermediate languages used: DAMLA+OIL, RDF(S), OWL, and UML.

GoOmez-Pérez and Suarez-Figueroa [2004] analyzed the behavior of several ontology
building tools (OilEd, OntoEdit, Protégé-2000, and WebODE) according to their ability to
detect taxonomic anomalies (inconsistencies and redundancies) when building, importing,
and exporting ontologies.

Corcho and colleagues [2004] evaluated WebODE'’s performance, analysing the tem-
poral efficiency and the stability of the methods provided by its ontology management
APIL.

Table 4.3 summarises the criteria used by the mentioned authors when evaluating
ontology building tools.

4.5.3 Evaluation of ontology-based annotation tools
by DIANA MAYNARD

The benchmarking of ontology-based annotation tools needs to comprise some met-
rics for evaluating the quality of the output. Such metrics must provide a simple mecha-
nism for comparing different systems and different versions of the same system in a con-
sistent and repeatable way. Evaluation of semi-automatic or automatic annotation tools
can be performed by measuring the correctness of the semantic metadata they produce,
with respect to a manually annotated set of data (documents) and an ontology, i.e. by
evaluating the quality of the information extraction.

Currently there is no standard for ontology-based information extraction, because
it is a relatively new area of research, although there are several well-established met-
rics for the evaluation of traditional information extraction systems. The most common
metrics are those defined by MUC [ARPA, 1993] (Precision/Recall/F-measure) and ACE
[ACE, 2004] (cost-based measure based on error rate). The needs of ontology-based in-
formation extraction metrics are rather different, however, because traditional methods
are binary rather than scalar. This means that these methods assess an answer as correct
or incorrect (occasionally allowing for partial correctness which is generally allocated a
“half-score”). Ontology-based systems should, however, be evaluated in a scalar way, in

http://opales.ina.fr/public/

72 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques

IST Project IST-2004-507482

Table 4.3: Ontology building tool evaluation criteria

Protégé-2000

Authors Tools Criteria
Duineveld et al., 1999 Ontolingua General properties that can also be found in other types of programs
WebOnto Ontology properties found in tools
ProtégéWin Cooperation properties when constructing an ontology
Ontosaurus
ODE
Stojanovic and Motik, 2002 | OilEd Ontology evolution requirements fulfilled by the tool
OntoEdit

Sofia Pinto et al., 2002

Protégé-2000

Support provided in ontology reuse processes
Time and effort for developing an ontology
Usability

Protégé-2000

EON 2002 KAON Expressiveness of the knowledge model attached to the tool
Loom Usability
OilEd Reasoning mechanisms
OntoEdit Scalability
OpenKnoME
Protégé-2000
SemTalk
Terminae
WebODE
Lambrix et al., 2003 Chimaera General criteria (availability, functionality, multiple instance, data
DAG-Edit model, reasoning, sample ontologies, reuse, formats, visualisation,
OilEd help, shortcuts, stability, customisation, extendibility, multiple users)

User interface criteria (relevance, efficiency, attitude, learnability)

EON 2003

DOE

OilEd
Protégé-2000
SemTalk
WebODE

Interoperability
Amount of knowledge lost during exports and imports

Go6mez-Pérez and
Suérez-Figueroa, 2003

OilEd
OntoEdit
Protégé-2000
WebODE

Ability to detect taxonomic anomalies

Corcho et al., 2004

WebODE

Temporal efficiency
Stability

order to allow for different degrees of correctness. For example, a scalar method allows
the score to be based on the position of the response in the ontology and its closeness to

the correct position in the ontology.

When preparing corpus and metrics for ontology-based information extraction, the
following activities are essential:

* To have well defined annotation guidelines, so that the annotation of the gold stan-
dard text is consistent.

* To carry out an analysis of the corpora with respect to the distributions of the differ-
ent tags, an analysis of the complexity of the domain for the IE task, and a statistical
profile of the tasks (i.e., how difficult the task is for the baseline system).

* To ensure that at least some portion of the corpus, if not all of it, is double-annotated
or better still triple-annotated, and that there is a mechanism for conflict resolution

where annotators do not agree.

KWEB/2004/D2.1.1/v1.2

02. August, 2004

73

4. BENCHMARKING ONTOLOGY TECHNOLOGY

* To measure inter-annotator agreement and to publish this, so systems can know
when they have reached the ceiling (if people cannot achieve 100% correctness,
then it is unlikely that systems ever can).

* To provide a pre-defined split of the corpus into training and testing data, allowing
for measuring the statistical significance of the results.

When defining the metric itself, the following criteria were suggested by King [2003].
The metrics should:

* Reach their highest value for perfect quality.

* Reach their lowest value for worst possible quality.
* Be monotonic.

* Be clear and intuitive.

e Correlate well with human judgement.

* Be reliable and exhibit as little variance as possible.
* Be cheap to set up and to apply.

¢ Be automatic.

4.54 Evaluation of other ontology tools

In this section we summarise the evaluation studies performed for other type of ontology-
based tools.

Giboin and colleagues’ study [2002] proposed a scenario-based evaluation of ontology-
based tools, and applied it to the CoMMA platform in order to evaluate its usability and
utility.

Sure and Iosif [2002] evaluated two ontology-based search tools (QuizRDF'® and
Spectacle!?) in order to compare them with a free text search tool (EnerSEARCHer). The
criteria used were the information finding time and the number of user mistakes made
during a search.

Noy and Musen [2002] and Lambrix and Edberg [2003] focused on ontology merging
tools. Noy and Musen evaluated PROMPT? regarding the precision and recall of its sug-
gestions when merging, and the differences between the result ontologies. Lambrix and

8http://i97 1abs bt.com/quizrdf-bin/rdfsearch/pmika2.89
Phttp://spectacle.aidministrator.nl/spectacle/index .html
2http://protege .stanford .edu/plugins/prompt/prompt.html

74 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

Edberg evaluated PROMPT and Chimaera®! regarding some general criteria (availability
and stability), merging criteria (functionality, assistance, precision and recall of sugges-
tions and time to merge), and user interface criteria (relevance, efficiency, attitude and
learnability).

Guo and colleagues’ evaluation study [Guo ef al., 2003] concerned the evaluation of
DLDB??, a DAML+OIL ontology repository. The criteria used in the evaluation were the
repository load time when storing the test data, the repository size, the query response
time and the completeness of the repository regarding the queries.

GoOmez-Pérez and Suarez-Figueroa [2003] analyzed the behavior of several RDF(S)
and DAMLA+OIL parsers (Validating RDF Parser?®, RDF Validation Service**, DAML
Validator?®, and DAML+OIL Ontology Checker?®) according to their ability to detect
taxonomic anomalies (inconsistencies and redundancies).

Finally, Euzenat [2003] proposed the evaluation of ontology alignment methods re-
garding the distance between provided output and expected result and other measures of
the amount of resource consumed (time, memory, user input, etc.).

Table 4.4 summarises the criteria followed by the different authors when evaluating
ontology tools.

Table 4.4: Other ontology tool evaluation criteria

Author Type of tool Criteria

Giboin et al., 2002 Ontology-based tools Usability
(CoMMA) Utility

Sure and Iosif, 2002 Ontology-based search tools Information finding time Mistakes during a search
(QuizRDF and Spectacle) Mistakes during a search

Noy and Musen, 2002 Ontology merging tools Precision and recall of the tools suggestions
(Prompt) Difference between result ontologies

Lambrix and Edberg, 2003 | Ontology merging tools General criteria (availability, stability)
(Prompt and Chimaera) Merging criteria (functionality, assistance, precision

and recall of suggestions, time to merge)
User interface criteria (relevance, efficiency, attitude
and learnability)

Guo et al., 2003 Ontology repositories Load time
(DLDB) Repository size
Query response time
Completeness
Gomez-Pérez and RDF(S) and DAMLA+OIL parsers Ability to detect taxonomic anomalies
Suéarez-Figueroa, 2004 (Validating RDF parser, RDF

Validation Service, DAML Validator,
DAMLA+OIL Ontology Checker)
Euzenat, 2003 Ontology alignment methods Distance between alignments

Amount of resources consumed (time, memory, user
input, etc.)

2Thttp://www ksl.stanford .edu/software/chimaera/
2http://www.cse lehigh.edu/ heflin/research/download/
Zhttp://139.91.183.30:9090/RDF/VRP/
Z4http://www.w3 .org/RDF/Validator/
Zhttp://www.daml.org/validator/
2http://potato.cs.man.ac.uk/oil/Checker

KWEB/2004/D2.1.1/v1.2 02. August, 2004 75

4. BENCHMARKING ONTOLOGY TECHNOLOGY

4.5.5 Workload generation for ontology tools

Other task concerning the evaluation of ontology tools deals with workload generation for
ontology tools, in order to produce input data for experiments.

Magkanaraki and colleagues [2002] performed a structural analysis with quantitative
criteria of RDF/S schemas that represented ontologies from various applications. The
main conclusions they obtained after the analysis were:

* Most of the RDF schemas define few classes and properties.

» Schema implementation is property-centric or class-centric, depending on whether
the designer decides to model concepts as classes or as properties.

* In general, schemas are shallow and they tend to be developed in breadth rather
than in depth.

* Multiple inheritance for classes, although not widely used, is more frequent than
multiple inheritance for properties.

* Multiple classification of resources is rarely used.

* There is a tight correlation of the notion of semantic depth to the variety of mod-
elling constructs used by the designers.

