
Jarrar © 2018 1

Mustafa Jarrar: Lecture Notes on Artificial Intelligence
Birzeit University, 2018

Mustafa Jarrar
University of Birzeit

Introduction to
Information Retrieval

http://www.birzeit.edu/

Jarrar © 2018 2

More Online Courses at: http://www.jarrar.info
Course Page: http://www.jarrar.info/courses/AI/

Watch this lecture
and download the slides

Acknowledgement: This lecture is largely based on Chris Manning online course on NLP, which
can be accessed at http://www.youtube.com/watch?v=s3kKlUBa3b0

http://www.jarrar.info/
http://www.jarrar.info/courses/AI/
http://www.youtube.com/watch?v=s3kKlUBa3b0

Jarrar © 2018 3

• Part 1: Information Retrieval Basics

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes

Keywords: Natural Language Processing, Information Retrieval, Precision, Recall, Inverted Index ,
Positional Indexes, Query processing, Merge Algorithm, Biwords, Phrase queries

Outline

ةیعیبطلا تاغلل ةیلآ ةجلاعم , ةیوغل تاقیبطت ,ملاعتسا , ةقدلا ,تامولعملا عاجرتسا ,ةیبوساحلا تایناسللا

Jarrar © 2018 4

Information Retrieval

Information Retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

– These days we frequently think first of web search, but there
are many other cases:

• E-mail search
• Searching your laptop
• Corporate knowledge bases
• Legal information retrieval

Jarrar © 2018 5

Unstructured (text) vs. structured (database) data in
the mid-nineties

Jarrar © 2018 6

Unstructured (text) vs. structured (database) data
later

Jarrar © 2018 7

Basic Assumptions of Information Retrieval

Collection: A set of documents
– Assume it is a static collection (but in other scenarios we may

need to add and delete documents).

Goal: Retrieve documents with information that is
relevant to the user’s information need and helps the
user complete a task.

Jarrar © 2018 8

Classic Search Model

how trap mice alive

Collection

User task

Info need

Query

Results

Search
engine

Query
refinement

Get rid of mice in a
politically correct way

Info about removing mice
without killing them

Misconception?

Misformulation?

Search

Jarrar © 2018 9

How good are the retrieved docs?

§Precision : Fraction of retrieved docs that are relevant to the user�s information
need (ةعاجرتسامتامنیبنمحیحصلاةبسن).

§Recall : Fraction of relevant docs in collection that are retrieved
حیحصلاعیمجنیبنمعجرتسملاحیحصلاةبسن

In this figure the relevant items are to the left of the straight line while the
retrieved items are within the oval. The red regions represent errors. On the
left these are the relevant items not retrieved (false negatives), while on the
right they are the retrieved items that are not relevant (false positives).

Are these measures are always useful as in case of huge collections?
Ranking becomes more important sometimes.

1411

48

P= 8/12 = 66%, R=8/14 = 57%

Jarrar © 2018 10

• Part 1: Information Retrieval Basics

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes

Outline

Jarrar © 2018 11

Unstructured Data in 1620

Which plays of Shakespeare contain the words Brutus AND Caesar
but NOT Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and Caesar,
then strip out lines containing Calpurnia?

Why is that not the answer?
– Slow (for large corpora)
– NOT Calpurnia is non-trivial
– Other operations (e.g., find the word Romans near countrymen) not feasible
– Ranked retrieval (best documents to return)

Jarrar © 2018 12

Term-Document Incidence Matrices

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if play contains
word, 0 otherwise

Brutus AND Caesar BUT NOT Calpurnia

Jarrar © 2018 13

Incidence Vectors

So we have a 0/1 vector for each term.

To answer query: take the vectors for Brutus, Caesar and Calpurnia
(complemented) è bitwise AND.

– 110100 AND
– 110111 AND
– 101111 =
– 100100

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Jarrar © 2018 14

Answers to Query

Antony and Cleopatra, Act III, Scene ii
Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar I was killed i� the

Capitol; Brutus killed me.

Jarrar © 2018 15

With Bigger Collections!

Consider N = 1 million documents, each with about 1000 words.

Avg 6 bytes/word including spaces/punctuation
= 6GB of data in the documents.

Say there are M = 500K distinct terms among these.

Jarrar © 2018 16

We Can�t Build this Matrix!

500K x 1M matrix has half-a-trillion 0’s and 1’s.

But it has no more than one billion 1’s. (=1000 words x 1 M doc.)
è matrix is extremely sparse.

What’s a better representation?
– We only record the 1 positions.

Jarrar © 2018 17

• Part 1: Information Retrieval Basics

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes

Outline

Jarrar © 2018 18

What is an Inverted Index?

For each term t, we must store a list of all documents that contain t.
– Identify each doc by a docID, a document serial number

Can we used fixed-size arrays for this?

What happens if the word Caesar is added
to document 14?

