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Abstract
BigData technology has discarded traditional datamodeling approaches as no longer applicable to distributed data processing.
It is, however, largely recognized that Big Data impose novel challenges in data and infrastructure management. Indeed,
multiple components and procedures must be coordinated to ensure a high level of data quality and accessibility for the
application layers, e.g., data analytics and reporting. In this paper, the third of its kind co-authored by members of IFIP WG
2.6 on Data Semantics, we propose a review of the literature addressing these topics and discuss relevant challenges for future
research. Based on our literature review, we argue that methods, principles, and perspectives developed by the Data Semantics
community can significantly contribute to address Big Data challenges.

1 Introduction

The term “BigData” iswidely used to designate a discontinu-
ity in data processing and analytics [1,2]. The early literature
described this discontinuity using the “5 Vs” storyline that
highlights the unprecedented data Volume, Velocity (e.g., in
terms of input data rate), Variety (in terms of data types), as
well as non-uniform Veracity and Value of today’s appli-
cations [3–6]. In other words, data-intensive applications
require a data processing rate that may exceed the resources
available on a single node and this condition is in general
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difficult to predict when dealing with online data streams
[7]. On-demand elastic computing platforms, such as Ama-
zon AWS [8], and distributed processing frameworks, such
as Apache Hadoop and Spark [9], have been developed as a
technological solution for addressing these scalability issues.
The attention of the research community has, accordingly,
focused on processing functions [10,11] and execution per-
formance [12], giving less attention to other key features of
information management, for example, reuse, verifiability,
and modularity.

Data and infrastructure management represent recurring
challenges [5,13] for Big Data. Due to the heterogeneous
nature of distributed data, Big Data applications do not make
use of traditional data modeling [14]. Distributed datasets
and streams may consist of unstructured, semi-structured, or
highly structured but still non-relational data items such as
time series or nested records to which traditional data mod-
eling techniques are problematic. Clearly, heterogeneous
and/or weakly structured data make it difficult to design
schemata in advance [15]. In addition, Big Data datasets
may be processed only a few times or even once per use
case, making it too expensive to load them into a database
management system. In turn, data heterogeneity is taken to
the extreme in data-intensive applications involving Cyber
Physical Systems.

Another issue in Big Data representation is finding data
formats suitable for feeding a variety of algorithms rang-
ing from simple filters and aggregates to complex machine
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learning models. Metadata, i.e., data that describe other data
or systems, are essential for any data management activity
including data integration and cleaning, maintaining con-
sistency and freshness, and above all efficient querying.
Traditional relational databases and data warehouses offer
metadata repositories and metadata management as a built-
in feature [16]. However, a metadata standard has not yet
been developed for Big Data technologies.

Moreover, Big Data involves multi-party processes, with
different legal frameworks that apply to the data provider,
the data collector, and the data miner. Data management has
then become a major area of interest for data protection.
In fact, collecting evidence on the procedures and practices
applied, using continuous monitoring and assurance compo-
nents [17], is today essential.

In summary, Big Data still lack a comprehensive, sound
approach to data management. Rethinking information man-
agement in the context of Big Data technologies is a primary
topic for future research. A challenge that involves the whole
process of the Big Data pipeline, i.e., the set of tasks required
to drive Big Data computations. Documentation, reconfigu-
ration, data quality assurance, and verification are examples
of crucial tasks not easily supported in the current landscape
of Big Data technologies.

The aimof this paper is to explain howData Semantics can
support BigDatamanagement. Based on this perspective, we
propose a review of the literature addressing this issue and
discuss directions for future research. In particular, our atten-
tion will focus on the FAIR principles [18] recommending
procedures that generate Findable, Accessible, Interopera-
ble, and Reusable data or metadata.

Based on our literature review, as well as on the collective
vision of themembers of the IFIPWG2.6 onData Semantics,
we will discuss how methods, principles, and perspectives
developed by the Data Semantics community can contribute
to address Big Data challenges. In this respect, this paper
ideally continues the tradition of WG 2.6 collective contri-
butions [19,20].

The structure of this paper is as follows. In Sects. 2 and 3,
we introduce our discussion by distinguishing different levels
of representation that can be adopted in Big Data manage-
ment, taking into account the different stages composing a
Big Data pipeline. In Sect. 4, we develop the central discus-
sion of this paper. Then, in Sect. 5, we review the research
perspectives that emerge from our discussion and, finally, in
Sect. 6, we draw the conclusions.

2 Data Semantics Dimensions

Achieving the full potential of Big Data analytics requires
realizing a reconciliation between data distribution and data
modeling principles [14,21]. An improper data representa-

tion may reduce the accuracy of analytics or even invalidate
their results [22]. It can also impact the cost of execution
of analytics. Besides, a mismatch on the abstraction level
adopted by different data sources may occur even when they
rely on a shared data dictionary [23].

Data Semantics refers to the “meaning and meaningful
use of data” [24], i.e., the effective use of a data object for
representing a concept or object in the real world. Such a
general notion interconnects a large variety of applications.

A historic achievement of the database community was
Representing Data via suitable schemata. Unfortunately,
Big Data deal with evolving heterogeneous data that make it
difficult, or even impossible, to identify a data schema prior
to data processing. Solutions for integrating and querying
schema-less data have then received much attention [25].

However, since schema-based representation techniques
cannot be directly applied to describe Big Data, more and
more attention is being directed to Representing Metadata
within data-intensive applications. Managing a large vol-
ume of heterogeneous and distributed data requires definition
and continuous updating of metadata describing different
aspects of semantics and data quality, such as data documen-
tation, provenance, trust, accuracy, and other properties [26].
Recently, the IEEE has launched an initiative aimed at fos-
tering standardization in Big Data management.1

A further application of Data Semantics principles to
Big Data involves Modeling Data Processes and flows,
i.e., representing the entire pipeline making data representa-
tion shareable and verifiable. This may furthermore include
the relationships interconnecting the different stages of a
pipeline, for example, processing data stream requires to
select appropriate data preparation modules and analytics.

Finally, we also underline the relevance of Data Quality
aspects. Each phase of the Big Data pipeline has its own
quality tasks that must be taken into account in order to get
high-quality outputs from Big Data analytics.

3 The Big Data Pipeline

It is well recognized that Big Data impact the entire work-
flow guiding the execution of analytics. The complexity
of Big Data technologies and the variety of competences
required to design applications relying on them [27] have
emphasized the notion of Big Data pipelines, as well as
the relevance of systems for managing [28] and docu-
menting them. A pipeline is the coordination of different

1 The IEEE Big Data Governance and Metadata Management
(BDGMM) group (http://standards.ieee.org/develop/indconn/BDGMM_index.

html) aims at enabling data integration among heterogeneous datasets
from diversified domain repositories and makes data discoverable,
accessible, and usable through an actionable standard infrastructure.
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tasks, integrating different technologies, to achieve a specific
solution [29,30]. The Hadoop Stack includes, for example,
services related to five areas: Data Source, Data Format,
Data Stores,Data Staging, andData Processing [5]. Among
the most comprehensive overviews on reference components
of a pipeline, the authors of [31] propose the following steps:
Data Extraction, Data Loading and Pre-processing, Data
Processing, Data Analysis, Data Loading and Transforma-
tion, as well as Data Interfacing and Visualization. Ardagna
et al. [32] focus on languages for the explicit representation
of a pipeline and propose the following areas:DataRepresen-
tation, Data Preparation, Data Processing, Data Analytics,
and Data Visualization.

Without claiming to be comprehensive, in the followings,
we present a pipeline inspired by [33]. The terminology intro-
duced here will guide our discussion in Sections 4 and 5.

– Data Acquisition and Recording Big Data arise from one
or several data generating sources thatmust be interpreted
in the appropriate way, filtering out irrelevant data before
starting any processing.

– Data Extraction and Annotation Frequently, the data col-
lected will not be in a format suitable for analysis. A
data extraction process is then required to format data
in a structured form suitable for analysis, for example,
by extracting structured data from semi-structured or
unstructured contents.

– Data Preparation and Cleaning Records may be inac-
curate or corrupted. Detecting, correcting, and removing
such records from a dataset are crucial steps. A prepara-
tion stage may also be required to increase the obfusca-
tion level of the data, for preserving privacy, intellectual
property, or strategical knowledge.

– Data Integration and AggregationGiven the heterogene-
ity of distributed data, it is not enough tomerely load them
into a distributed storage. A certain degree of integration,
summarization, and standardization is necessary.

– DataProcessing andQueryingMethods for querying and
miningBigData are fundamentally different from the tra-
ditional statistical analysis. This is because the impact of
data distribution and performance requirements on algo-
rithms, hence on processing behavior, is significant.

– Data Interpretation and Reporting The complexity aris-
ing from Big Data technologies renders a simple moni-
toring and reporting insufficient as a means for interpre-
tation and evaluation of results. A rigorous interpretation
requires multiple stages to verify the assumptions that
allow drawing safe conclusions.

Figure 1 offers a synthetic view on the pipeline adopted as a
reference for this paper.

4 The Contribution of Data Semantics to Big
Data Management

In the next sections, we organize our discussion following
the stages of the Big Data pipeline described in Section 3. A
summary of this discussion is contained in Table 1 that lists
the main references included in this discussion and maps
them to the most pertinent stages of the Big Data pipeline
and Data Semantics dimensions.

4.1 Data Acquisition and Recording

Provenance represents a major issue and has been recog-
nized as a key requirement for Big Data applications [81].
Provenance is about tracking the transformation process that
generated a certain piece of data. This often implies record-
ing a variety of metadata, for example, about the execution
environment that generated a transformation, the authority
that issued a data set, or a quality measure that was recorded
for this dataset. Such metadata can then be exploited in sup-
port of a variety of applications, including debugging, trust,
assurance, and security [40].