The work of Tempich and Volz [2003] also belongs to this group of studies; they anal-
ysed the ontologies in the DAML ontology library?’ to classify them and derive parame-
ters that can be used for the generation of synthetic ontologies. They classified ontologies
in three clusters:

* Ontologies of taxonomic or terminological nature. This is the largest cluster.
Ontologies in this cluster contain few properties and a large number of classes.

* Description logic-style ontologies. Ontologies in this cluster are characterised by
a high number of axioms per class and a low number of primitive classes. These
ontologies also contain a very high number of restrictions and properties (especially
datatype properties), but they scarcely have individuals.

» Database schema-like ontologies. This cluster is more heterogeneous. The ontolo-
gies are medium size, containing on average 65 class expressions and 25 properties.

Regarding the implementation of workload generators, the description of OntoGen-
erator’® appeared in the OntoWeb deliverable 1.3 [OntoWeb, 2002]; this is an OntoEdit

YThttp://www.daml .org/ontologies/
2http://www.ontoprise.de/products/ontoedit_plugins_en

76 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

plugin that creates synthetic ontologies for performance tests of ontology based tools.
Guo and colleagues [2003] presented UBA? (Univ-Bench Artificial data generator), a
tool that systematically generates DAML4+OIL instances based on a realistic ontology.
Finally, Corcho and colleagues [2004] generated the workload for their experiments from
the definition of the different tests executed in the evaluation of the WebODE ontology
management API.

4.5.6 RDF and OWL test suites

The RDF and OWL test suite [Grant and Beckett, 2004, Carroll and Roo, 2004] were cre-
ated by the W3C RDF Core Working Group and the W3C Web Ontology Working Group,
respectively. These tests check the correct usage of the tools that implement RDF and
OWL knowledge bases and illustrate the resolution of different issues considered by the
Working Groups.

These test suites are intended to provide examples for, and clarification of, the nor-
mative definition of the languages, and also to be suitable for use by developers in test
harnesses, possibly as part of a test driven development process.

4.5.7 Description Logics systems comparison

The 1998 International Workshop on Description Logics (DL’98) hosted a Description
Logics (DL) systems comparison session [Horrocks and Patel-Schneider, 1998]. This
comparison was performed by executing a range of test problems that could be used to
measure a DL system’s performance. The benchmark suite consisted of four types of
tests:

* Concept satisfiability tests. These tests measure the performance of the DL system
when computing the coherence (satisfiability) of large concept expressions without
reference to a TBox.

* Artificial TBox classification tests. These tests measure the performance of the
DL system when classifying an artificially generated TBox.

* Realistic TBox classification tests. These tests measure the performance of the
DL system when classifying a realistic TBox.

* Synthetic ABox tests. These tests measure the performance of the DL system’s
ABox when realising a synthetic ABox (inferring the most specific concept in the
TBox which each individual instantiates).

http://www.lehigh.edu/” yug2/Research/SemanticWeb/LUBM/LUBM htm

KWEB/2004/D2.1.1/v1.2 02. August, 2004 77

4. BENCHMARKING ONTOLOGY TECHNOLOGY

Based on the DL’98 tests, Haarslev and Moller [1999b] generated a set of nine new
ABox test problem sets for evaluating different optimisation strategies for ABox reason-
ing.

In the 1999 International Workshop on Description Logics (DL’99), the DL systems
comparison was based on the different features of the systems [Patel-Schneider, 1999]:
logic implemented, availability, future plans, etc.

Regarding workload generation for evaluating Description Logics systems, Elhaik and
colleagues [1998] designed a method for randomly generate TBoxes and ABoxes accord-
ing to probability distributions. Concerning these probability distributions, Ycart and
Rousset [2000] defined a natural probability distribution of ABoxes associated to a given
TBox.

4.5.8 Modal Logics systems comparison

Heuerding and Schwendimann [1996] presented a set of benchmark formulae for proof
search in the propositional modal logics K, KT, and S4. These formulae were divided
into nine classes of provable and nine classes of non provable formulae for each logic.
They also presented the results of applying these formulae to the Logics Workbench®
(a system that provides inference mechanisms for different logical formalisms including
basic modal logic).

The formulae developed by Heuerding and Schwendimann were also used in the
Tableaux 98 conference [Balsiger and Heuerding, 1998], where a comparison of auto-
mated theorem provers for the propositional modal logics K, KT, and S4 was performed.

Giunchiglia and Sebastiani [1996a, 1996b] presented a technique for evaluating de-
cision procedures for propositional modal logics. They developed a decision procedure
called KSAT and tested its propositional satisfiability in modal K ,). They compared
KSAT with TABLEAU (a decision procedure) and KXRZS?! (a system for modal logics).
The workload used for the evaluation consisted of randomly generated 3CNF ;. formu-
lae.

Hustadt and Schmidt [Hustadt and Schmidt, 1997, Hustadt and Schmidt, 1999] con-
tinued the work of Giunchiglia and Sebastiani, modifying the random formula generator
to get more difficult test samples. They evaluated KSAT, RZS, the Logics Workbench,
and TA (a translation approach where the formulae are translated into first order logic and
proved with the first-order theorem prover SPASS*?).

Later Giunchiglia and colleagues [1998, 2000] basing on their previous work and
Hustadt and Schmidt’s work, compared KSATC, KSATLISP (C and Lisp implementations
of the KSAT decision procedure, resp.), KSATLISP(UNSORTED) (Lisp implementation

Ohttp://www.Iwb.unibe.ch/
3 http://www.dfki.uni-sb.de/ tacos/kris.html
3http://spass.mpi-sb.mpg.de/

78 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

without presorting input formulae), and XRZS.

The Tableaux 99 conference [Massacci, 1999] included a comparison of theorem prov-
ers for modal systems. The compared were FaCT>? [Patel-Schneider and Horrocks, 1999],
HAM-ALC [Haarslev and Moller, 1999a], and KtSeqC [Boyapati and Gore, 1999]. The
formulae used in the evaluation were grouped into four divisions: a modal PSPACE divi-
sion, a multimodal PSPACE division, a global PSPACE division, and a modal EXPTIME
division.

Giunchiglia and colleagues [Giunchiglia et al., 1999, Giunchiglia et al., 2002] perfor-
med two theorem prover comparisons. Using the randomly generated formulae developed
by Giunchiglia and Sebastiani, they compared *SAT>* (a platform for the development of
decision procedures for modal and description logics), KSATC, DLP**, and TA. They also
compared *SAT, DLP, and TA using the formulae developed by Heuerding and Schwendi-
mann.

Horrocks and Patel-Schneider modified the formula generator, which was developed
by Giunchiglia and colleagues, to produce less uniform formulae. They compared DLP
with KSATC [Horrocks and Patel-Schneider, 1999b, Horrocks and Patel-Schneider, 2002]
and DLP with TA, KSAT, and FaCT [Horrocks and Patel-Schneider, 1999a].

Horrocks and colleagues [2000] proposed a new variant of the random formula gen-
erator of Giunchiglia and Sebastiani. The difference with the previous generator relies
on a different interpretation of one of the formula generation parameters. They evaluated
*SAT with the random generated formulae.

Giunchiglia and Tacchella [2000] evaluated different cache optimisation methods of
*SAT using the formulae from the Tableaux 99 conference.

459 Automated Theorem Proving systems evaluation

In 1993, Suttner and Sutcliffe [Suttner and Sutcliffe, 1997, Sutcliffe and Suttner, 1998]
compiled the TPTP* library of problems for Automated Theorem Proving (ATP) systems.
This library has been widely used and has evolved through the years, and at the moment
of writing this text the TPTP library version is 2.6.0.

Since 1996, Automated Theorem Prover comparisons have been performed at the
Conference on Automated Deduction (CADE). Pelletier and Sutcliffe [2001] summarised
the motivation, history and results of these CADE ATP System Competitions.

Sutcliffe and Suttner [2001] presented an overview of the evaluation criteria, the clas-
sification of test problems, and the methods used for evaluating ATP systems and prob-
lems.

3http://www.cs.man.ac.uk/ horrocks/FaCT/
3http://www.mrg dist.unige.it/"tac/StarS AT .html
http://www.bell-labs.com/user/pfps/dlp/
3http://www.cs.miami.edu/ tptp/

KWEB/2004/D2.1.1/v1.2 02. August, 2004 79

4. BENCHMARKING ONTOLOGY TECHNOLOGY

Fuchs and Sutcliffe [2002] described a method for measuring the homogeneity of
ATP problems with respect to the performance of ATP systems on those problems. This
method can also be used to identify homogeneous subsets of a set of problems.

Colton and Sutcliffe [2002, 2002] presented HR, a program that performs automated
theory formation in mathematical domains, and showed how it could be used to generate
problems for ATP Systems.

80 02. August, 2004 KWEB/2004/D2.1.1/v1.2

Chapter 5

Conclusion

A lot of techniques around scalability are investigated in this deliverable. In general
we believe that approximation and modularisation/distribution techniques are the best to
achieve scalability for the Semantic Web.

Approximation techniques can be classified if they change the inference technique or
if they transform the knowledge base. A more fine-grained classification can be applied
to the modularisation/distibution where the techniques can be separated into modularisa-
tion (for decomposing a knowledge-/database), integration (where during compile-time
different sources are combined) and coordination (for composing several sources during
run-time). Most prominent and representative techniques are reviewed.

