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More Online Courses at: http://www.jarrar.info
Course Page: http://www.jarrar.info/courses/AI/

Watch this lecture 
and download the slides

Acknowledgement: This lecture is largely based on Chris Manning online course on NLP, which 
can be accessed at http://www.youtube.com/watch?v=s3kKlUBa3b0

http://www.jarrar.info/
http://www.jarrar.info/courses/AI/
http://www.youtube.com/watch?v=s3kKlUBa3b0
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• Part 1: Information Retrieval Basics 

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes

Keywords: Natural Language Processing, Information Retrieval, Precision, Recall, Inverted Index , 
Positional Indexes, Query processing, Merge Algorithm, Biwords, Phrase queries
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Information Retrieval

Information Retrieval (IR) is finding material (usually documents) of 
an unstructured nature (usually text) that satisfies an information 
need from within large collections (usually stored on computers).

– These days we frequently think first of web search, but there 
are many other cases:

• E-mail search
• Searching your laptop
• Corporate knowledge bases
• Legal information retrieval
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Unstructured (text) vs. structured (database) data in 
the mid-nineties
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Unstructured (text) vs. structured (database) data 
later
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Basic Assumptions of Information Retrieval

Collection: A set of documents
– Assume it is a static collection (but in other scenarios we may 

need to add and delete documents).

Goal: Retrieve documents with information that is 
relevant to the user’s information need and helps the 
user complete a task.
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Classic Search Model

how trap mice alive

Collection

User task

Info need

Query

Results

Search
engine

Query
refinement 

Get rid of mice in a 
politically correct way

Info about removing mice
without killing them 

Misconception?

Misformulation?

Search
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How good are the retrieved docs?

§Precision : Fraction of retrieved docs that are relevant to the user�s information 
need ( ةعاجرتسامتامنیبنمحیحصلاةبسن ).

§Recall : Fraction of relevant docs in collection that are retrieved
حیحصلاعیمجنیبنمعجرتسملاحیحصلاةبسن

In this figure the relevant items are to the left of the straight line while the 
retrieved items are within the oval. The red regions represent errors. On the 
left these are the relevant items not retrieved (false negatives), while on the 
right they are the retrieved items that are not relevant (false positives).

Are these measures are always useful as in case of huge collections?
Ranking becomes more important sometimes.

1411

48

P= 8/12 = 66%,   R=8/14 = 57%
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• Part 1: Information Retrieval Basics 

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes

Outline
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Unstructured Data in 1620

Which plays of Shakespeare contain the words Brutus AND Caesar
but NOT Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and Caesar,
then strip out lines containing Calpurnia?

Why is that not the answer?
– Slow (for large corpora)
– NOT Calpurnia is non-trivial
– Other operations (e.g., find the word Romans near countrymen) not feasible
– Ranked retrieval (best documents to return)
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Term-Document Incidence Matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains 
word, 0 otherwise

Brutus AND Caesar BUT NOT Calpurnia
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Incidence Vectors

So we have a 0/1 vector for each term.

To answer query: take the vectors for Brutus, Caesar and Calpurnia
(complemented)    è bitwise AND.

– 110100 AND
– 110111 AND
– 101111 = 
– 100100

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0



Jarrar © 2018 14

Answers to Query

Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i� the

Capitol; Brutus killed me.



Jarrar © 2018 15

With Bigger Collections!

Consider N = 1 million documents, each with about 1000 words.

Avg 6 bytes/word including spaces/punctuation 
= 6GB of data in the documents.

Say there are M = 500K distinct terms among these.
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We Can�t Build this Matrix!

500K x 1M matrix has half-a-trillion 0’s and 1’s.

But it has no more than one billion 1’s. ( =1000 words x 1 M doc.)
è matrix is extremely sparse.

What’s a better representation?
– We only record the 1 positions.
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• Part 1: Information Retrieval Basics 

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes
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What is an Inverted Index?

For each term t, we must store a list of all documents that contain t.
– Identify each doc by a docID, a document serial number

Can we used fixed-size arrays for this?

What happens if the word Caesar is added 
to document 14? 

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101
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Inverted index

We need variable-size postings lists
– On disk, a continuous run of postings is normal and best
– In memory, can use linked lists or variable length arrays

• Some tradeoffs in size/ease of insertion

Dictionary Postings

Sorted by docID (more later on why).

Posting

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101
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Inverted Index Construction

Tokenizer

Token stream Friends Romans Countrymen

Linguistic 
modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, countrymen.
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Initial Stages of Text Processing

Tokenization
– Cut character sequence into word tokens (=what is a word!)