Malik et al. [38] present an approach for recording prove-
nance in a distributed environment. Provenance metadata are
recorded each time a file version is generated by a node that
also maintains a summary of the provenance metadata it gen-
erated and a link to the nodes that shared files with him. This
way, each node is generating a local view on provenance,
but the whole system organizes a graph of provenance meta-
data that supports queries over the provenance across node
boundaries. Following a similar approach, provenance sys-
tems that capture provenance data generated by MapReduce
computations within the Hadoop framework were developed
[35,39].

The “regulatory barrier”, i.e., concerns about violations
of data access, sharing, and custody regulations when using
Big Data, and the high cost of obtaining legal clearance for
their specific scenario, has been recognized as a major factor
hindering Big Data technologies [102].

According to the EU directive on data protection [103],
personal data are not simply data stored in the entries of
a repository, but any information that can be inferred by
processing these entries in combination with others. The
information that can be inferred by a service provider that
manages user profiles, which involve for instance personal
interests, personal knowledge, skills, goals, behavior, social,
or environmental context the user interacts with [83]. Stake-
holders are more and more aware of these capabilities and
can perceive risks in releasing data to third parties. Thus, it is
essential to design technologies capable of natively reporting
how Big Data are stored and processed in the different stages
of their life cycle.
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For the acquisition/recording phase, it is important to
observe that the Big Data user is often different from the Big
Data provider. This poses the very relevant challenge of the
authoritativeness of the Big Data source. All the dimensions
of the Trust cluster [80] should be taken into account, namely
believability, reliability, and reputation. In [41], the need for
a framework for truth discovery on the Web is claimed and
an indication of possible solutions to such a challenge is also
provided. In Fig. 1, the source quality evaluation task takes
this aspect into account.

4.2 Data Extraction and Annotation

As noted in [86], the adoption of Big Data platforms requires
an overhaul of traditional metadata management processes
to cope with potentially higher data dimensionality, higher
acquisition rates, and multipartite data. In particular, data
extraction techniques have to be upgraded to face these new
realities. In the current context, data extraction relates to the
process of extracting (semi-) structured data from largely
unstructured content such as natural language texts and
images.Many recent works have been focusing on extracting
entities fromdocuments. Entities are textual elements that are
of interest to a data extraction task, such as persons, places,
companies, or events. Often, such entities are first identified
in text and then linked to their counterpart in a knowledge
base. In addition to entities, relations connecting a pair of
entities and/or annotations adding labels to chunks of text
are often extracted. Many systems have been developed for
this purpose, such as SystemT [45], Textmarker [104], Dual-
ist [105], MMAX [106], or BRAT [107].

Most of such systems address text in a single language
only. However, support for multiple languages is essential
for data extraction and annotation techniques. Contextual
semantic analysis [87] is gathering interest as a promising
technique to tackle multilingual computational tasks. The
idea is to represent documents as contextual graphs that
are subgraphs of reference knowledge bases, such as the
linked open data cloud [108] and DBPedia [109]. A contex-
tual graph is represented in a semantic context vector which
in turn can be used to compare against other documents.
The paper [110], for instance, successfully leverages contex-
tual semantic analysis to build semantic relations between
nominals across multilingual (English, German, and Rus-
sian) andmulti-genre documents. Deep canonical correlation
analysis leverages multilingual semantics (English/German)
to improve word embeddings [111].

Data extraction methods often use statistical measures
based on parallel corpora that include training text from one
language with translation into one or more other languages.
Approaches to parallel corpora construction range fromman-
ually constructing parallel documents to automated efforts
that search for similar documents across the Web [43,112].

Wikipedia is one of the largest semi-structured and seman-
tically annotated parallel corpora. Interestingly, the multi-
lingual aspect features more than information enrichment
across cultures and local preferences. It also exhibits con-
flicts and editwars that reflect priorities, regional, and cultural
differences [113]. Current repositories offering multilingual
resources include the Linguistic Data Consortium, the Euro-
pean Language Resource Association, the University of
Oxford Text Archive, GlobalPhone, Tractor, EuroWordnet,
GlobalWordNet, IXA pipes, and MULText.

Statistical techniques perform poorly for under-resourced
languages such as Chinese, Vietnamese, and Arabic. Con-
sequently, domain-specific techniques that use hand-crafted
grammars [114], expert knowledge that identifies map-
ping rules [115], and language-invariant features such as
mappings of part-of-speech (POS) and ontology-based anno-
tations [116] have been introduced to boost the performance
of statistical automatic translation and information retrieval.

Technical reports, news articles, scientific papers, Web
pages, and literary books contain multilingual texts that in
general respect presentation rules, layout structures, and lin-
guistic grammar. However, several niche languages have
sporadic structure if any. For example, SMS and chat
messages use proprietary abbreviations and no sentence
structure. Notes in electronic medical records [88] are simi-
lar except that medical doctors compose them while paying
attention to the patient and not the keyboard or the screen.
This results inmore typing errors. Similar to under-resourced
andmorphologically rich languages, such documents require
preprocessing and expert knowledge for information extrac-
tion and machine translation tasks.

For the extraction/annotation phase, it is important to
extract or derive all quality metadata that could support the
subsequent processing phases. Quality metadata are very
much source and task dependent. As an example, if wish-
ing to perform an analysis of Twitter data that needs to take
into account the location information associated with a spe-
cific tweet, then such location-relatedmetadata should be part
of the extraction. A specific quality characterization of such
metadata should be performed, for instance, to assess if loca-
tion is accurate by linking it to a geographical dictionary. An
interesting challenge is to develop tools that automatically or
semiautomatically allow to annotate data with quality scores
(see [46]). In Fig. 1, the quality metadata extraction and
annotation task include such activities.

4.3 Data Preparation and Cleaning

Data preparation for Big Data analytics encounters many
obstacles. “Analysts report spending upwards of 80% of their
time on problems in data cleaning” [89]. A central data qual-
ity problem is handling semantic duplicates: two or more
records that actually represent the same real-world entity.
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Besides probabilistic evaluation techniques being inherently
imperfect, also merging records inevitably leads to conflicts.
As a consequence, the result of a data integration process is
inherently fuzzy. In particular, if dealing with unstructured
data, such as data harvested from Web sites (e.g., [44]) or
from social media (e.g., [94]), where we are requested to deal
with natural language that is inherently ambiguous, crowd-
sourced data may be unreliable or incomplete.

One important development is usingmetadata to represent
uncertainty. A nice survey on uncertainty in data integration
is [95]. In essence, the idea is to model all kinds of data qual-
ity problems as uncertainty in the data [96,117]. This way,
uncertain data can be stored and managed in a probabilistic
database [118], or by aggregating metadata in the form of
possibilistic assertions [119].

Semantic duplicates are almost never detected with abso-
lute certainty unless both records are identical. Therefore,
there is a gray area of record pairs that may or may not be
semantic duplicates. Instead of requiring amanual inspection
and an absolute decision, a probabilistic database can simply
directly store the indeterministic deduplication result [120].
Furthermore, the resulting data can be directly queried and
analyzed.

Imperfect results of information extraction can be repre-
sented as uncertain data as well. For example, thementioning
of a named entity like “Paris” can refer to the capital of
France, but also to more than 60 other places called “Paris”
or even to a person. Probabilistic databases can easily repre-
sent such results directly as well as any related data, such as
population.

When resources do not allow for a full investigation of
detailed semantics, these techniques can be used as a way
to cast doubt over the data. Data profiling can quickly give
both valuable insights into the semantics of data as well as
into the source’s quality problems [121]. For example, vari-
ous types of functional dependencies can be mined from the
data itself [122]. They specify constraints, or rather expec-
tations, that the context or application imposes on the data.
Any violations of these may uncover exceptional situations
(semantics) or errors (data quality).

These techniques have achieved right now a limited adop-
tion in Big Data commercial frameworks. However, various
scholars have addressed the topic. In [53], a metadata gen-
eration algorithm is used for enriching data with description
about context and usage patterns.Metadata are then exploited
to efficiently clean and remove inconsistencies in a dataset
or in a set of linked datasets.

The data preparation and cleaning phase can be detailed in
terms of sub-tasks. The most significant ones are: (a) local-
ization and correction of inconsistencies; (b) localization and
correction of incomplete data; and (c) localization of outliers
(see [80] for an overview of these approaches for traditional
data). In terms of Big Data sources, the techniques for per-

forming the cleaning tasks are source and task specific. As
an example, the Automatic Identification System (AIS) is a
system that permits to detect ships, by providing the loca-
tion and status information of ships over a radio channel. In
[55], the authors describe the usage of these data for mar-
itime statistics and provide a good detail of the very specific
cleaning tasks for these data, such as the removal of glitches
due to errors in the identification system. The specific tasks
considered in Fig. 1 are: consistency checks, imputation
procedures, outliers detection, duplicate detection.

4.4 Data Integration and Aggregation

Data management in Big Data cannot be simply resolved by
an efficient storage and query infrastructure. Data integration
is equally important. Typically, Big Data are being integrated
bymeans of data lake (DL) architectures [52,77–79]. ADL is
a repository that stores a vast amount of heterogeneous data
in their original formats, e.g., relational tables, Web tables,
XML and its variants, texts, images, sounds, videos, graphs,
time series. In most DL deployments, the data storage layer
is based on a distributed file system—HDFS or GFS, and
data are processed in parallel (typically, by a MapReduce-
like parallelization patterns) [5,123].

In [79], the authors advocate the following four stages of
implementing a DL: (1) learning, planning, and implement-
ing mechanisms of ingesting data, (2) improving the quality
of data, by applying ETL/ELT processes [123], (3) devel-
oping mechanisms for jointly querying and analyzing data
stored in an enterprise data warehouse (DW) and the DL, (4)
augmenting the DLwith the so-called enterprise capabilities,
i.e., governance, compliance, security, and auditing.