The survey leads to three interesting points: first to the best of our knowledge there
exists no techniques for approximating or modularising Semantic Web techniques or for
distributed inferences but there exist some more general techniques. For those few cases
where some techniques can be identified (e.g. distributed description logics, instance
store) they can be viewed to be at their starting point. Second, the general approaches
seem to be applicable for the Semantic Web but need to be examined and adapted to the
special needs for the Semantic Web. Third, a interesting relationship between this work-
ing package and the heterogeneity working package was discovered which will be tracked
and deepened in future.

Especially the second point above needs an expressive and realistic benchmarking
for assessing scalability methods. In general the Semantic Web field lacks of bench-
marking. For this purpose, we have presented an broader overview of the main research
areas involved in benchmarking. Furthermore our review of the existing benchmarking
techniques may also serve as a foundation for the benchmark activities in other working
packages. We have started with the analysis of benchmarking, experimental studies and
measurement in Software Engineering, and then we have moved into the Semantic Web
field.

Again the survey on benchmarking allows us to conclude that, although there is
no common benchmarking methodology, all the works presented in this section, either

81

5. CONCLUSION

benchmarking, experimentation, or measurement ones, are on the one hand very similar,
and on the other hand highly general so as to be easily used in any benchmark study
for the ontology and the Semantic Web field. As benchmarking elements (people, goals,
scope, resources, etc.) differ across benchmarking studies, the methodologies proposed
should be instantiated for each study.

We have also presented the state of the art of ontology technology evaluation. The
main conclusions that can be extracted from the studies presented in this chapter are the
following:

 Evaluation studies concerning ontology tools have been scarce since these tools ap-
peared. Nevertheless, in the last few years the effort devoted to evaluating ontology
technology has significantly grown.

* Most of the evaluation studies concerning ontology tools are performed through
case studies or surveys of qualitative nature. Only two of them [Guo et al., 2003,
Corcho et al., 2004] involved performing formal experiments that deal with quanti-
tative data.

* In the logics field, where the need for technology evaluation has been broadly
adopted, numerous evaluation studies have been performed through the years.

82 02. August, 2004 KWEB/2004/D2.1.1/v1.2

Bibliography

[Aberer et al.,2004a] K. Aberer, T. Catarci, P. Cudre-Mauroux, T. Dillon, S. Grimm,
M. Hacid, A. Illarramendi, M. Jarrar, V. Kashyap, M. Mecella, E. Mena, E. Neuhold,
A. Ouksel, T. Risse, M. Scannapieco, F. Saltor, L. Santis, S. Spaccapietra, S. Staab,
R. Studer, and O. Troyer. Emergent semantics systems. In M. Bouzeghoub, C. Goble,
V. Kashyap, and S. Spaccapietra, editors, Proceeding of the International Conference
on Semantics of a Networked World, LNCS, pages 14 — 44, France, Paris, June 2004.
Springer Verlag.

[Aberer ef al.,2004b] K. Aberer, P. Cudre-Mauroux, T. Catarci M.Ouksel, M. Haci-
dand A. Illarramendi, V. Kashyap, M.Mecella, E. Mena, E. Neuhold, O. De Troyer,
T. Risse, M. Scannapieco, F. Saltor, L. de Santis, S. Spaccapietra, S. Staab, and
R. Studer. Emergent semantics principles and issues. In Proceedings of the 9th Inter-
national Conference on Database Systems for Advanced Applications (DASFAA 2004),
Jeju Island, Korea, 2004.

[ACE, 2004] ACE. Annotation Guidelines for Entity Detection and Tracking (EDT), Feb
2004. Available at http://www.ldc.upenn.edu/Projects/ACE/docs/.

[Ahmed and Rafiq, 1998] P.K. Ahmed and M. Rafiq. Integrated benchmarking: a holistic
examination of select techniques for benchmarking analysis. Benchmarking for Quality
Management and Technology, 5(3):225-242, 1998.

[Amir and Engelhardt, 2003] E. Amir and B. Engelhardt. Factored planning. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-03),2003.

[Amir and Mcllraith, 2004] E. Amir and S. Mcllraith. Partition-based logical reasoning
for first-order and propositional theories. Artificial Intelligence, 2004. Accepted for
publication.

[Angele and Sure, 2002] J. Angele and Y. Sure, editors. Proceedings of the Ist Inter-
national Workshop on Evaluation of Ontology based Tools (EON2002), volume 62,
Sigiienza, Spain, September 2002. CEUR-WS.

[ARPA, 1993] Advanced Research Projects Agency. Proceedings of the Fifth Message
Understanding Conference (MUC-5). Morgan Kaufmann, California, 1993.

83

BIBLIOGRAPHY

[Attardi and Simi, 1995] G. Attardi and M. Simi. A formalisation of viewpoints. Funda-
menta Informaticae, 23(2-4):149-174, 1995.

[Backstrom and Jonsson, 1995] Christer Backstrom and Peter Jonsson. Planning with
abstraction hierarchies can be exponentially less efficient. In Proceedings of the 14th
International Joint Conference on Artificial Intelligence, pages 1599—-1604, 1995.

[Badard, 1999] T. Badard. On the automatic retrieval of updates in geographic databases
based on geographic data matching tools. In International Cartographic Conference,
pages 47-56, 1999.

[Baker et al., 1999] P.G. Baker, C.A. Goble, S. Bechhofer, N.W. Paton, R. Stevens, and
A. Brass. An ontology for bioinformatics applications. Bioinformatics, 15(6):510-520,
1999.

[Balsiger and Heuerding, 1998] P. Balsiger and A. Heuerding. Comparison of theorem
provers for modal logics - introduction and summary. In Proceedings of the Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and Related Meth-
ods, pages 25-26. Springer-Verlag, 1998.

[Basili et al., 1986] V.R. Basili, R.W. Selby, and D.H. Hutchens. Experimentation in
software engineering. IEEE Transactions on Software Engineering, SE-12(7):733—
743, July 1986.

[Basili, 1993] V.R. Basili. The experimental paradigm in software engineering. In Pro-
ceedings of the International Workshop on Experimental Software Engineering Issues:
Critical Assessment and Future Directions, pages 3—12. Springer-Verlag, September
1993.

[Bechhofer, 2003] Sean Bechhofer. The DIG description logic interface: DIG/1.1. In
Proceedings of the 2003 Description Logic Workshop (DL 2003),2003.

[Benerecetti et al., 1998a] M. Benerecetti, P. Bouquet, and C. Ghidini. Formalizing be-
lief reports — the approach and a case study. In International Conference on Artificial
Intelligence, Methodology, Systems, and Applications (AIMSA 98), pages 62-75, 1998.

[Benerecetti et al., 1998b] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model check-
ing multiagent systems. Journal of Logic and Computation, 8(3):401-423, 1998.

[Bernstein et al., 2002] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos
andL. Serafini, and I. Zaihrayeu. Data management for peer-to-peercomputing: A
vision. WebDB, 2002.

[Boddy and Dean, 1989] M. Boddy and T. Dean. Solving time-dependent planning prob-
lems. In Proceedings IJCAI-89, Detroit, Michigan USA, August 1989.

84 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Borgida and Serafini, 2003] A. Borgida and L. Serafini. Distributed description logics:
Assimilating information from peer sources. Journal of Data Semantics, 1:153-184,
2003. Editor in Chief S. Spaccapietra. LNCS 2800, Springer Verlag.

[Bouquet and Giunchiglia, 1995] P. Bouquet and F. Giunchiglia. Reasoning about the-
ory adequacy. a new solution to the qualification problem. Fundamenta Informaticae,
23(2-4):247-262, 1995.

[Bouquet et al., 2003a] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and
H. Stuckenschmidt. C-OWL: Contextualizing ontologies. In Sencond Internatinal
Semantic Web Conference, volume 2870 of Lecture Notes in Computer Science, pages
164-179. Springer Verlag, 2003.

[Bouquet et al., 2003b] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and
H. Stuckenschmidt. C-OWL: Contextualizing ontologies. In K. Sekara and J. My-
lopoulis, editors, Proceedings of the Second International Semantic Web Conference,
number 2870 in Lecture Notes in Computer Science, pages 164—179. Springer Verlag,
October 2003.

[Boyapati and Gore, 1999] V. Boyapati and R. Gore. KtSeqC: System description. In
Proceedings TABLEAUX’99, The 6th International Conference on Theorem Proving
with Analytic Tableaux and Related Methods, pages 29-31, Berlin, 1999. Springer-
Verlag.

[Brewington et al., 1999] Brian Brewington, Robert Gray, Katsuhiro Moizumi, David
Kotz, George Cybenko, and Daniela Rus. Mobile agents in distributed information
retrieval. In Matthias Klusch, editor, Intelligent Information Agents. Springer-Verlag:
Heidelberg, Germany, 1999.

[Buvac and Fikes, 1995] S. Buvac¢ and R. Fikes. A declarative formalization of knowl-
edge translation. In Conference on Information and Knowledge Management (CIKM
95),1995.

[Buvac and Mason, 1993] S. Buvac and I. A. Mason. Propositional logic of context. In
National Conference on Artificial Intelligence (AAAI 93), 1993.

[Buvac¢ and McCarthy, 1996] S. Buvac and J. McCarthy. Combining planning contexts.
In Austin Tate, editor, Advanced Planning Technology — Technological Achievements
of the ARPA/Rome Laboratory Planning Initiative. AAAI Press, 1996.

[Buvac, 1996a] S. Buvac. Quantificational logic of context. In National Conference on
Artificial Intelligence (AAAI 96), 1996.