• Deal with �John’s�, a state-of-the-art solution

Normalization
– Map text (and query) term to same form

• You want U.S.A. and USA to match

Stemming
– We may wish to have different forms of a root to match

• authorize, authorization

Stop words
– We may omit very common words (or not)

• the, a, to, of, over, between, his, him



Jarrar © 2018 22

Indexer Steps: Token Sequence

Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed 

i� the Capitol; 
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2
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Indexer Steps: Sort

Sort by terms
– And then docID

Core indexing step
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Indexer Steps: Dictionary & Postings

Multiple term entries in a single 
document are merged.

Split into Dictionary and Postings

Doc. frequency information is 
added.

Why frequency?
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Where do we pay in storage?

Pointers

Terms 
and 

counts

IR system implementation
• How do we index efficiently?
• How much storage do we need?

Lists of 
docIDs
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• Part 1: Information Retrieval Basics 

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes

Outline
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Query processing: AND

Consider processing the query:
Brutus AND Caesar
– Locate Brutus in the Dictionary;

• Retrieve its postings.
– Locate Caesar in the Dictionary;

• Retrieve its postings.
– �Merge� the two postings (intersect the document sets):

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar
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The Merge

Walk through the two postings simultaneously, in time 
linear in the total number of postings entries

34
1282 4 8 16 32 64

1 2 3 5 8 13 21
Brutus
Caesar

If the list lengths are x and y, the merge takes O(x+y) 
operations.

Crucial: postings sorted by docID.

2 8
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Intersecting two postings lists (a �merge� algorithm)
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• Part 3: Inverted Index
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Phrase Queries

We want to be able to answer queries such as �stanford university�
as a phrase

Thus the sentence �I went to university at Stanford� is not a match. 
– The concept of phrase queries has proven easily understood by 

users; one of the few �advanced search� ideas that works

For this, it no longer suffices to store only
<term : docs> entries
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First Attempt: Biword Indexes

Index every consecutive pair of terms in the text as a phrase

For example the text �Friends, Romans, Countrymen� would 
generate the biwords

– friends romans
– romans countrymen

Each of these biwords is now a dictionary term

Two-word phrase query-processing is now immediate.
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Longer Phrase Queries

• Longer phrases can be processed by breaking them down

• stanford university palo alto can be broken into the Boolean 
query on biwords:

• stanford university AND university palo AND palo alto

• Without the docs, we cannot verify that the docs matching the 
above Boolean query do contain the phrase.

Can have false positives!
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Issues for Biword Indexes

• False positives, as noted before

• Index blowup due to bigger dictionary
– Infeasible for more than biwords, big even for them

• Biword indexes are not the standard solution (for all 
biwords) but can be part of a compound strategy

è This is not practical/standard solution! 
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Solution 2: Positional Indexes

In the postings, store, for each term the position(s) in which tokens 
of it appear:

<term, number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>
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Example: Positional index

For phrase queries, we use a merge algorithm recursively at the 
document level.

But we now need to deal with more than just equality.

Example: if we look for “Birzeit University” then if Birzeit in 87 
then University should be in 88.

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain �to be

or not to be�?
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Processing Phrase Queries

Extract inverted index entries for each distinct term: to, be, or, not.

Merge their doc:position lists to enumerate all positions with �to 
be or not to be�.

– to: 

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

– be:  

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

Same general method for proximity searches
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Positional Index Size

A positional index expands postings storage substantially
– Even though indices can be compressed.

Nevertheless, a positional index is now standardly used because of 
the power and usefulness of phrase and proximity queries … 
whether used explicitly or implicitly in a ranking retrieval system.
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Rules of thumb

• A positional index is 2–4 as large as a non-positional index

• Positional index size 35–50% of volume of original text

– Caveat: all of this holds for �English-like� languages
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Combination Schemes (both Solutions)

These two approaches can be profitably combined
– For particular phrases (�Michael Jackson�, �Britney Spears�) it is 

inefficient to keep on merging positional postings lists
• Even more so for phrases like �The Who�

Williams et al. (2004) evaluate a more sophisticated mixed 
indexing scheme

– A typical web query mixture was executed in ¼ of the time of using 
just a positional index

– It required 26% more space than having a positional index alone
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Project (Search Engine)

Building an Arabic Search Engine based on a positional inverted index. A 

corpus of at least 10 documents containing at least 10000 words should 

be used to test this engine.

The engine should support single, multiple word, as phrase queries. 

The inverted index should take into account Arabic  stemming and stop 

words. 

The results page will list the titles of all relevant documents in a clickable 

manner.

This project is a continuation of the previous project, thus students are 

expected to also allow users to “auto complete” their search queries.

Deadline: 9/10/2014
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