Often, DLs need to ingest data frommultiple data sources
spread over the Web, in the framework of applications such
as sentiment analysis, trend analysis, adverse events analy-
sis, or others. In such a context, it is important to be able
to: (1) discover the most relevant data sources, (2) figure
out their structures, content, and quality, and finally (3) plug
the discovered data sources of interest into a DL integration
architecture, to ingest their content. These processes raise
challenges in developing methods for discovering and pro-
filing [124] data sources on the Web.

The processes that ingest data into a DL do not change
the structure of the data being uploaded, but store it in their
original formats—this feature is known as no schema on
write. The structure of data is, however, important for appli-
cations that read, process, and analyze the data. Therefore,
such application has to discover and understand data formats
on the fly—this feature is known as schema on read. To this
end, rich and well-organized metadata are needed to provide
a precise description of the data. In order to ease the process
of querying a DL, a kind of global schema on various data
structures in the DL is needed. This leads us toward an obser-
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S7: Data Interpretation and Reporting

Task-specific Quality Evaluation

END

Fig. 1 Main stages of a Big Data pipeline and related data quality tasks

vation that a revised data modeling approach is needed that
would be able to capture the heterogeneity of data and that
would give a foundation for querying such data.

Having built a DL and having ingested data, another issue
is to keep the DL up-to-date, similarly as a traditional DW.
The content of a DL has to be refreshed either periodically or
in (near) real-time (for application areas like fraud detection,

installationmonitoring). Refreshing aDL ismuchmore com-
plex than a traditional DW. It is due to the fact that multiple
data sources are available on the Web with limited capabil-
ities of accessing them. Therefore, detecting their data and
structural changes is challenging. Moreover, as data formats
are much more than simple tables, incorporating incremen-
tal updates to data stored in a DL is more difficult. To this
end, new change detection techniques and efficient refresh-
ing algorithms need to be developed, as even incremental
refreshing may upload much larger data volumes than in a
traditional DW architecture.

Recall that the content of aDL typically stores dumps from
various data sources (including the Web) whose data quality
is often poor. Therefore, advanced data cleaning, augmenta-
tion, and imputation techniques (e.g., [125–128]) need to be
applied to the content of a DL.

Today, integrating data in a data lake is handled manu-
ally, for the most part, resulting in slow and cumbersome
processes. In fact, data preparation and integration is often
considered as themost time-consuming part of a data science
project.2 As such, it is urgent to develop better solutions to
this problem.

To provide solutions for the aforementioned challenges,
some research and development works have already been
done, mainly in the field of querying a DL and providing a
schema-like view on the DL.

Three architectures that allow to execute SQL queries on
a Hadoop-based data lakes were identified in [52]:

– Pure SQL for Hadoop such an engine includes an SQL
interpreter that is capable of using Hive-like external
tables and exploiting metadata about their definitions.
Examples of such engines include among others: Hive,
Spark, Drill, Kylin, Impala, and Presto.

– Boosted SQL for Hadoop an engine supports more
advanced capabilities of query parsing, optimizing, and
scheduling. Examples of such engines include among
others: Actian Vortex, HPVertica, IBMBig SQL, Jethro-
Data, Pivotal HAWQ, Phoenix, Splice Machine, and
Virtuoso.

– Database+ for Hadoop an access to data stored in
Hadoop is realized directly from a fully functional
DBMS, by means of the standardized SQL provided by
this DBMS. To this end, a Hadoop data source is linked
to the DBMS by means of external tables. Examples of
such solutions include among others: Microsoft Poly-
Base, Oracle Big Data SQL, Teradata QueryGrid, EMC
Greenplum, and SAP Vora. Such technologies offer a
means for querying jointly an enterprise data warehouse
and a data lake.

2 see for instance https://www.nytimes.com/2014/08/18/technology/
for-big-data-scientists-hurdle-to-insights-is-janitor-work.html.
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Fig. 2 An overall architecture of a data lake

An overall architecture of a data lake (discussed in this
section) is shown in Fig. 2.

Recently, another Big Data integration architecture was
proposed in [36], which is called a polystore. The main idea
behind it is to organize datasets into the so-called islands of
information. An island of information is defined as a col-
lection of storage engines accessed with the same query
language. For example, in a data lake, several relational
islands, graph islands, XML islands (each managed by a sep-
arate system) can be stored and all of them can be part of a
polystore. An island exhibits to a user its data model and
provides a common query language, similarly as a medi-
ator [129]. The language and data model are mapped, by
a software module called a shim, into a specific language
and model of a data management system running the island.
This functionality is similar to what provides a wrapper
[129].

Query processing on an island is executed as follows.
First, an island query is expressed in the island native lan-
guage. Second, the query is parsed into an abstract syntax
tree (AST). Third, the AST is decomposed into partial
queries—one query for one DS in the island. Fourth, par-
tial queries are sent to appropriate shims. Next, each shim
translates its partial query into a query in a native language
of a data source. Finally, the partial queries are executed
in their proper data sources. The query language of an
island (proposed in [36]) was extended with 2 clauses,
namely scope—for specifying in which island a query is
to be executed—and cast—for indicating an output data
model and for copying data between islands. Multi-island
queries are also allowed by means of shims from different
islands.

An example architecture of a polystore system is shown
in Fig. 3. It is composed of two information islands: a rela-
tional one and a NoSQL one. The first island is composed
of relational data sourcesDS1, DS2, and DS3, each of which

Fig. 3 An example architecture of the polystore with two islands of
information

has its dedicated shim that exposes a relational interface to
the island. The second island is composed of NoSQL data
sources DS4 and DS5. Their shims expose a NoSQL inter-
face to the NoSQL island. Notice that DS3 is shared by both
islands through 2 shims, i.e., it can be queried from both
islands.

A lighter approach to integrating widely different data in a
data lake is to resort to a knowledge graph as the main medi-
ation layer. The knowledge graph in question can be public
(e.g., WikiData3 or DBPedia4) or private (e.g., Google’s
Knowledge Graph.5) The idea is then to link all instances
in the data lake to instances in the knowledge graph, and
to retrieve all relevant pieces of data for a given applica-
tion by issuing search queries (leveraging ad hoc object
retrieval [130] techniques). The overall approach is termed
entity-centric [131] in the sense that entities in the knowl-
edge graph play the role of the global schema in a federated
database.

Metadata are crucial to integrate and combine differ-
ent datasources [84]. For example, the services provided
by different medical centers may be recorded differently
in different datasets, but they all refer to a same set
of standard codes that are ferried as metadata of the
dataset.

Making file metadata scalable is one of the top challenges
addressed in the literature [49]. In connection to this, scalable
data integrationmethods have been also investigated [26,48].

There are sectors where data integration is pursued cen-
ters the emergence of a global standard for identifying data
objects. For example, the legal entity identifier (LEI) system
is aimed at providing a unified approach for representing
financial data [85]. A metadata model supporting data inte-
gration was proposed to link genomic feature data to their
associated experimental, biological, and clinical use [50].

3 https://www.wikidata.org.
4 http://wiki.dbpedia.org/.
5 https://www.google.com/intl/en-419/insidesearch/features/search/
knowledge.html.
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However, global standards alone are insufficient for high-
quality integration [132]. In general, data integration is a
difficult task to be automated as it often requires knowledge-
able input from domain experts. Thus, some authors suggest
to explore the use of advanced interactive approaches such
as active learning and crowd sourcing [133].

The data integration and aggregation phase includes
record linkage as a specific quality task (see Fig. 1). When
looking at record linkage for Big Data, there are two major
challenges. Big Data technologies can indeed support tradi-
tional record linkage methods on data that have a big size:
This is indeed the purpose of tools such as Dedoop [134].
Here, the challenge is to make traditional algorithms scal-
able. Second, the record linkage pipeline for Big Data should
be fully automatic. This means that several manual-based
record linkage steps should be overcome: supervised learn-
ing techniques, clerically prepared training sets, user-defined
classification thresholds, clerical review, interactive evalua-
tion of obtained results [51]. In this respect, in terms of open
challenges, fully automated techniques, e.g., [56], shouldfind
more and more space.

4.5 Data Processing and Querying

Storing and querying Big Data sets efficiently are fundamen-
tal services of any Big Data platform. The main challenge in
this context is to provide scalable and reliable distributed
storage systems that support a broad range of data access
patterns for different kinds of queries and analytics. Several
approaches have been developed toward that end.

Hadoop ecosystem In the context of the Hadoop ecosys-
tem, numerous technologies have been developed to support
management and processing of Big Data. A fundamental
component is the HDFS distributed file system, which was
originally inspired by the Google file system [135]. HDFS
aims at: (i) scalability by storing large files across multiple
nodes (so-called DataNodes) as well as at (ii) reliability by
replicating blocks of files across multiple nodes (with default
replication factor set to 3). For better read performance,
HDFS tries to exploit data locality by executingmapper tasks
on the nodes storing the required data. However, HDFS is
optimized for large and rather immutable files. In addition
to standard text files such as text and CSV, several more
advanced file formats are available, including columnar stor-
age formats such as Parquet and ORC, which also support
compression, indexing, and Bloom filters. Other approaches
such as HAIL [136] propose clustered indexes, which are
created upon upload of the data to HDFS in order to speed
up query processing.

HDFS provides a foundation for several MapReduce-
like data processing frameworks such as Hadoop MapRe-
duce, Apache Spark, or Flink [137]. The latter two extend
the original MapReduce model by additional programming

abstractions simplifying the formulation of complex analyt-
ical pipelines as well as an in-memory processing model for
better performance.

The core of Spark6 is abstractions for distributed in-
memory and immutable data collections, which can be trans-
formed by parallel operations (including relational query
operations). Originally, so-called RDDs (resilient distributed
datasets) [138] were used for this purpose: Recently, so-
called DataSets have been introduced, which are strongly
typed and allow a better optimization of (relational) queries
[139]. In addition to the batch-processing model, both
Spark and Flink also provide extensions for processing data
streams.