[Buvac, 1996b] S. Buvac. Resolving lexical ambiguity using a formal theory of context.
In Kees van Deemter and Stanley Peters, editors, Semantic Ambiguity and Underspec-
ification. CSLI Lecture Notes, 1996.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 85

BIBLIOGRAPHY

[Cadoli and Schaerf, 1995] Marco Cadoli and Marco Schaerf. Approximate inference in
default reasoning and circumscription. Fundamenta Informaticae, 23:123-143,1995.

[Cadoli er al., 1994] Marco Cadoli, Francesco M. Donini, and Marco Schaerf. Is in-
tractability of non-monotonic reasoning a real drawback? In National Conference on
Artificial Intelligence, pages 946-951, 1994.

[Cadoli, 1993] Marco Cadoli. A survey of complexity results for planning. In A. Cesta
and S. Gaglio, editors, Italian Planning Workshop, pages 131-145, Rome, Italy, 1993.

[Cadoli, 1996] M. Cadoli. Panel on “Knowledge Compilation and Approximation”: Ter-
minology, Questions, and References. Fourth International Symposium on Artificial
Intelligence and Mathematics (AI/MATH-96), pages 183—-186, 1996.

[Cali et al., 2003] A. Cali, D. Calvanese, G. De Giacomo, M. Lenzerini, P. Naggar, and
F. Vernacotola. Ibis: Semantic data integration at work. In CAiSE, pages 79-94,2003.

[Calvanese et al., 2001] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenz-
erini. A framework for ontology integration. In Proc. of the 2001 Int. Semantic Web
Working Symposium (SWWS 2001), pages 303-316, 2001.

[Calvo and Gennari, 2003] F. Calvo and J.H. Gennari. Interoperability of protégé 2.0
beta and Oi1lEd 3.5 in the domain knowledge of osteoporosis. In Proceedings of the 2nd
International Workshop on Evaluation of Ontology-based Tools (EON2003), Florida,
USA, October 2003.

[Camp, 1989] R.Camp. Benchmarking: The Search for Industry Best Practice that Lead
to Superior Performance. ASQC Quality Press, Milwaukee, 1989.

[Carroll and Roo, 2004] J.J. Carroll and J. De Roo. OWL web ontology language test
cases. Technical report, W3C, February 2004.

[Chandra and Markowsky, 1978] A. K. Chandra and G. Markowsky. On the number of
prime implicants. Discrete Mathematics, 24:7-11, 1978.

[Cimatti and Serafini, 1995] A. Cimatti and L. Serafini. Multi-agent reasoning with be-
lief contexts: the approach and a case study. In Intelligent Agents Conference — Work-
shop on Agent Theories, Architectures, and Languages, pages 71-85, 1995.

[Cohen et al., 1998] P. Cohen, R. Schrag, E. Jones, A. Pease, A. Lin, B. Starr, D. Gun-
ning, and M. Burke. The darpa high performance knowledge bases project. AI Maga-
zine, 19(4):25-49, 1998.

[Colton and Sutcliffe, 2002] S. Colton and G. Sutcliffe. Automatic generation of bench-
mark problems for automated theorem proving systems. In Proceedings of the 7th
International Symposium on Artificial Intelligence and Mathematics, USA, 2002.

86 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Colton, 2002] S. Colton. The hr program for theorem generation. In Proceedings of
CADE’02, Copenhagen, Denmark, 2002.

[Consortium, 2000] The MurMur Consortium. Supporting multiple representations
in spatio-temporal databases. In EC-GI and GIS Workshop, 2000. Available at
http://lbdwww.epfl.ch/e/MurMur/.

[Cook, 1971] S. A. Cook. The complexity of theorem proving procedures. In Proceed-
ings of the 3rd Annual ACM Symposium on the Theory of Computation, pages 151-158,
1971.

[Corcho et al.,2003] O. Corcho, A. Gémez-Pérez, D.J. Guerrero-Rodriguez, D. Pérez-
Rey, A. Ruiz-Cristina, T. Sastre-Toral, and M.C. Suarez-Figueroa. Evaluation experi-
ment of ontology tools’ interoperability with the WebODE ontology engineering work-

bench. In Proceedings of the 2nd International Workshop on Evaluation of Ontology-
based Tools (EON2003), Florida, USA, October 2003.

[Corcho et al.,2004] O. Corcho, R. Garcia-Castro, and A. Gomez-Pérez. Benchmarking
ontology tools. a case study for the WebODE platform. To be presented in LREC-2004
May 26th, Lisbon, Portugal, 2004.

[Coté, 1993] R.A. Coté, editor. Systematized Nomenclature of Medicine - SNOMED In-
ternational. College of American Pathologists, 1993.

[Dalal, 1992] Mukesh Dalal. Efficient propositional constraint propagation. In Proceed-
ings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pages 409—
414, San Jose, California, 1992. American Association for Artificial Intelligence.

[Dalal, 1996a] M. Dalal. Semantics of an anytime family of reasoners. In W. Wahlster,
editor, Proceedings of ECAI-96, pages 360-364, Budapest, Hungary, August 1996.
John Wiley & Sons LTD.

[Dalal, 1996b] Mukesh Dalal. Anytime families of tractable propositional reasoners.
In International Symposium on Artifical Intelligence and Mathematics AI/MATH-96,
pages 42-45, 1996. Extended version submitted to Annals of Mathematics and Artifi-
cal Intelligence.

[de Kleer, 1990] J. de Kleer. Exploiting locality in a tms. In Proceedings of the Eight
National Conference on Artificial Intelligence (AAAI-90), pages 264271, 1990.

[de Kleer, 1992] J. de Kleer. An improved algorithm for generating prime implicates.
In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92),
pages 780-785, 1992.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An analysis of time-dependent plan-
ning. In Proceedings of the seventh National conference on artificial intelligence
AAAI-88, pages 49-54, Saint Paul, Minnesota, 1988.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 87

BIBLIOGRAPHY

[del Val, 1994] A. del Val. Tractable databases: How to make propositional unit resolu-
tion complete through compilation. In Proceedings of the Fourth International Con-
ference on the Principles of Knowledge Representation and Reasoning (KR-94), pages
551-561, 1994.

[Dill et al.,2003] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha,
Anant Jhingran, Tapas Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A.
Tomlin, and Jason Y. Zien. Semtag and seeker: Bootstrapping the semantic web via
automated semantic annotation. In Proc. of the Twelfth International World Wide Web

Conference (WWW), 2003.

[Dou et al.,2002] D. Dou, D. McDermott, and P. Qi. Ontology translation by ontology
merging and automated reasoning. In Proceedings of EKAW2002 Workshop on On-
tologies for Multi-Agent Systems, pages 3—18,2002.

[Duineveld et al., 1999] A.J. Duineveld, R. Stoter, M.R. Weiden, B. Kenepa, and V.R.
Benjamins. Wondertools? a comparative study of ontological engineering tools. In
Proceedings of the 12th International Workshop on Knowledge Acquisition, Modeling
and Management (KAW’99), Banff, Canada, 1999. Kluwer Academic Publishers.

[Dupont, 1994] Y. Dupont. Resolving fragmentation conflicts in schema integration. In
Entity-Relationship Approach - ER’94, pages 513-532, 1994.

[Elhaik er al., 1998] Q. Elhaik, M.C. Rousset, and B. Ycart. Generating random bench-
marks for description logics. In E. Franconi, G. De Giacomo, R.M. MacGregor,
W. Nutt, C.A. Welty, and F. Sebastiani, editors, Proceedings of the International De-
scription Logics Workshop (DL’98), volume 11, pages 55-57. CEUR-WS, May 1998.

[Euzenat, 2003] J. Euzenat. Towards composing and benchmarking ontology alignments.
ISWC2003 Workshop on Semantic Integration. Sanibel Island, Florida, October 2003.

[Fenton and Neil, 2000] N.E. Fenton and M. Neil. Software metrics: roadmap. In Pro-
ceedings of the conference on The future of Software engineering, pages 357-370.
ACM Press, 2000.

[Fenton, 1991] N.E. Fenton. Software Metrics - A Rigorous Approach. Chapman & Hall,
London, UK, 1991.

[Fernandez et al., 2001] P. Fernandez, I.P. McCarthy, and T. Rakotobe-Joel. An evo-
lutionary approach to benchmarking. Benchmarking: An International Journal,

8(4):281-305, 2001.

[Fikes and Farquhar, 1999] R. Fikes and A. Farquhar. Large-scale repositories of highly
expressive reusable knowledge. IEEE Intelligent Systems, 14(2), 1999.

88 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Fillies, 2003] C. Fillies. Semtalk eon2003 semantic web export / import interface test.

In Proceedings of the 2nd International Workshop on Evaluation of Ontology-based
Tools (EON2003), Florida, USA, October 2003.

[Fisher and Ghidini, 1999] M. Fisher and C. Ghidini. Programming resource-bounded
deliberative agents. In International Joint Conference on Artificial Intelligence (IJCAI
99), pages 200-206, 1999.

[Franconi et al., 2003] E. Franconi, G. Kuper, A. Lopatenko, and L. Serafini. A robust
logical and computational characterisation of peer-to-peer database systems. In Inter-

national Workshop on Databases, Information Systems and Peer-to-Peer Computing,
2003.

[Franconi et al., 2004] E. Franconi, G. Kuper, A. Lopatenko, and I. Zaihrayeu. The codb
robust peer-to-peer database system. Proc. of the 2nd Workshop on Semantics in Peer-
to-Peer and Grid Computing (SemPGrid), 2004.

[Frei and Faltings, 2000] Christian Frei and Boi Faltings. Abstraction and constraint sat-
isfaction techniques for planning bandwidth allocation. In INFOCOM (1), pages 235—
244, 2000.