Another part of the Hadoop ecosystem based on HDFS is
HBase, which was inspired by Google’s BigTable approach
[76]. HBase is a distributed database implementing a wide-
column model. Though, it does not support a declarative
query interface directly, several extensions have been devel-
oped on top of HBase, such as Drill and Phoenix as SQL
layers for HBase, and Hive as a data warehouse solution.

Particularly for Spark and Flink, several higher level
frameworks for different data models exist that exploit the
underlying parallel dataflow engine for scalable processing.
This includes extensions for graph processing and analytics
such as GraphX [57] and GRADOOP [58] for processing
RDF data using SPARQL BGPs, for spatial data processing,
e.g., GeoSpark [59], SpatialSpark [60], and STARK [140], as
well as machine learning frameworks such as MLlib [141].

S*QL on Hadoop SQL-on-Hadoop systems can be seen
as a class of database systems running on cluster infras-
tructures. However, they differ from traditional systems by
relying on scalable storage layers and cluster resource man-
agement frameworks such as Hadoop’s YARN orMesos.7 In
that sense, cluster resources can be shared with other jobs,
e.g., batch jobs for preparing data or iterative jobs performing
complex machine learning tasks.

One of the first attempts to build a database system using
Hadoop is HadoopDB [142], where Hadoop is used as a
coordinator to connect multiple single-node databases. Other
examples are Hive, HAWQ (formerly known as Pivotal),
Impala [62], and VectorH [63]. Particularly, VectorH does
not only use HDFS for compressed columnar storage and
YARN for workload management, but also exploits HDFS
block placement policy for locality and supports transac-
tional updates. A specific feature of Impala is the just-in-time
code generator for query compilation. SparkSQL [139] is
a distributed query engine integrating relational process-
ing with Spark’s functional programming API. SparkSQL
supports both a SQL interface and a declarative API that
integrates with procedural code. It includes an extensible

6 https://spark.apache.org/.
7 http://mesos.apache.org/.
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optimizer supporting lower-level code generation to speed
up query execution.

In addition to SQL support on Hadoop, there exist also
engines for other query languages like SPARQL. Exam-
ples are HadoopRDF [143], Sempala [144] for translating
SPARQL to Impala’s SQL, and S2RDF for translating
SPARQL to Spark [64].

Besides Hadoop, numerous data management architec-
tures exist aiming at themanagement of Big (semantic) Data.
The area of NoSQL databases covers a wide range of solu-
tions from scalable key-value stores over document stores
to graph databases. Notable examples includes Cumulus-
RDF [145], which is based on Cassandra and implements
a SPARQL query interface, Couchbase or MongoDB, which
allows to store and query tree/graph structures as JSON
documents, distributed graph databases, such as Neo4j and
AllegroGraph, for storing and processing large graphs, and
scalable triple stores such as Virtuoso or GraphDB providing
a SPARQL interface [146].

Data processing and querying can have a quality counter-
part in terms of quality access and querying (see Fig. 1).
Quality-driven data access has been investigated in contexts
where multiple sources could contribute answering to user
queries. For Big Data sources, this paradigm can be par-
ticularly relevant due to the uncontrolled data generation
mechanism that is often inherent to such sources; indeed,
even if the data generation is out of control, a user interested
in the data can rely on their quality features.

4.6 Data Analysis andModeling

Executing analytics on Big Data imposes new challenges.
Traditional algorithms for data mining assume to have

access to the entire dataset, while high data volumes and
real-time processing give access only to fractions of the
dataset. For example, data transformation techniques adopted
in batch scenarios can be inappropriate in case of data distri-
butions evolving over time [147]. Moreover, data streams, as
ordered and potentially unbounded sequences of data points,
typically create non-stationary flows, in which the data dis-
tribution evolves over time. This means that finite training
sets and static models are no longer appropriate [148]. The
situation is worsen by the fact that data are distributed over
a variety of different sources having diversified latencies.

In Big Data, complex analytical procedures and methods
of various fields, e.g., machine learning, data mining, statis-
tics, and mathematics, are often combined [66,149], as no
single algorithm can perform optimally in all cases. Then,
various methods have been proposed to support model selec-
tion, based on the observed data and the analytics goals [37].
This requires the data structure and the semantics of analytics
to be expressed in machine-readable formats [150,151].

Adaptive models are also proposed for managing the
architecture of large-scale distributed systems [152,153].
Thesemodels provide abstractions of systems during runtime
to support dynamic state monitoring. Hartmann et al. [154]
go one step further. They combine the idea of runtime mod-
els with reactive programming and peer-to-peer distribution.
Reactive programming is aimed at supporting interactive
applications, which react on events by focusing on streams.
For this purpose, a typical publish/subscribe pattern is used.
Khare et al. show the application of such an approach in the
IoT domain in [67]. In [68], semantic models are used to pro-
vide a unified viewof the heterogeneous elements composing
these systems, and reasoning mechanisms are leveraged to
drive adaptation strategies.

Even if the primary focus of Big Data analytics does not
involve the definition of an end-to-end process, some authors
have studied its application to Business Process [155]. Data
science approaches tend to be process agonistic,whereas pro-
cess science approaches tend to be model driven.

Luckham [156] introduces Complex Event Processing
(CEP) by defining complex events which are correlated
among each other. Saleh et al. [61] apply the data aggre-
gation approach of CEP to data streams. Process Mining
(PM) is a process-centricmanagement technique bridging the
gap between data mining and traditional model-driven Busi-
ness Process Management (BPM) [157,158]. In this field of
research, business processes are analyzed on the basis of pro-
cess execution logs, so-called event logs. Events are defined
as process steps, and event logs as sequential events recorded
by an information system [159]. The main objective of PM
is to extract valuable, process-related information from logs
for providing detailed information about actual processes for
analytical purposes, e.g., to identify bottlenecks, to anticipate
problems, to record policy violations, and to streamline pro-
cesses [158]. Current event processing technologies usually
monitor only a single stream of events at a time. Even if users
monitor multiple streams, they often end up with multiple
“silo” views. A more unified view is needed that correlates
with events from multiple streams of different sources and
in different formats. Thereby, heterogeneity and incomplete-
ness of data are major challenges [81]. Mostly, PM operates
on the basis of events that belong to cases that are already
completed [160]. This off-line analysis is not suitable for
cases which are still in the pipeline. An open research ques-
tion is whether current algorithms to abstract models from
logs are scalable enough to handle data streams [155,161].

The analysis andmodeling phase does also have an impor-
tant quality counterpart, quality analysis, c.f. Fig. 1. There
are obviously quality metrics depending on specific methods
used, e.g., the F-measure for classification tasks [162]. How-
ever, methods-independent quality measurements could be
considered. In [71], a quality framework forOfficial Statistics
is proposed; an interesting notion is steady states, meaning
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that the data have to be processed through a series of sta-
ble representation that can be referenced by future analytics
processes.

4.7 Data Interpretation and Reporting

While processingBigData, a key issue is to support the user’s
comprehension of the process result. Visual analytics is an
emerging field of research that aims at combining the auto-
matic computation with visual analysis, allowing the user
to combine the two approaches. While this combination has
proven to be effective, Big Data pose problems concerning
the volume of data to display (asking for more abstract visual
representation), the velocity with which the data change,
and their variety. Capturing their volume and their variety
requires solutions that are able to visually abstract and/or
aggregate the data, in order to allow their representation
as visual elements in a finite visual space. Capturing data
velocity poses additional challenges in terms of how visu-
ally convey changes in order to maintain their traceability
while ensuring a general stability of the whole visualization,
avoiding to confuse the final user. Additionally, in the more
demanding scenario of data streams, accuracy of results,
trend discovery, and trend anticipation pose challenges for
the visualization, like handling uncertainty in the displayed
data or visualizing prediction accuracy in trend discovery.
In this context, data semantics can provide an additional
layer of information to be exploited for mitigating the afore-
mentioned issues at different levels (supporting better user
interaction, visualizing only the meaningful portions of data,
linking semantics with extensional properties of the dataset).
Also, visualization can be exploited in order to comprehend
and refine the semantic description of the data. In [163],
the authors exploit Data Semantics to automatically gener-
ate visualizations. The proposed approach uses two different
ontologies, one that maps the semantics of the dataset and
another that maps the semantics of a set of visual repre-
sentations, with the final goal of automatically proposing
the best possible visual representation. On the same topic,
Voigt et al. [91] extract, through semantics modeling, a data
context used then to recommend a good visual representa-
tion paradigm. The works in [164,165] propose a cockpit
for ontology visualization, in order to improve the knowl-
edge space exploration, evaluated on linkedopendata (LOD).
Other approaches to ontology visualization and exploration
are presented in [166–168]. Data Semantics can be useful
in the visual analysis process design. Focused on applying
a semantic transformation for the taxi trajectories, applied
for the Shenzhen City in China, is presented in [169]. It
exploits semantic information (street names, points of inter-
est) for discovering hidden patterns in the data and allowing
faster and more accurate taxi trajectories visual exploration.
Supporting querying of ontology-based Big Data through

a visual query language is one of the goals in the Optique
project [70,92]. Several efforts have been produced in the
application of visualization for representing semantics in
social media analysis; recent work [93] proposes a multi-
granular, data-driven, and theory-informed framework to
interactively explore the pulse of a city based on socialmedia,
while other researchers [73] focused on wearable devices
data in a health-care domain.

The data interpretation and reporting phase has also a spe-
cific quality task in the pipeline of Fig. 1. The quality of
analyses deriving from Big Data should be carefully evalu-
ated [170]. A relevant example is the Google work on flu
trends [74] that estimates flu prevalence from flu-related
Internet searches. In January 2013, Google flu trends esti-
mated almost twice as many flu cases as were reported by
CDC, the Centers for Disease Control and Prevention. The
initial Google paper stated that theGoogle Flu Trends predic-
tions were 97% accurate compared to CDC data. This case
is emblematic of other challenges related to Big Data: (i)
evaluation of robustness over time of models based on Big
Data that may exhibit unexpected glitches; (ii) evaluation of
the usage of Big Data-based models alone or in conjunction
with more traditional sources.