[Fuchs and Sutcliffe, 2002] M. Fuchs and G. Sutcliffe. Homogeneous sets of ATP prob-
lems. In Proceedings of the 15th Florida Artificial Intelligence Research Symposium,
pages 57-61, Pensecola, USA, 2002.

[Gee et al.,2001] D. Gee, K. Jones, D. Kreitz, S. Nevell, B. O’Connor, and B. Van Ness.
Using Performance Information to Drive Improvement, volume 6 of The Performance-

Based Management Handbook. Performance-Based Management Special Interest
Group, 2001.

[Ghidini and Giunchiglia, 2001a] C. Ghidini and F. Giunchiglia. Local model semantics,
or contextual reasoning = locality + compatibility. Artificial Intelligence, 127(2):221-
259, 2001.

[Ghidini and Giunchiglia, 2001b] C. Ghidini and F. Giunchiglia. Local models se-
mantics, or contextual reasoning = locality + compatibility. Artificial Intelligence,
127(2):221-259, April 2001.

[Ghidini and Giunchiglia, 2001c] C. Ghidini and F. Giunchiglia. Local models se-
mantics, or contextual reasoning = locality + compatibility. Artificial Intelligence,
127(2):221-259,2001.

[Ghidini and Serafini, 1998] C. Ghidini and L. Serafini. Distributed First Order Logics.
In D. Gabbay and M. de Rijke, editors, Frontiers Of Combining Systems 2, Studies in
Logic and Computation, pages 121-140. Research Studies Press, 1998.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 &9

BIBLIOGRAPHY

[Ghidini and Serafini, 2000] C. Ghidini and L. Serafini. Distributed First Order Logics.
In Frontiers of Combining Systems 2, pages 121-139, 2000.

[Ghidini, 1999] C. Ghidini. Modeling (un)bounded beliefs. In Modeling and Using Con-
text (CONTEXT 99), pages 145158, 1999.

[Giboin et al.,2002] A. Giboin, F. Gandon, O. Corby, and R. Dieng. Assessment of
ontology-based tools: A step towards systemizing the scenario approach. In Proceed-
ings of the International Workshop on Evaluation of Ontology-based Tools (EON2002),
Sigiienza, Spain., October 2002.

[Giunchiglia and Giunchiglia, 1996] E. Giunchiglia and F. Giunchiglia. Ideal and real
belief about belief. In International Conference on Formal and Applied Practical Rea-
soning (FAPR 96), pages 261-275, 1996.

[Giunchiglia and Sebastiani, 1996a] F. Giunchiglia and R. Sebastiani. Building decision
procedures for modal logics from propositional decision procedure - the case study of
modal K. In Conference on Automated Deduction, pages 583-597, 1996.

[Giunchiglia and Sebastiani, 1996b] F. Giunchiglia and R. Sebastiani. A SAT-based de-
cision procedure for ALC. In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro,
editors, KR’96: Principles of Knowledge Representation and Reasoning, pages 304—
314. Morgan Kaufmann, San Francisco, California, 1996.

[Giunchiglia and Sebastiani, 2000] F. Giunchiglia and R. Sebastiani. Building decision
procedures for modal logics from propositional decision procedures - the case study of
modal k,,. Journal of Information and Computation, 162(1/2):158-178, 2000.

[Giunchiglia and Serafini, 1994] F. Giunchiglia and L. Serafini. Multilanguage hierarchi-
cal logics, or: how we can do without modal logics. Artificial Intelligence, 65(1):29—
70, 1994.

[Giunchiglia and Tacchella, 2000] E. Giunchiglia and A. Tacchella. A subset-matching
size-bounded cache for satisfiability in modal logics. In Analytic Tableaux and Related
Methods, pages 237-251, 2000.

[Giunchiglia and Walsh, 1990] Fausto Giunchiglia and Toby Walsh. Abstract theorem
proving: Mapping back. Technical Report 8911-16, IRST, Trento, Italy, 1990.

[Giunchiglia and Walsh, 1992] Fausto Giunchiglia and Toby Walsh. A theory of abstrac-
tion. Artificial Intelligence, 57(2-3):323-389, 1992.

[Giunchiglia and Zaihrayeu, 2004] F. Giunchiglia and 1. Zaihrayeu. Implementing

database coordination in p2p networks. Proc. of the 2nd Workshop on Semantics in
Peer-to-Peer and Grid Computing (SemPGrid), November 2004 .

90 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Giunchiglia et al., 1993] F. Giunchiglia, L. Serafini, E. Giunchiglia, and M. Frixione.
Non-omniscient belief as context-based reasoning. In International Joint Conference
on Artificial Intelligence (IJCAI 93), pages 548-554, 1993.

[Giunchiglia et al., 1997] Fausto Giunchiglia, Adolfo Villafiorita, and Toby Walsh. The-
ories of abstraction. AI Communications, 10(3-4):167-176, 1997.

[Giunchiglia et al., 1998] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella.
More evaluation of decision procedures for modal logics. In Anthony G. Cohn, Lenhart
Schubert, and Stuart C. Shapiro, editors, KR’98: Principles of Knowledge Represen-
tation and Reasoning, pages 626—-635. Morgan Kaufmann, San Francisco, California,
1998.

[Giunchiglia et al., 1999] E. Giunchiglia, F. Giunchiglia, and A. Tacchella. *SAT,
KSATC, DLP and TA: a comparative analysis. In P. Lambrix, editor, International
workshop on description logics (DL’99), 30 July-1 August 1999.

[Giunchiglia et al., 2000] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella.
Sat vs. translation based decision procedures for modal logics: A comparative evalua-
tion. Journal of applied non classical logics, 10(2), 2000.

[Giunchiglia et al., 2002] E. Giunchiglia, A. Tacchella, and F. Giunchiglia. SAT-based
decision procedures for classical modal logics. Journal of Automated Reasoning,
28(2):143-171, 2002.

[Giunchiglia, 1993a] F. Giunchiglia. Contextual reasoning. Epistemologia, special issue
on I Linguaggi e le Macchine, XVI1:345-364, 1993. Short version in Proceedings
IJCAI’93 Workshop on Using Knowledge in its Context, Chambery, France, 1993, pp.
39-49. Also IRST-Technical Report 9211-20, IRST, Trento, Italy.

[Giunchiglia, 1993b] F. Giunchiglia. Contextual reasoning. Epistemologia, XVI:345—
364, 1993.

[GO,] GO project. European Bioinformatics Institute. http://www.ebi.ac.uk/
go.

[GOmez-Pérez and Suérez-Figueroa, 2003] A. Gémez-Pérez and M.C. Suarez-Figueroa.
Results of taxonomic evaluation of RDF(S) and DAML+OIL ontologies using RDF(S)
and DAML+OIL validation tools and ontology platforms import services. In Pro-
ceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools
(EON2003), Florida, USA, October 2003.

[GOmez-Pérez and Suérez-Figueroa, 2004] A. Gémez-Pérez and M.C. Suarez-Figueroa.
Evaluation of RDF(S) and DAML+OIL import/export services within ontology plat-
forms. In Proceedings of the Third Mexican International Conference on Artificial
Intelligence, pages 109 — 118, Mexico City, Mexico, April 2004.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 91

BIBLIOGRAPHY

[Goodman, 1993] P. Goodman. Practical Implementation of Software Metrics. McGraw
Hill, London, 1993.

[Grady and Caswell, 1987] R.B. Grady and D.L. Caswell. Software Metrics: Establish-
ing a Company-Wide Program. Prentice-Hall, 1987.

[Grant and Beckett, 2004] J. Grant and D. Beckett. RDF test cases. Technical report,
W3C, February 2004.

[Guha, 1991] R.V. Guha. Contexts: A Formalization and some Applications. PhD thesis,
Stanford University, 1991.

[Guo et al.,2003] Y. Guo, J. Heflin, and Z. Pan. Benchmarking DAML+OIL reposito-
ries. In Proceedings of the 2nd International Semantic Web Conference, (ISWC 2003),
Florida, USA, October 2003.

[Haarslev and Moller, 1999a] V. Haarslev and R. Moller. Applying an ALC ABox con-
sistency tester to modal logic SAT problems. In Proceedings TABLEAUX’99, The

6th International Conference on Theorem Proving with Analytic Tableaux and Related
Methods, pages 24-28, Berlin, 1999. Springer-Verlag.

[Haarslev and Moller, 1999b] V. Haarslev and R. Moller. An empirical evaluation of opti-
mization strategies for ABox reasoning in expressive description logics. In P. Lambrix,
A. Borgida, M. Lenzerini, R. Moller, and P. Patel-Schneider, editors, Proceedings of
the International Workshop on Description Logics (DL’99), volume 22, pages 115—
119, Linkoeping, Sweden, July-August 1999. CEUR-WS.

[Haarslev and Moller, 2001a] V. Haarslev and R. Moller. High performance reasoning
with very large knowledge bases: A practical case study. In Proceedings of the Seven-
teenth International Joint Conference on Artificial Intelligence (IJCAI 2001),2001.

[Haarslev and Moller, 2001b] Volker Haarslev and Ralf Moller. RACER system descrip-
tion. In Proceedings of the International Joint Conference on Automated Reasoning
(IJCAR 2001), volume 2083 of Lecture Notes in Artificial Intelligence, pages 701-705.
Springer, 2001.

[Hainaut, 1999] J.L. Hainaut. Methodology and case tools for the development of feder-
ated databases. Journal of Cooperative Information Systems, 8:169—194, 1999.

[Halevy et al.,2003] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema mediation
in a peer data management system. /ICDE, 2003.

[Heuerding and Schwendimann, 1996] A. Heuerding and S. Schwendimann. A bench-
mark method for the propositional modal logics K, KT, and S4. Technical Report
IAM-96-015, University of Bern, Switzerland, 1996.

92 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Hollunder, 1996] Bernhard Hollunder. Consistency checking reduced to satisfiability of
concepts in terminological systems. Annals of Mathematics and Artificial Intelligence,
18(2-4):133-157, 1996.

[Horrocks and Patel-Schneider, 1998] 1. Horrocks and P.F. Patel-Schneider. DL systems
comparison. In E. Franconi, G. De Giacomo, R.M. MacGregor, W. Nutt, C.A. Welty,

and F. Sebastiani, editors, Proceedings of the International Description Logics Work-
shop (DL’98), volume 11, pages 55-57. CEUR-WS, May 1998.

[Horrocks and Patel-Schneider, 1999a] 1. Horrocks and P.F. Patel-Schneider. Generating

hard modal problems for modal decision procedures. In Proceedings 1st workshop on
Methods for Modalities (M4M-1). 10S Press, May 1999.

[Horrocks and Patel-Schneider, 1999b] I. Horrocks and P.F. Patel-Schneider. Perfor-
mance of DLP on random modal formulae. In International Workshop on Description
Logics (DL’99), pages 120—124. Springer Verlag, 30 July-1 August 1999.

[Horrocks and Patel-Schneider, 2002] 1. Horrocks and P.F. Patel-Schneider. Evaluating
optimised decision procedures for propositional modal K ., satisfiability. Journal of
Automated Reasoning, 28(2):173-204, February 2002.

[Horrocks and Patel-Schneider, 2003] Ian Horrocks and Peter F. Patel-Schneider. Reduc-
ing OWL entailment to description logic satisfiability. In Proc. of the 2nd International
Semantic Web Conference (ISWC), 2003.

[Horrocks and Tessaris, 2000] Ian Horrocks and Sergio Tessaris. A conjunctive query
language for description logic aboxes. In AAAI/IAAI, pages 399 — 404, 2000.

[Horrocks et al., 2000] I. Horrocks, P.F. Patel-Schneider, and R. Sebastiani. An analy-
sis of empirical testing for modal decision procedures. Logic Journal of the IGPL,
8(3):293-323, 2000.

[Horrocks, 1998] Ian Horrocks. Using an expressive description logic: FaCT or fiction?
In Proceedings of the Sixth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR’98), pages 636—-647, 1998.

[Horrocks, 2003] I. Horrocks. Implementation and optimisation techniques. In Franz
Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors, The Description Logic Handbook: Theory, Implementation, and
Applications, pages 306-346. Cambridge University Press, 2003.

[Horvitz, 1987] E. J. Horvitz. Reasoning about beliefs and actions under computational
resource constraints. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer, editors, Uncertainty
in Artificial Intelligence 3, pages 301-324. Elsevier, Amsterdam, The Netherlands,
1987.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 93

BIBLIOGRAPHY

[Hustadt and Schmidt, 1997] U. Hustadt and R.A. Schmidt. On evaluating decision pro-
cedures for modal logic. In IJCAI (1), pages 202-209, 1997.

[Hustadt and Schmidt, 1999] U. Hustadt and R.A. Schmidt. An empirical analysis of
modal theorem provers. Journal of Applied Non-Classical Logics,9(4):479-522,1999.

[IEEE, 1991] IEEE. IEEE-STD-610 ANSI/IEEE Std 610.12-1990. IEEE Standard Glos-
sary of Software Engineering Terminology. IEEE, February 1991.

[Isaac et al.,2003] A. Isaac, R. Troncy, and V. Malais. Using XSLT for interoperability:
DOE and the travelling domain experiment. In Proceedings of the 2nd International
Workshop on Evaluation of Ontology-based Tools (EON2003), Florida, USA, October
2003.

[Jackson and Pais, 1990] P. Jackson and J. Pais. Computing prime implicants. In Pro-
ceedings of the Tenth International Conference on Automated Deduction (CADE-90),
pages 543-557, 1990.

[Kautz and Selman, 1994] H. Kautz and B. Selman. An Empirical Evaluation of Knowl-
edge Compilation. In Proceedings of the Twelfth National Conference on Artificial
Intelligence (AAAI-94), pages 155-160, 1994.

[Kim,] J. Kim. Moa core - a basic library for owl ontology merging and alignment
applications. http://mknows.etri.re.kr/moa/docs/moacore.html.

[King,2003] M. King. Living up to standards. In Proceedings of the EACL 2003 Work-
shop on Evaluation Initiatives in Natural Language Processing, Budapest, Hungary,
2003.

[Kitchenham et al., 1994] B.A. Kitchenham, S.G. Linkman, and D.T. Law. Critical re-
view of quantitative assessment. Software Engineering Journal, 9(2):43-53, 1994.

[Kitchenham et al., 1995] B.A. Kitchenham, S.L. Pfleeger, and N.E. Fenton. Towards
a framework for software measurement validation. IEEE Transactions on Software
Engineering,21(12):929-944, December 1995.

[Kitchenham et al., 2002] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones,
D.C. Hoaglin, K. ElI-Emam, and J. Rosenberg. Preliminary guidelines for empiri-

cal research in software engineering. IEEE Transactions on Software Engineering,
28(8):721-734,2002.

[Kitchenham, 1996] B. Kitchenham. DESMET: A method for evaluating software en-
gineering methods and tools. Technical Report TR96-09, Department of Computer
Science, University of Keele, Staffordshire, UK, 1996.

94 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Klein, 2001] Michel Klein. Combining and relating ontologies: an analysis of problems
and solutions. In Asuncion Gomez-Perez, Michael Gruninger, Heiner Stuckenschmidt,
and Michael Uschold, editors, Workshop on Ontologies and Information Sharing, 1J-
CAI’01,2001.

[Klusch, 1999] Matthias Klusch, editor. Intelligent information agent. Springer-Verlag,
Berlin, 1999.

[Klusch, 2001] Matthias Klusch. Information agent technology for the internet: A survey.
Data & Knowledge Engineering, 36(3):337-372,2001.

[Knoblock, 1989] C. A. Knoblock. A theory of abstraction for hierachical planning. In
Proceedings of the Workshop on Change of Representation and Inductive Bias, 1989.

[Knublauch, 2003] H. Knublauch. Case study: Using protégé to convert the travel ontol-
ogy to UML and OWL. In Proceedings of the 2nd International Workshop on Evalua-
tion of Ontology-based Tools (EON2003), Florida, USA, October 2003.

[Korf, 1990] R. E. Korf. Planning as search: A quantitative approach. In J. Allen,
J. Hendler, and A. Tate, editors, Readings in Planning, pages 566—577. Kaufmann,
San Mateo, CA, 1990.

[Kotis and Vouros, 2004] K. Kotis and G. Vouros. HCONE approach to Ontology Merg-
ing. In Proceedings of the st European Semantic Web Symposium (ESWS2004),2004.

[Lambrix and Edberg, 2003] P. Lambrix and A. Edberg. Evaluation of ontology merging
tools in bioinformatics. In Proceedings of the Pacific Symposium on Biocomputing
(PSB03), Kauai, Hawaii, USA, 2003.

[Lambrix et al., 2003] P. Lambrix, M. Habbouche, and M. Pérez. Evaluation of ontology
development tools for bioinformatics. Bioinformatics, 19(12):1564—1571, 2003.

[Lankford, 2000] W.M. Lankford. Benchmarking: Understanding the basics. Coastal
Business Journal, (1), 2000.

[Larson et al., 1989] J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute
equivalence in databases with application to schema integration. IEEE Transactions
On Software Engineering, 15:449-463, 1989.

[Lenat and Guha, 1990] D. B. Lenat and R. V. Guha. Building Large Knowledge Based
Systems. Addison Wesley, 1990.

[Lenzerini, 2002] M. Lenzerini. Tutorial on "Data integration: A theoretical perspec-
tive”. ACM SIGMOD-PODS conference, Madison, WI, USA, June 2002.

[Levesque, 1984] H.J. Levesque. A logic of implicit and explicit belief. In Proceedings
of the Fourth National Conference on Artificial Intelligence (AAAI-84), pages 198-202,
1984.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 95

BIBLIOGRAPHY

[Levesque, 1988] H. J. Levesque. Logic and the complexity of reasoning. Journal of
Philosophical Logic, 17:355-389, 1988.

[Levesque, 1989] H.J. Levesque. A knowledge-level account of abduction. In Proceed-
ings of the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-
89), pages 1061-1067, 1989.

[Li and Horrocks, 2003] Lei Li and Ian Horrocks. A software framework for matchmak-
ing based on semantic web technology. In Proc. of the Twelfth International World
Wide Web Conference (WWW), pages 331-339. ACM, 2003.

[MacCartney et al.,2003] B. MacCartney, S. Mcllraith, E. Amir, and T. Uribe. Practical
partition-based theorem proving for large knowledge bases. In International Joint
Conference on Artificial Intelligence (IJCAI-03), pages 89-96,2003.

[Magkanaraki et al.,2002] Aimilia Magkanaraki, Sofia Alexaki, Vassilis Christophides,
and Dimitris Plexousakis. Benchmarking rdf schemas for the semantic web. In Pro-

ceedings of the First International Semantic Web Conference on The Semantic Web,
pages 132—146. Springer-Verlag, 2002.