4.8 Representing Processes

The complexity of Big Data architectures has encouraged the
definition of work-flow languages for managing pipelines.
Among the most popular solutions, we have: Apache Oozie,
8 AirBnBAirflow, 9 LinkedInAzkaban, 10, and Spring Cloud
Data Flow. 11 These frameworks support orchestration of
software componentswritten in different languages, enabling
the integration of heterogeneous systems and facilitating
programmers in choosing their favorite technologies. In prin-
ciple, these frameworks provide a representation model that
can contribute to foster reusability and modularity. However,
the level of portability achieved by these languages is lim-
ited [97]. In fact, there is no explicit integration between
the execution work-flow and the code that is executed by
atomic tasks. This implies that knowledge about task-level
code is required for interfacing elements. Moreover, these
orchestration engines do not provide support for validating a
work-flow or for optimization step. In particular, it has been
argued that the complex nature of BigData processingmakes
optimization strongly context dependent: For example, the
effectiveness of a pipeline depends ondata distribution andon
the parallelization model adopted at the deployment infras-
tructure.

8 http://oozie.apache.org.
9 https://airflow.apache.org.
10 https://azkaban.github.io.
11 https://cloud.spring.io/spring-cloud-dataflow/.
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Recent researches have faced these limitations relay on
platform-specific configuration libraries. KeystoneML [98],
for example, introduced an approach to large-scale pipeline
optimization extending SparkML libraries [99]. The authors
focus on capturing end-to-end pipeline application charac-
teristics that are used to automatically optimize execution at
both the operator and pipeline application levels.

A high-level dataflow abstraction for modeling complex
pipelines is proposed in [100]. The dataflows proposed in this
work are directed acyclic graphs that specify some aspects of
a pipeline delegating data inspections and optimization to the
execution stage. In [101], the authors propose an adaptation
of TensorFlow, for supporting data analysis, transformation,
and validation. The aim is boosting automation in the deploy-
ment of machine learning models.

The main limitations of the current proposals are that they
are closely tied to specific frameworks, such as Spark in [98,
100] or TensorFlow in [101] and lack of a formal definition
supporting verification procedures for Big Data pipelines.

Although the above perspectives have been considered in
the literature, there is a lack of a comprehensive approach
addressing the whole life cycle of a Big Data campaign. A
general methodology for representing and reasoning on all
steps of a BigData pipeline is proposed in [34]. This method-
ology is used for several applications in the framework of the
TOREADOR project.12

5 Open Challenges

As a result of the discussion proposed in Section 4, we pro-
pose a list of challenges that we consider relevant for future
research.

– Developing an integrated datamodel (at the conceptual
and logical level), capable of representing heterogeneous
and complex models of various data sources [90]. These
models have to incorporate techniques for managing
data sources, i.e.: (semi)-automatic discovery of data
sources which are relevant to a user and dynamically
plugging-in the data sources into an existing integra-
tion architecture. Designing and implementing efficient
Data Integration Architectures for ingesting data into
a DL [171] and for producing clean and well struc-
tured data. Since a Big Data ETL engine processes
much more complex ETL/ELT workflows and much
larger data volumes than a standard one, its performance
becomes vital. Moreover, to handle the complexity of
data, workflows require in-house developed user-defined
functions, whose optimization is difficult. Performance
optimization of ETL/ELT workflows has not been fully

12 http://www.toreador-project.eu.

solved for traditional DW architectures, and Big Data
added new problems into the already existing ones [172].
This includes efficient mechanisms for storing and
retrieving data in a DL. Finding a relevant dataset
quickly requires additional data structures (a counterpart
of indexes in traditional DBs), physical organization of
data (a counterpart of partitioning, row-store, column-
store in traditional DBs), and compression algorithms,
suitable for complex and heterogeneous data. Afirst chal-
lenge arises from the continuous production of new data
combined with the need for real-time or online analytics.
Thus, Big Data platforms have to cope both with (tran-
sient) streaming data and persistent data while being able
to process queries on both kinds of data, in the form of
continuous queries as well as ad hoc batch queries.

– Developing a query language capable of handling data
complexity, heterogeneity, and incompleteness. More-
over, it seems to be important to include user preferences
in a query, like quality of service, quality of data,
output data format, and preferred way of visualiza-
tion. Another challenge is the support for declarative
queries and their optimization. SQL is often considered
as not powerful enough to formulate complex analytical
tasks. Therefore, data scientists tend to prefer language-
integrated DSLs which basically combine programming
languages with domain-specific language, scripting lan-
guages like Python, dataflow languages like Pig Latin
[173], special-purpose languages like R [174] or imple-
ment specific tasks in user-defined functions (UDF).
Particularly, imperative languages like Python or Java but
also black-box UDFs make it difficult to parallelize and
optimize complex dataflow programs, although query
optimization is a well-studied field, and recent devel-
opments, e.g., around Spark and other Hadoop-based
systems, show a trend (back) toward declarative and opti-
mizable query languages such as SQL dialects.

– Developing a metadata standard and architecture. The
latter should support: automatic or semiautomatic meta-
data discovery and collection from new data sources
plugged into an integration system, as well as efficient
metadata storing, searching, and visualizing. The benefit
of metadata management within Big Data technolo-
gies was also established by surveys with Data Science
professionals [102,175]. Metadata management opens
challenges that affect almost all aspects of Big Data [26].
For example, the data processing engine has to identify
the datasets that can be used for starting the ingestion
procedure, as there may exist multiple datasets storing
semantically the same data. The problem is then to fig-
ure out which datasets to use based on the query to be
answered or the analytics to be applied. Different crite-
ria may be taken into consideration, e.g., data format,
data quality, data completeness, data freshness. Finally,
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the results must be appropriately visualized [123]. Some
work on this issue was initiated in [36,82]. For example,
data in various formats could be converted on thefly to the
format preferred by a user, e.g., relational, XML, graph,
RDF. Also, different data sources may have a different
impact on performance. Identifying these implications is
crucial to avoid overloading a single job.

– Developing solid techniques for dealingwith incomplete
and uncertain data. For analytical purposes (i) events
have to be captured from data streams, (ii) events of inter-
est have to be separated from noise, (iii) correlations with
other streams and databases have to be established, (iv)
reaction to events of interest must happen in real time,
and (v) these events have to be stored in an appropri-
ate model structure equipped to deal with concept drifts
detection to then run online or off-line analysis. Improv-
ing the scalability of probabilistic and uncertainty data
models is an important issue as well as the expressive-
ness of the data and uncertainty they can manage. Note
that there are multiple models for representing uncer-
tainty: for instance, the possibilistic or fuzzy set model
[176], and the Dempster–Shafer evidence model [177].
Furthermore, there are many different kinds of integra-
tion and data quality problems that require to manage
uncertainty. For example, [178] presents an approach for
probabilistic integration of data on groupings. It further-
more shows that probabilistic database technology (in
this caseMayBMS [179]) is already close to being able to
handle real-world biological databases. When combined
with an effective method for data quality measurement,
this technology can deliver a good enough approach
where small iterations reduce the overall effort in data
quality improvement.

– Designing and implementing efficient virtual data inte-
gration architectures, as complementary to a DL or
polystore. Such architectures expose their pitfall of being
slow, since query resolving and data integration are
executed on the fly. For this reason, new optimization
techniques are needed. Some of them could be based on
caching the results at two levels: in main memory and on
disk. Using the cached data requires their management,
i.e., to decidewhat to cache, which queries should be exe-
cuted ondata sources andwhich on cacheddata, proactive
refreshing is also needed in the spirit of [180]. We can
envision additional challenges that cope with the capa-
bility to exploit the Data Semantics to steer the visual
analytics process in Big Data analysis. More in detail,
Data Semantics could be exploited as a steering factor
in Big Data explorative analysis, following Progressive
Visual Analytics techniques [181–184], a novel approach
producing intermediate approximated results allows for
fast Big Data exploration. In this approach, the user can
steer the visual analysis process, and the availability of

Data Semantics can be a way to express steering prefer-
ences (e.g., focus the computation only on data having
a particular semantics) that constitutes a challenge and
opportunity.Data Semantics can also helpwhile selecting
the right visual representations for a dataset, taking into
account additional semantic information, for example,
the user’s task and the device capabilities, encouraging
the creation of a taxonomy that binds together the seman-
tics and the structure of the data with the appropriate
visualization paradigms and techniques. A last challenge
is to use visual analytics onBigData in order to extract the
semantics itself, with a semiautomated process in which
the user projects her knowledge of the problem on the
data representation (see, e.g., [185] for network visual-
izations), on a portion of interest of the data or the full
dataset. The visual representation of a dataset can help
in identifying common properties of the data, trends,
features, that all together can help to form a semantic
description of the data.

– Developingmodels to support reproducibility and ver-
ifiability of Big Data pipelines. Reproducibility is a
precondition to an efficient link between research and
production environments and to support reuse andmodu-
larity. It involves the definition of the Extract, Transform,
and Load (ETL) process executed, including the data
sources integrated with their metadata about provenance
and format. Verifiability is of fundamental importance
because low-quality data will necessarily generate low-
quality analytics. It involves the definition of input and
output data type for each integrated task or methods to
examine data distribution in order to verify essential pre-
conditions for statistical analysis. However, achieving
these objectives in Big Data architectures is not trivial.
It has been acknowledged that implementing complex
pipelines for real-world systems poses a huge challenge
[75], especially because the effectiveness of a pipeline
strictly depends on data distribution. This calls for a rep-
resentation of the interdependences between the different
stages of a pipeline.

– Developing models to represent regulatory knowledge
for automated compliance. Regulatory peculiarities
cannot be addressed on a project-by-project basis. Rather,
certified compliance of each Big Data project (e.g., in
the form of a Privacy Impact Analysis) should be made
available from the outset to all actors that use Big Data
analytics in their business model. Also, data processing
comes with legal issues that may trigger unwanted liti-
gation. How to account intellectual property and how to
shape the economical exploitation of analytics in multi-
party environments [186]? How to provide evidence that
data processing is compliant with ethics, beyond norms
and directives [187]? Those are among the questions that
still require mature and reliable solutions.
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6 Conclusions

The complexity of Big Data applications in conjunction
with the lack of standards for representing their compo-
nents, computations, and processes have made the design
of data-intensive applications a failure-prone and resource-
intensive activity. In this paper, we argued that no innovation
in algorithms can compensate lack of sound modeling prac-
tices. Indeed, we believe that the major challenges facing
Big Data research require—even more than developing new
analytics—devising innovative data management techniques
capable to deliver non-functional properties like data quality,
data integration, model compliance, or regulatory compli-
ance. Data Semantics research can address such challenges
in future research according to the FAIR principles [18],
for implementing design procedures that generate Findable,
Accessible, Interoperable, and Reusable data.

Acknowledgements This researchwas partially supported by the Euro-
pean Union’s Horizon 2020 research and innovation programme under
the TOREADOR project, Grant Agreement No. 688797. The work of
R. Wrembel is supported from the National Science Center Grant No.
2015/19/B/ST6/02637.

References

1. Zikopoulos P, EatonC et al (2011)Understanding big data: analyt-
ics for enterprise class hadoop and streaming data. McGraw-Hill
Osborne Media, New York

2. Ward JS, Barker A (2013) Undefined by data: a survey of big data
definitions. arXiv preprint arXiv:1309.5821

3. Beyer MA, Laney D (2012) The importance of big data: a defini-
tion. Gartner, Stamford, pp 2014–2018

4. Laney D (2001) 3d data management: controlling data volume,
velocity and variety. META Gr Res Note 6:70

5. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU
(2015) The rise of "big data" on cloud computing: review and
open research issues. Inf Syst 47:98–115

6. Wamba SF, Akter S, Edwards A, Chopin G, Gnanzou D (2015)
How big data can make big impact: findings from a systematic
review and a longitudinal case study. Int J Prod Econ 165:234–
246 [Online]. http://www.sciencedirect.com/science/article/pii/
S0925527314004253. Accessed 20 Feb 2018

7. Madden S (2012) From databases to big data. IEEE Internet Com-
put 16(3):4–6

8. Amazon A (2016) Amazon 2016 [Online]. https://aws.amazon.
com. 2016-01-06

9. Hadoop A (2009) Hadoop [Online]. http://hadoop.apache.org.
2009-03-06

10. Chen H, Chiang RH, Storey VC (2012) Business intelligence and
analytics: from big data to big impact. MIS Q 36(4):1165–1188

11. Wu X, Zhu X, Wu G-Q, Ding W (2014) Data mining with big
data. IEEE Trans Knowl Data Eng 26(1):97–107

12. Hilbert M (2016) Big data for development: a review of promises
and challenges. Dev Policy Rev 34(1):135–174

13. Assunç ao MD, Calheiros RN, Bianchi S, Netto MA, Buyya R,
(2015) Big data computing and clouds: trends and future direc-
tions. J Parallel Distrib Comput 79:3–15

14. Markl V (2014) Breaking the chains: on declarative data analysis
and data independence in the big data era. Proc VLDB Endow
7(13):1730–1733

15. Damiani E, Oliboni B, Quintarelli E, Tanca L (2003) Modeling
semistructured data by using graph-based constraints. OTM con-
federated international conferences "On the move to meaningful
internet systems". Springer, Berlin, pp 20–21

16. Poole J, Chang D, Tolbert D, Mellor D (2003) Common ware-
house metamodel. Developer’s guide, Wiley, Hoboken

17. Ardagna C, Asal R, Damiani E, Vu Q (2015) From security to
assurance in the cloud: a survey. ACM Comput Surv: CSUR
48(1):2:1–2:50

18. WilkinsonMD,DumontierM,Aalbersberg IJ, AppletonG,Axton
M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne
PE et al (2016) The fair guiding principles for scientific data man-
agement and stewardship. Sci Data 3:160018

19. Aberer K, Catarci T, Cudré-Mauroux P, Dillon T, GrimmS, Hacid
M-S, Illarramendi A, JarrarM,KashyapV,MecellaM et al (2004)
Emergent semantics systems. Semantics of a networked world.
Semantics for grid databases. Springer, Berlin, pp 14–43

20. Cudré-Mauroux P, Aberer K, Abdelmoty AI, Catarci T, Damiani
E, Illaramendi A, Jarrar M, Meersman R, Neuhold EJ, Parent C
et al (2006) Viewpoints on emergent semantics. In: Spaccapietra
S, Aberer K, Cudré-Mauroux P (eds) Journal on data semantics
VI. Springer, Berlin, pp 1–27

21. Ardagna CA, Ceravolo P, Damiani E (2016) Big data analytics
as-a-service: Issues and challenges. In: IEEE International con-
ference on Big Data (Big Data). IEEE, pp 3638–3644

22. ChenM,Mao S, Liu Y (2014) Big data: a survey. Mob NetwAppl
19(2):171–209

23. Azzini A, Ceravolo P (2013) Consistent process mining over big
data triple stores. In: IEEE international congress on Big Data
(BigData Congress). IEEE, pp 54–61

24. Woods WA (1975) What’s in a link: foundations for semantic
networks. In: Representation and understanding. Elsevier, pp 35–
82

25. Franklin MJ, Halevy AY, Maier D (2005) From databases to
dataspaces: a new abstraction for information management.
SIGMOD Rec 34(4):27–33 [Online]. https://doi.org/10.1145/
1107499.1107502

26. Smith K, Seligman L, Rosenthal A, Kurcz C, Greer M, Macheret
C, Sexton M, Eckstein A (2014) Big metadata: the need for
principled metadata management in big data ecosystems. In:
Proceedings of workshop on data analytics in the Cloud, series
DanaC’14. ACM, New York, pp 13:1–13:4 [Online]. https://doi.
org/10.1145/2627770.2627776

27. WallerMA, Fawcett SE (2013) Data science, predictive analytics,
and big data: a revolution that will transform supply chain design
and management. J Bus Logist 34(2):77–84

28. Borkar V, Carey MJ, Li C (2012) Inside big data management:
ogres, onions, or parfaits? In: Proceedings of the 15th international
conference on extending database technology. ACM, pp 3–14

29. White T (2012) Hadoop: the definitive guide. O’ReillyMedia Inc,
Sebastopol

30. Jagadish H (2015) Big data and science: myths and reality. Big
Data Res 2(2):49–52

31. Pääkkönen P, Pakkala D (2015) Reference architecture and clas-
sification of technologies, products and services for big data
systems. Big Data Res 2(4):166–186

32. ArdagnaC, BellandiV, BezziM,Ceravolo P,Damiani E,Hebert C
(June 2017) A model-driven methodology for big data analytics-
as-a-service. In: Proceedings of BigData Congress, Honolulu. HI,
USA

33. Labrinidis A, Jagadish HV (2012) Challenges and opportunities
with big data. Proc VLDB Endow 5(12):2032–2033. https://doi.
org/10.14778/2367502.2367572

123

http://arxiv.org/abs/1309.5821
http://www.sciencedirect.com/science/article/pii/S0925527314004253
http://www.sciencedirect.com/science/article/pii/S0925527314004253
https://aws.amazon.com
https://aws.amazon.com
http://hadoop.apache.org
https://doi.org/10.1145/1107499.1107502
https://doi.org/10.1145/1107499.1107502
https://doi.org/10.1145/2627770.2627776
https://doi.org/10.1145/2627770.2627776
https://doi.org/10.14778/2367502.2367572
https://doi.org/10.14778/2367502.2367572


Big Data Semantics

34. Ardagna CA, Bellandi V, BezziM, Ceravolo P, Damiani E, Hebert
C (2018) Model-based big data analytics-as-a-service: take big
data to the next level. IEEE Trans Serv Comput PP(99):1–1

35. Liao C, Squicciarini A (2015) Towards provenance-based
anomaly detection in mapreduce. In: 15th IEEE/ACM interna-
tional symposium on cluster, cloud and grid computing (CCGrid),
vol 2015. IEEE, pp 647–656

36. Duggan J, Elmore AJ, Stonebraker M, Balazinska M, Howe B,
Kepner J, Madden S, Maier D, Mattson T, Zdonik S (2015) The
BigDAWG polystore system. SIGMOD Rec 44(2):11–16

37. Sowmya R, Suneetha K (2017) Data mining with big data. In:
11th international conference on intelligent systems and control
(ISCO). IEEE, pp 246–250

38. Zhou W, Mapara S, Ren Y, Li Y, Haeberlen A, Ives Z, Loo BT,
Sherr M (2012) Distributed time-aware provenance. In: Proceed-
ings of the VLDB endowment, vol 6, no 2. VLDB Endowment,
pp 49–60

39. Akoush S, Sohan R, Hopper A (2013) Hadoopprov: towards
provenance as a first class citizen in mapreduce. In: TaPP

40. GlavicB (2014)Big data provenance: challenges and implications
for benchmarking. In: Rabl T, Poess M, Baru C, Jacobsen H-A
(eds) Specifying big data benchmarks. Springer, Berlin, Heidel-
berg, pp 72–80

41. Berti-Equille L, Ba ML (2016) Veracity of big data: challenges
of cross-modal truth discovery. J. Data Inf Qual 7(3):12:1–12:3