[Marquis and Sadaoui, 1996] P. Marquis and S. Sadaoui. A new algorithm for comput-
ing theory prime implicates compilations. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), pages 504-509, 1996.

[Marquis, 1995] P. Marquis. Knowledge compilation using theory prime implicates. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,

pages 837-843, 1995.

[Massacci, 1996] F. Massacci. Contextual reasoning is NP complete. In National Con-
ference on Artificial Intelligence (AAAI 96), pages 621-626, 1996.

[Massacci, 1999] F. Massacci. Design and results of the tableaux-99 non-classical
(modal) systems comparison. In TABLEAUX-99, volume 1617 of LNAI, pages 14—
18. Springer-Verlag, 1999.

[Massart, 1997] D. Massart. Complexity management of object schemas. Technical re-
port, Universit catholique de Louvain, 1997.

[McAllester, 1990] David McAllester. Truth maintenance. In Proceedings
AAAI90, pages 1109-1116. Morgan Kaufmann Publishers, 1990. internet file
ftp.ai.mit.edu:/pub/dam/aaai90.ps.

[McCarthy and Buvac, 1998] J. McCarthy and S. Buvac. Formalizing context (expanded
notes). In Computing Natural Language, volume 81 of CSLI Lecture Notes, pages
13-50. 1998.

96 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[McCarthy, 1987] J. McCarthy. Generality in artificial intelligence. Communications of
ACM, 30(12):1030-1035, 1987.

[Melnik et al.,2003] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A programming
platform for generic model management. In SIGMOD, pages 193-204, 2003.

[Menczer and Monge, 1999] F.Menczer and A. Monge. Scalable web search by adaptive
online agents: an infospiders case study. In M. Klusch, editor, Intelligent Information
Agents: Agent-Based Information Discovery and Management on the Internet, pages
323 — 347. Springer, Berlin, 1999.

[Nayak and Levy, 1995] P. Pandurang Nayak and Alan Levy. A semantic theory of ab-
stractions. In Chris Mellish, editor, Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pages 196-203, San Francisco, 1995. Morgan
Kaufmann.

[Nelson and Powell, 2002] Stuart J. Nelson and Betsy L. Powell, Tammy
andn Humphreys. The unified medical language system (umls) project. In
Allen Kent and Carolyn M. Hall, editors, Encyclopedia of Library and Information
Science., pages 369-378. Marcel Dekker, Inc., 2002.

[Nelson et al.,2001] Stuart J. Nelson, Douglas Johnston, and Betsy L. Humphreys. Re-
lationships in medical subject headings. In Carol A. Bean and Rebecca Green, edi-
tors, Relationships in the organization of knowledge, pages 171-184, New York, 2001.
Kluwer Academic Publishers.

[Ngetal.,2003] W. Ng, B. Ooi, K. Tan, and A. Zhou. Peerdb: A p2p-based system for
distributed data sharing. ICDE, 2003.

[Nicolle and Yetongnon, 2001] C. Nicolle and K. Yetongnon. Xml enabled metamodel-
ing and tools for cooperative information systems. In Conference on Electronic Com-
merce and Web Technologies (EC-Web 01), pages 260-269, 2001.

[Noy and Musen, 2001] N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence (AAAI-2000), 2001.

[Noy and Musen, 2002] N.F. Noy and M.A. Musen. Evaluating ontology-mapping tools:
Requirements and experience. In Proceedings of the International Workshop on Eval-
uation of Ontology-based Tools (EON2002), Sigenza, Spain, October 2002.

[Omicini et al.,2001] Andrea Omicini, Franco Zambonelli, Matthias Klusch, and Robert
Tolksdorf, editors. Coordination of Internet Agents: Models, Technologies, and Appli-
cations. Springer, 2001.

[OntoWeb, 2002] OntoWeb. Ontoweb deliverable 1.3: A survey on ontology tools. Tech-
nical report, IST OntoWeb Thematic Network, May 2002.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 97

BIBLIOGRAPHY

[Papazoglou et al., 1992] Mike P. Papazoglou, S. C. Laufmann, and Timos K. Sellis. An
organizational framework for cooperating intelligent information systems. Interna-
tional Journal of Cooperative Information Systems, 1(1):169-202, 1992.

[Parent and Spaccapietra, 2000] C. Parent and S. Spaccapietra. Database integration: the
key to data interoperability. In Advances in Object-Oriented Data Modeling,2000.

[Park et al., 1996] R.E. Park, W.B. Goethert, and W.A. Florac. Goal-driven software
measurement - a guidebook. Technical Report CMU/SEI-96-HB-002, Software Engi-
neering Institute, August 1996.

[Patel-Schneider and Horrocks, 1999] P.F. Patel-Schneider and I. Horrocks. DLP and
FaCT. In Proceedings TABLEAUX’99, The 6th International Conference on Theo-
rem Proving with Analytic Tableaux and Related Methods, pages 19-23, Berlin, 1999.
Springer-Verlag.

[Patel-Schneider et al., 2003] P.F. Patel-Schneider, P. Hayes, and I. Horrocks. Web On-
tology Language (OWL) Abstract Syntax and Semantics. Technical report, W3C,
www.w3.0rg/TR/owl-semantics/, February 2003.

[Patel-Schneider, 1999] P. Patel-Schneider. Systems comparison. In P. Lambrix,
A. Borgida, M. Lenzerini, R. Moller, and P. Patel-Schneider, editors, Proceedings of
the International Workshop on Description Logics (DL’99), volume 22, pages 115—
119, Linkoeping, Sweden, July-August 1999. CEUR-WS.

[Pelletier and Sutcliffe, 2001] J. Pelletier and G. Sutcliffe. CASC: Effective evaluation
having an effect. In Proceedings of the IJCAI’0O1 Workshop on Empirical Methods in
Artificial Intelligence, pages 33—40, Seattle, USA, 2001.

[Pentland, 1998] A. Pentland. Wearable Intelligence, volume 276. Scientific American,
1998.

[Pinto ef al., 2002] H. Sofia Pinto, Duarte Nuno Peralta, and Nuno J. Mamede. Using
protégé-2000 in reuse processes. In Proceedings of the International Workshop on
Evaluation of Ontology-based Tools (EON2002), Sigiienza, Spain, October 2002.

[Plaisted, 1980] David A. Plaisted. Abstraction mappings in mechanical theorem prov-
ing. In Proceedings of the 5th Conference on Automated Deduction, pages 264-280,
July 08-11 1980.

[Plaisted, 1981] David A. Plaisted. Theorem proving with abstraction. Artificial Intelli-
gence, 16:47-108, 1981.

[Quine, 1959] W. V. O. Quine. On cores and prime implicants of truth functions. Ameri-
can Mathematical Monthly, 66, 1959.

98 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Rahm and Bernstein, 2001] E. Rahm and P.A. Bernstein. A survey of approaches to
automatic schema matching. The VLDB Journal, 10:334 — 350, 2001.

[Rector and Nowlan, 1993] A.L.Rector and W.A. Nowlan. The galen project. Computer
Methods and Programs in Biomedicine, 45:75-78, 1993.

[Reiter and de Kleer, 1987] R. Reiter and J. de Kleer. Foundations of assumption-based
truth maintenance systems: Preliminary report. In Proceedings of the 6th National
Conference on Artificial Intelligence (AAAI-87), pages 183—188, 1987.

[Roelofsen and Serafini, 2004] F. Roelofsen and L. Serafini. Complexity of contextual
reasoning. In National Conference on Artificial Intelligence (AAAI 04), 2004. Ac-
cepted for pulication.

[Russell and Zilberstein, 1991] S.J.Russell and S. Zilberstein. Composing real-time sys-
tems. In Proceedings of the 12th International Joint Conference on Artificial Intelli-
gence, pages 212-217, Sydney, Australia, 1991.

[Sacerdoti, 1973] E.D. Sacerdoti. Planning in a hierarchy of abstraction spaces. In Proc.
of the 3rd IJCAI, pages 412—-422, Stanford, MA, 1973.

[Schaerf and Cadoli, 1995] Marco Schaerf and Marco Cadoli. Tractable reasoning via
approximation. Artificial Intelligence, 74:249-310, 1995.

[Schrag and Crawford, 1996a] R.Schrag and J. Crawford. Compilation for critically con-
strained knowledge bases. In Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), pages 510-515, 1996.

[Schrag and Crawford, 1996b] Robert Schrag and James M. Crawford. Implicates and
prime implicates in random 3SAT. Artificial Intelligence, 81(1-2):199-222,1996.

[Selman and Kautz, 1991] B. Selman and H. A. Kautz. Knowledge compilation using
Horn approximations. In Proceedings of the Ninth National Conference on Artificial
Intelligence (AAAI-91), pages 904-909, 1991.

[Selman and Kautz, 1996] B. Selman and H. A. Kautz. Knowledge compilation and the-
ory approximation. Journal of the ACM, 43:193-224, 1996.

[Serafini and Bouquet, 2004] L. Serafini and P. Bouquet. Comparing formal theories of
context in Al. Artificial Intelligence, 155:41-67,2004.

[Serafini and Roelofsen, 2004] L. Serafini and F. Roelofsen. Satisfiability for proposi-
tional contexts. In Principles of Knowledge Representation and Reasoning (KR 04),
2004. Accepted for publication.