42. Kläs M, Putz W, Lutz T (2016) Quality evaluation for big data:
a scalable assessment approach and first evaluation results. In:
2016 joint conference of the international workshop on software
measurement and the international conference on software pro-
cess and product measurement (IWSM-MENSURA). IEEE, pp
115–124

43. Daiber J, Jakob M, Hokamp C, Mendes PN (2013) Improving
efficiency and accuracy in multilingual entity extraction. In: Pro-
ceedings of the 9th international conference on semantic systems.
ACM, pp 121–124

44. Shin J, Wu S, Wang F, De Sa C, Zhang C, Ré C (July 2015)
Incremental knowledge base construction using DeepDive. Proc
VLDB Endow 8(11), 1310–1321. ISSN 2150-8097. https://doi.
org/10.14778/2809974.2809991

45. Chiticariu L, Krishnamurthy R, Li Y, Raghavan S, Reiss FR,
Vaithyanathan S (2010) Systemt: an algebraic approach to declar-
ative information extraction. In: Proceedings of the association
for computational linguistics, pp 128–137

46. Fuhring P, Naumann F (2007) Emergent data quality annota-
tion and visualization [Online]. https://hpi.de/fileadmin/user_
upload/fachgebiete/naumann/publications/2007/Emergent_
Data_Quality_Annotation_and_Visualization.pdf. Accessed 20
Feb 2018

47. BondiombouyC,KolevB, LevchenkoO,Valduriez P (2016)Mul-
tistore big data integration with CloudMdsQL. In: Hameurlain
A, Küng J, Wagner R, Chen Q (eds) Transactions on large-scale
data-and knowledge-centered systems XXVIII: special issue on
database-and expert-systems applications. Springer, Berlin, Hei-
delberg, pp 48–74. https://doi.org/10.1007/978-3-662-53455-
7_3

48. Bergamaschi S,BeneventanoD,Mandreoli F,MartogliaR,Guerra
F, Orsini M, Po L, Vincini M, Simonini G, Zhu S , Gagliardelli L,
Magnotta L (2018) From data integration to big data integration.
In: Flesca S, Greco S,Masciari E, Saccà D (eds) A comprehensive
guide through the Italian database research over the last 25 years.
Springer, Cham, pp 43–59

49. Ramakrishnan R, Sridharan B, Douceur JR, Kasturi P,
Krishnamachari-Sampath B, Krishnamoorthy K, Li P, Manu M,
Michaylov S, Ramos R et al (2017) Azure data lake store: a hyper-
scale distributed file service for big data analytics. In: Proceedings

of the 2017 ACM international conference on management of
data. ACM, pp 51–63

50. Masseroli M, Kaitoua A, Pinoli P, Ceri S (2016) Modeling and
interoperability of heterogeneous genomic big data for integrative
processing and querying. Methods 111:3–11

51. ScannapiecoM,VirgillitoA,ZardettoD (2013) Placing big data in
official statistics: a big challenge? In: Proceedings of NTTS (new
techniques and technologies for statistics), March 5–7, Brussels

52. Gualtieri M, Hopkins B (2014) SQL-For-Hadoop: 14 capable
solutions reviewed. Forrester

53. Liu H, Kumar TA, Thomas JP (2015) Cleaning framework for
big data-object identification and linkage. In: IEEE international
congress on Big Data (BigData Congress). IEEE, pp 215–221

54. Gulzar MA, Interlandi M, Han X, Li M, Condie T, KimM (2017)
Automated debugging in data-intensive scalable computing. In:
Proceedings of the 2017 symposium on cloud computing, series
SoCC ’17. ACM, New York, pp 520–534 [Online]. https://doi.
org/10.1145/3127479.3131624

55. de Wit T (2017) Using AIS to make maritime statistics. In:
Proceedings of NTTS (New techniques and technologies for
statistics), March 14–16, Brussels

56. ZardettoD, ScannapiecoM,Catarci T (2010) Effective automated
object matching. In: Proceedings of the 26th international confer-
ence on data engineering, ICDE 2010, March 1-6, Long Beach,
California, USA, pp 757–768

57. Xin RS, Gonzalez JE, Franklin MJ, Stoica I (2013) Graphx: a
resilient distributed graph system on spark. In: First international
workshop on graph data management experiences and systems,
GRADES 2013, co-loated with SIGMOD/PODS, New York, NY,
USA, June 24, p 2 [Online]. http://event.cwi.nl/grades2013/02-
xin.pdf. Accessed 20 Feb 2018

58. Junghanns M, Petermann A, Gómez K, Rahm E (2015)
GRADOOP: scalable graph data management and analytics with
hadoop. CoRR [Online]. arxiv:1506.00548

59. Yu J,WuJ, SarwatM(2015)Geospark: a cluster computing frame-
work for processing large-scale spatial data. In: Proceedings of
the 23rd SIGSPATIAL international conference on advances in
geographic information systems, Bellevue, WA, USA, Novem-
ber 3–6, pp 70:1–70:4 [Online]. https://doi.org/10.1145/2820783.
2820860

60. You S, Zhang J, Gruenwald L (2015) Large-scale spatial join
query processing in cloud. In: 31st IEEE international conference
on data engineering workshops, ICDE workshops 2015, Seoul,
South Korea, April 13–17, pp 34–41. [Online]. https://doi.org/
10.1109/ICDEW.2015.7129541

61. Saleh O, Hagedorn S, Sattler K (2015) Complex event processing
on linked stream data. Datenbank Spektrum 15(2):119–129

62. Kornacker M, Behm A, Bittorf V, Bobrovytsky T, Ching C,
Choi A, Erickson J, Grund M, Hecht D, Jacobs M, Joshi I,
Kuff L, Kumar D, Leblang A, Li N, Pandis I, Robinson H,
Rorke D, Rus S, Russell J, Tsirogiannis D, Wanderman-Milne
S, Yoder M (2015) Impala: a modern, open-source SQL engine
for hadoop. In: CIDR 2015, seventh biennial conference on
innovative data systems research, Asilomar, CA, USA, January
4–7, Online proceedings, 2015 [Online]. http://www.cidrdb.org/
cidr2015/Papers/CIDR15_Paper28.pdf

63. Costea A, Ionescu A, Raducanu B, Switakowski M, Bârca C,
Sompolski J, Luszczak A, Szafranski M, de Nijs G, Boncz PA
(2016) Vectorh: taking sql-on-hadoop to the next level. In: Pro-
ceedings of the 2016 international conference on management
of data, SIGMOD conference 2016, San Francisco, CA, USA,
June 26–July 01, pp 1105–1117 [Online]. https://doi.org/10.1145/
2882903.2903742

64. Schätzle A, Przyjaciel-Zablocki M, Skilevic S, Lausen G
(2016) S2RDF: RDF querying with SPARQL on spark. PVLDB

123

https://doi.org/10.14778/2809974.2809991
https://doi.org/10.14778/2809974.2809991
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/2007/Emergent_Data_Quality_Annotation_and_Visualization.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/2007/Emergent_Data_Quality_Annotation_and_Visualization.pdf
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/2007/Emergent_Data_Quality_Annotation_and_Visualization.pdf
https://doi.org/10.1007/978-3-662-53455-7_3
https://doi.org/10.1007/978-3-662-53455-7_3
https://doi.org/10.1145/3127479.3131624
https://doi.org/10.1145/3127479.3131624
http://event.cwi.nl/grades2013/02-xin.pdf
http://event.cwi.nl/grades2013/02-xin.pdf
http://arxiv.org/abs/1506.00548
https://doi.org/10.1145/2820783.2820860
https://doi.org/10.1145/2820783.2820860
https://doi.org/10.1109/ICDEW.2015.7129541
https://doi.org/10.1109/ICDEW.2015.7129541
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
http://www.cidrdb.org/cidr2015/Papers/CIDR15_Paper28.pdf
https://doi.org/10.1145/2882903.2903742
https://doi.org/10.1145/2882903.2903742


P. Ceravolo et al.

9(10):804–815 [Online]. http://www.vldb.org/pvldb/vol9/p804-
schaetzle.pdf

65. Cudré-Mauroux P, Enchev I, Fundatureanu S, Groth PT, Haque
A, Harth A, Keppmann FL, Miranker DP, Sequeda J, Wylot M
(2013) Nosql databases for RDF: an empirical evaluation. In: The
semantic Web—ISWC 2013—12th international semantic web
conference, Sydney, NSW, Australia, October 21–25, Proceed-
ings, Part II, 2013, pp 310–325 [Online]. https://doi.org/10.1007/
978-3-642-41338-4_20

66. Appice A, Ceci M, Malerba D (2018) Relational data mining in
the era of big data. In: Flesca S,Greco S,Masciari E, SaccàD (eds)
A comprehensive guide through the Italian database research over
the last 25 years. Springer, cham, pp 323–339. https://doi.org/10.
1007/978-3-319-61893-7_19

67. Khare S, An K, Gokhale AS, Tambe S, Meena A (2015) Reactive
stream processing for data-centric publish/subscribe. In: Proceed-
ings of the 9th international conference on distributed event-based
systems (DEBS). ACM, pp 234–245

68. Poggi F, Rossi D, Ciancarini P, Bompani L (2016) Semantic run-
timemodels for self-adaptive systems: a case study. In: 2016 IEEE
25th international conference on enabling technologies: infras-
tructure for collaborative enterprises (WETICE). IEEE, pp 50–55

69. Um J-H, Lee S, Kim T-H, Jeong C-H, Song S-K, Jung H (2016)
Semantic complex event processing model for reasoning research
activities. Neurocomputing 209:39–45

70. Giese M, Soylu A, Vega-Gorgojo G,Waaler A, Haase P, Jiménez-
Ruiz E, Lanti D, Rezk M, Xiao G, Özçep Ö et al (2015) Optique:
zooming in on big data. Computer 48(3):60–67

71. Unece big data quality framework [Online]. http://www1.
unece.org/stat/platform/display/bigdata/2014+Project. Accessed
20 Feb 2018

72. Severin J, Lizio M, Harshbarger J, Kawaji H, Daub CO,
Hayashizaki Y, Bertin N, Forrest AR, Consortium F et al (2014)
Interactive visualization and analysis of large-scale sequencing
datasets using zenbu. Nat Biotechnol 32(3):217–219

73. Mezghani E, Exposito E, Drira K, Da Silveira M, Pruski C (2015)
A semantic big data platform for integrating heterogeneous wear-
able data in healthcare. J Med Syst 39(12):185

74. Ginsberg J, Mohebbi M, Patel R, Brammer L, Smolinski M, Bril-
liant L (2009) Detecting influenza epidemics using search engine
query data. Nature 457(7232):1012–1014

75. Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner
D, Chaudhary V, Young M, Crespo J-F, Dennison D (2015)
Hidden technical debt in machine learning systems. In: Cortes
C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds)
Advances in neural information processing systems 28, Cur-
ran Associates, Inc., pp 2503–2511. http://papers.nips.cc/paper/
5656-hidden-technical-debt-in-machine-learning-systems.pdf

76. Chang F, Dean J, Ghemawat S, Hsieh WC,Wallach DA, Burrows
M, Chandra T, Fikes A, Gruber RE (2008) Bigtable: a distributed
storage system for structured data. ACM Trans Comput Syst
26(2):4:1–4:26. https://doi.org/10.1145/1365815.1365816

77. Suriarachchi I, Plale B (2016) Provenance as essential infrastruc-
ture for data lakes. In: Proceedings of international workshop on
provenance and annotation of data and processes. LNCS 9672

78. Terrizzano I, Schwarz P, Roth M, Colino JE (2015) Data wran-
gling: the challenging journey from the wild to the lake. In:
Proceedings of conference on innovative data systems research
(CIDR)

79. Teradata (2014) Putting the data lake towork: a guide to best prac-
tices. http://www.teradata.com/Resources/Best-Practice-Guides/
Putting-the-Data-Lake-to-Work-A-Guide-to-Bes. Accessed on
20 June 2017 [Online]

80. Batini C, Scannapieco M (2016) Data and information quality—
dimensions. Principles and techniques, series. In: Data-centric
systems and applications. Springer

81. Agrawal D, Bernstein P, Bertino E, Davidson S, Dayal U, Franklin
M, Gehrke J, Haas L, Halevy A, Han J et al (2011) Challenges
and opportunities with big data. Purdue University, Cyber Center
Technical Reports

82. Liu M, Wang Q (2016) Rogas: a declarative framework for net-
work analytics. Proceedings of international conference on very
large data bases (VLDB) 9(13):1561–1564

83. Hasan O, Habegger B, Brunie L, Bennani N, Damiani E (2013)
A discussion of privacy challenges in user profiling with big
data techniques: the EEXCESS use case. In: IEEE international
congress on Big Data (BigData Congress). IEEE, pp 25–30

84. Doan A, Ardalan A, Ballard JR, Das S, Govind Y, Konda P, Li H,
Paulson E, Zhang H et al (2017) Toward a system building agenda
for data integration. arXiv preprint arXiv:1710.00027

85. Flood M, Grant J, Luo H, Raschid L, Soboroff I, Yoo K (2016)
Financial entity identification and information integration (feiii)
challenge: the report of the organizing committee. In: Proceedings
of the second international workshop on data science for macro-
modeling. ACM, p 1

86. Haryadi AF, Hulstijn J, Wahyudi A, Van Der Voort H, Janssen
M (2016) Antecedents of big data quality: an empirical exami-
nation in financial service organizations. In: IEEE international
conference on Big Data (Big Data). IEEE, pp 116–121

87. Benedetti F, Beneventano D, Bergamaschi S (2016) Context
semantic analysis: a knowledge-based technique for comput-
ing inter-document similarity. Springer International Publishing,
Berlin, pp 164–178

88. Ford E, Carroll JA, Smith HE, Scott D, Cassell JA (2016) Extract-
ing information from the text of electronic medical records to
improve case detection: a systematic review. J Am Med Inform
Assoc 23(5):1007–1015. https://doi.org/10.1093/jamia/ocv180

89. Haas D, Krishnan S, Wang J, Franklin MJ, Wu E (2015)
Wisteria: nurturing scalable data cleaning infrastructure.
Proc VLDB Endow 8(12):2004–2007. https://doi.org/10.14778/
2824032.2824122

90. Cabot J, Toman D, Parsons J, Pastor O, Wrembel R (2016) Big
data and conceptual models: are they mutually compatible? In:
International conference on conceptual modeling (ER), panel
discussion [Online]. http://er2016.cs.titech.ac.jp/program/panel.
html. Accessed 20 Feb 2018

91. Voigt M, Pietschmann S, Grammel L, Meißner K (2012) Context-
aware recommendation of visualization components. In: Proceed-
ings of the 4th international conference on information, process,
and knowledge management. Citeseer, pp 101–109

92. Soylu A, Giese M, Jimenez-Ruiz E, Kharlamov E, Zheleznyakov
D, Horrocks I (2013) OptiqueVQS: towards an ontology-based
visual query system for big data. In: Proceedings of the fifth
international conference on management of emergent digital
ecosystems, series, MEDES ’13. ACM, New York, pp 119–126
[Online]. https://doi.org/10.1145/2536146.2536149

93. McKenzie G, Janowicz K, Gao S, Yang J-A, Hu Y (2015) POI
pulse: a multi-granular, semantic signature-based information
observatory for the interactive visualization of big geosocial data.
Cartographica Int J Geogr Inf Geovis 50(2):71–85

94. Habib MB, Van Keulen (2016) TwitterNEED: a hybrid
approach for named entity extraction and disambiguation for
tweet. Nat Lang Eng 22(3):423–456. https://doi.org/10.1017/
S1351324915000194

95. Magnani M, Montesi D (2010) A survey on uncertainty manage-
ment in data integration. JDIQ 2(1):5:1–5:33. https://doi.org/10.
1145/1805286.1805291

96. vanKeulenM (2012)Managing uncertainty: the road towards bet-
ter data interoperability. Inf Technol: IT 54(3):138–146. https://
doi.org/10.1524/itit.2012.0674

123

http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf
http://www.vldb.org/pvldb/vol9/p804-schaetzle.pdf
https://doi.org/10.1007/978-3-642-41338-4_20
https://doi.org/10.1007/978-3-642-41338-4_20
https://doi.org/10.1007/978-3-319-61893-7_19
https://doi.org/10.1007/978-3-319-61893-7_19
http://www1.unece.org/stat/platform/display/bigdata/2014+Project
http://www1.unece.org/stat/platform/display/bigdata/2014+Project
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://doi.org/10.1145/1365815.1365816
http://www.teradata.com/Resources/Best-Practice-Guides/Putting-the-Data-Lake-to-Work-A-Guide-to-Bes
http://www.teradata.com/Resources/Best-Practice-Guides/Putting-the-Data-Lake-to-Work-A-Guide-to-Bes
http://arxiv.org/abs/1710.00027
https://doi.org/10.1093/jamia/ocv180
https://doi.org/10.14778/2824032.2824122
https://doi.org/10.14778/2824032.2824122
http://er2016.cs.titech.ac.jp/program/panel.html
http://er2016.cs.titech.ac.jp/program/panel.html
https://doi.org/10.1145/2536146.2536149
https://doi.org/10.1017/S1351324915000194
https://doi.org/10.1017/S1351324915000194
https://doi.org/10.1145/1805286.1805291
https://doi.org/10.1145/1805286.1805291
https://doi.org/10.1524/itit.2012.0674
https://doi.org/10.1524/itit.2012.0674


Big Data Semantics

97. Andrews P, Kalro A, Mehanna H, Sidorov A (2016) Production-
izing machine learning pipelines at scale. In: Machine learning
systems workshop at ICML

98. Sparks ER, Venkataraman S, Kaftan T, Franklin MJ, Recht B
(2017)Keystoneml: optimizing pipelines for large-scale advanced
analytics. In: 2017 IEEE 33rd international conference on data
engineering (ICDE), pp 535–546

99. Meng X, Bradley J, Yavuz B, Sparks E, Venkataraman S, Liu D,
Freeman J, Tsai D, AmdeM, Owen S et al (2016) Mllib: machine
learning in apache spark. J Mach Learn Res 17(1):1235–1241

100. Böse J-H, Flunkert V, Gasthaus J, Januschowski T, Lange D, Sali-
nasD, Schelter S, SeegerM,WangY (2017) Probabilistic demand
forecasting at scale. Proc VLDB Endow 10(12):1694–1705

101. Baylor D, Breck E, Cheng H-T, Fiedel N, Foo CY, Haque
Z, Haykal S, Ispir M, Jain V, Koc L et al (2017) Tfx: a
tensorflow-based production-scale machine learning platform. In:
Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining. ACM, pp 1387–1395

102. Ardagna C, Ceravolo P, Cota GL, Kiani MM, Damiani E (2017)
What are my users looking for when preparing a big data cam-
paign. In: IEEE international congress on Big Data (BigData
Congress). IEEE, pp 201–208

103. PalmérC (2017)Modelling eu directive 2016/680 using enterprise
architecture

104. Atzmueller M, Kluegl P, Puppe F (2008) Rule-based information
extraction for structured data acquisition using textmarker. In:
Proceedings of LWA, pp 1–7

105. Settles B (2011) Closing the loop: fast, interactive semi-
supervised annotation with queries on features and instances. In:
Proceedings of EMNLP.ACL, pp 1467–1478

106. Müller C, Strube M (2006) Multi-level annotation of linguistic
data with MMAX2. Corpus Technol Lang Pedag New Resour
New Tools New Methods 3:197–214

107. Stenetorp P, Pyysalo S, Topić G, Ohta T, Ananiadou S, Tsujii J
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