[Serafini and Tamilin, 2004] L. Serafini and A. Tamilin. Distributed reasoning services
for multiple ontologies. Technical report, ITC-IRST, 2004.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 99

BIBLIOGRAPHY

[Serafini et al., 2003] L. Serafini, F. Giunchiglia, J. Mylopoulos, and P. A. Bernstein.
Local relational model: a logical formalization of database coordination. In Modeling
and Using Context (CONTEXT 03), pages 286-299, June 2003.

[Sheth and Kashyap, 1992] A. Sheth and V. Kashyap. So far (schematically) yet so near
(semantically). In Conference on Semantics of Interoperable Databases Systems, pages
272-301, 1992.

[Sill, 1996] D. Sill. comp.benchmarks frequently asked questions version 1.0, 1996.

[Sim et al.,2003] S. Sim, S. Easterbrook, and R. Holt. Using benchmarking to advance

research: A challenge to software engineering. In Proceedings of the 25th International
Conference on Software Engineering (ICSE’03), pages 74—83, Portland, OR, 2003.

[Simon and del Val, 2001] L. Simon and A. del Val. Efficient consequence finding. In
Proceedings of the Seventeenth International Joint Conference on Artificial Intelli-
gence (IJCAI-01),2001.

[Sole and Bist, 1995] T.D. Sole and G. Bist. Benchmarking in technical information.
IEEE Transactions on Professional Communication, 38(2):77-82, June 1995.

[Spendolini, 1992] M.J. Spendolini. The Benchmarking Book. AMACOM, New York,
NY, 1992.

[Stojanovic and Motik, 2002] L. Stojanovic and B. Motik. Ontology evolution within
ontology editors. In Proceedings of the International Workshop on Evaluation of
Ontology-based Tools (EON2002), Sigiienza, Spain, October 2002.

[Stuckenschmidt and van Harmelen, 2002] Heiner Stuckenschmidt and Frank van
Harmelen. Approximating terminological queries. In Troels Andreasen, Amihai
Motro, Henning Christiansen, and Henrik Legind Larsen, editors, Flexible Query
Answering Systems, Sth International Conference, FQAS 2002, Copenhagen, Den-
mark, October 27-29, 2002, Proceedings, volume 2522 of Lecture Notes in Computer
Science, pages 329-343. Springer, 2002.

[Stuckenschmidt et al., 2004] H. Stuckenschmidt, F. van Harmelen, L. Serafini, P. Bou-
quet, and F. Giunchiglia. Using C-OWL for the alignment and merging of medical
ontologies. In First International Workshop on Formal Biomedical Knowledge Repre-
sentation Collocated with KR 2004, February 2004.

[Stumme and Maedche, 2001] G. Stumme and A. Maedche. FCA-Merge: A Bottom-
Up Approach for Merging Ontologies. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence, 2001.

[Subrahmanian et al., 2000] V.S. Subrahmanian, Piero Bonatti, Jrgen Dix, Thomas Eiter,
Sarit Kraus, Fatma Ozcan, and Robert Ross. Heterogeneous Agent Systems. MIT Press,
2000.

100 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Sure and Iosif, 2002] Y. Sure and V. losif. First results of a semantic web technologies
evaluation. In Proceedings of the Common Industry Program at the federated event
co-locating the three international conferences: DOA’02: Distributed Objects and Ap-
plications; ODBASE’02: Ontologies, Databases and Applied Semantics; CooplS’02:
Cooperative Information Systems, University of California, Irvine, USA, October-
November 2002.

[Sure et al.,2003] Y. Sure, J. Angele, and O. Corcho, editors. Proceedings of the Sec-
ond International Workshop on Evaluation of Ontology based Tools (EON 2003), vol-
ume 87 of CEUR Workshop Proceedings, Florida, USA,2003. CEUR-WS Publication,
available at http://CEUR-WS .org/Vol-87/.

[Sure et al.,2004] Y. Sure, O. Corcho, J. Euzenat, and T. Hughes. Proceedings of the Tird
International Workshop on Evaluation of Ontology based Tools (EON 2004), 2004. to
appear.

[Sutcliffe and Suttner, 1998] G. Sutcliffe and C. Suttner. The TPTP problem library:
CNF release v1.2.1. Journal of Automated Reasoning,21(2):177-203, 1998.

[Sutcliffe and Suttner, 2001] G. Sutcliffe and C.B. Suttner. Evaluating general purpose
automated theorem proving systems. Artificial Intelligence, 131(1-2):39-54, 2001.

[Suttner and Sutcliffe, 1997] C.B. Suttner and G. Sutcliffe. The TPTP problem library
v2.1.0. Technical report, Technical Report AR-97-04, Institut fiir Informatik, Technis-
che Universitdt Miinchen, Munich, Germany; Technical Report 97/08, Department of
Computer Science, James Cook University, Townsville, Australia, 1997.

[Tempich and Volz, 2003] C. Tempich and R. Volz. Towards a benchmark for semantic
web reasoners - an analysis of the DAML ontology library. In Proceedings of the 2nd
International Workshop on Evaluation of Ontology-based Tools (EON2003), Florida,
USA, October 2003.

[ten Teije and van Harmelen, 1996] A. ten Teije and F. van Harmelen. Computing ap-
proximate diagnoses by using approximate entailment. In G. Aiello and J. Doyle,
editors, Proceedings of the Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR-96), Boston, Massachusetts, November 1996. Mor-
gan Kaufman.

[ten Teije and van Harmelen, 1997] A.ten Teije and F. van Harmelen. Exploiting domain
knowledge for approximate diagnosis. In M.E. Pollack, editor, Proceedings of the Fif-
teenth International Joint Conference on Artificial Intelligence (IJCAI-97), volume 1,
pages 454-459, Nagoya, Japan, August 1997. Morgan Kaufmann.

[Teorey et al., 1989] T.J. Teorey, G. Wei, D.L. Bolton, and J.A. Koenig. Er model clus-
tering as an aid for user communication and documentation in database design. Com-
munications of the ACM, 32:975-987, 1989.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 101

BIBLIOGRAPHY

[Tessaris, 2001] Sergio Tessaris. Questions and Answers: Reasoning and Querying in
Description Logic. PhD thesis, University of Manchester, Department of Computer
Science, April 2001.

[Thiran and Hainaut, 2001] P. Thiran and J.L. Hainaut. Wrapper development for legacy
data reuse. In WCRE’01,2001.

[Tison, 1967] P.Tison. Generalized consensus theory and application to the minimization
of boolean circuits. IEEE Transactions on Computers, EC-16:446-456, 1967.

[Uschold ef al.,2003] Michael Uschold, Peter Clark, Fred Dickey, Casey Fung, Sonia
Smith, Stephen Uczekaj Michael Wilke, Sean Bechhofer, and Ian Horrocks. A seman-
tic infosphere. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc.
of the 3nd International Semantic Web Conference (ISWC), number 2870 in Lecture
Notes in Computer Science, pages 882-896. Springer, 2003.

[Wache et al.,2001] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster,
H. Neumann, and S. Hbner. Ontology-based integration of information - a survey of

existing approaches. In Proceedings of IJCAI-01 Workshop: Ontologies and Informa-
tion Sharing, pages 108-117,2001.

[Weiss, 2002] A.R. Weiss. Dhrystone benchmark: History, analysis, scores and recom-
mendations. White paper, EEMBC Certification Laboratories, LLC, 2002.

[Wiederhold, 1992] G. Wiederhold. Mediators in the architecture of future information
systems. IEEE Computer,25:38-49, 1992.

[Woelk and Tomlinson, 1995] D. Woelk and C. Tomlinson. Carnot and infosleuth:
Database technology and the world wide web. In ACM SIGMOD Intl. Conf. on the
Management of Data, May 1995.

[Wohlin et al., 2002] C. Wohlin, A. Aurum, H. Petersson, F. Shull, and M. Ciolkowski.
Software inspection benchmarking - a qualitative and quantitative comparative oppor-
tunity. In Proceedings of 8th International Software Metrics Symposium, pages 118—
130, June 2002.

[Wooldridge and Jennings, 1995] M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review, 10(2), 1995.

[Ycart and Rousset, 2000] B. Ycart and M.C. Rousset. A zero-one law for random sen-
tences in description logics. In Proceedings of the Colloquium on Mathematics and
Computer Science: Algorithms, Trees, Combinatorics and Probabilities, September
2000.

[Zilberstein and Russell, 1996] Shlomo Zilberstein and Stuart J. Russell. Optimal com-
position of real-time systems. Artificial Intelligence, 82(1-2):181-213, 1996.

102 02. August, 2004 KWEB/2004/D2.1.1/v1.2

D2.1.1 Survey of Scalability Techniques IST Project IST-2004-507482

[Zilberstein, 1993] S. Zilberstein. Operational rationality through compilation of any-
time algorithms. PhD thesis, Computer science division, university of California at
Berkley, 1993.

[Zilberstein, 1996] S. Zilberstein. Using anytime algorithms in intelligent systems. Arti-
ficial Intelligence Magazine, fall:73-83, 1996.

KWEB/2004/D2.1.1/v1.2 02. August, 2004 103

Related deliverables

A number of Knowledge web deliverable are clearly related to this one:

Project

Number

Title and relationship

KwW

D2.2.1

Specification of a common framework for characterising
alignment proposes a framework for defining what alignment are.
This definition may influence the description of the module rela-
tionships.

Kw

D223

For the modularity the alignments analysed in State of the art
on current alignment techniques are interesting for the relation-
ships between different modules/ontologies because of their abil-
ity to reconcile heterogeneity problems.

104