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Jarrar © 2018 19

Inverted index

We need variable-size postings lists
– On disk, a continuous run of postings is normal and best
– In memory, can use linked lists or variable length arrays

• Some tradeoffs in size/ease of insertion

Dictionary Postings

Sorted by docID (more later on why).

Posting

Brutus

Calpurnia

Caesar 1 2 4 5 6 16 57 132

1 2 4 11 31 45173

2 31

174

54101

Jarrar © 2018 20

Inverted Index Construction

Tokenizer

Token stream Friends Romans Countrymen

Linguistic
modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend

roman

countryman

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, countrymen.

Jarrar © 2018 21

Initial Stages of Text Processing

Tokenization
– Cut character sequence into word tokens (=what is a word!)

• Deal with �John’s�, a state-of-the-art solution

Normalization
– Map text (and query) term to same form

• You want U.S.A. and USA to match

Stemming
– We may wish to have different forms of a root to match

• authorize, authorization

Stop words
– We may omit very common words (or not)

• the, a, to, of, over, between, his, him

Jarrar © 2018 22

Indexer Steps: Token Sequence

Sequence of (Modified token, Document ID) pairs.

I did enact Julius
Caesar I was killed

i� the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble

Brutus hath told you
Caesar was ambitious

Doc 2

Jarrar © 2018 23

Indexer Steps: Sort

Sort by terms
– And then docID

Core indexing step

Jarrar © 2018 24

Indexer Steps: Dictionary & Postings

Multiple term entries in a single
document are merged.

Split into Dictionary and Postings

Doc. frequency information is
added.

Why frequency?

Jarrar © 2018 25

Where do we pay in storage?

Pointers

Terms
and

counts

IR system implementation
• How do we index efficiently?
• How much storage do we need?

Lists of
docIDs

Jarrar © 2018 26

• Part 1: Information Retrieval Basics

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes

Outline

Jarrar © 2018 27

Query processing: AND

Consider processing the query:
Brutus AND Caesar
– Locate Brutus in the Dictionary;

• Retrieve its postings.
– Locate Caesar in the Dictionary;

• Retrieve its postings.
– �Merge� the two postings (intersect the document sets):

128
34

2 4 8 16 32 64
1 2 3 5 8 13 21

Brutus
Caesar

Jarrar © 2018 28

The Merge

Walk through the two postings simultaneously, in time
linear in the total number of postings entries

34
1282 4 8 16 32 64

1 2 3 5 8 13 21
Brutus
Caesar

If the list lengths are x and y, the merge takes O(x+y)
operations.

Crucial: postings sorted by docID.

2 8

Jarrar © 2018 29

Intersecting two postings lists (a �merge� algorithm)

Jarrar © 2018 30

• Part 1: Information Retrieval Basics

• Part 2: Term-document incidence matrices

• Part 3: Inverted Index

• Part 4: Query processing with inverted index

• Part 5: Phrase queries and positional indexes

Outline

Jarrar © 2018 31

Phrase Queries

We want to be able to answer queries such as �stanford university�
as a phrase

Thus the sentence �I went to university at Stanford� is not a match.
– The concept of phrase queries has proven easily understood by

users; one of the few �advanced search� ideas that works

For this, it no longer suffices to store only
<term : docs> entries

Jarrar © 2018 32

First Attempt: Biword Indexes

Index every consecutive pair of terms in the text as a phrase

For example the text �Friends, Romans, Countrymen� would
generate the biwords

– friends romans
– romans countrymen

Each of these biwords is now a dictionary term

Two-word phrase query-processing is now immediate.

Jarrar © 2018 33

Longer Phrase Queries

• Longer phrases can be processed by breaking them down

• stanford university palo alto can be broken into the Boolean
query on biwords:

• stanford university AND university palo AND palo alto

• Without the docs, we cannot verify that the docs matching the
above Boolean query do contain the phrase.

Can have false positives!

Jarrar © 2018 34

Issues for Biword Indexes

• False positives, as noted before

• Index blowup due to bigger dictionary
– Infeasible for more than biwords, big even for them

• Biword indexes are not the standard solution (for all
biwords) but can be part of a compound strategy

è This is not practical/standard solution!

Jarrar © 2018 35

Solution 2: Positional Indexes

In the postings, store, for each term the position(s) in which tokens
of it appear:

<term, number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

Jarrar © 2018 36

Example: Positional index

For phrase queries, we use a merge algorithm recursively at the
document level.

But we now need to deal with more than just equality.

Example: if we look for “Birzeit University” then if Birzeit in 87
then University should be in 88.

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Which of docs 1,2,4,5
could contain �to be

or not to be�?

Jarrar © 2018 37

Processing Phrase Queries

Extract inverted index entries for each distinct term: to, be, or, not.

Merge their doc:position lists to enumerate all positions with �to
be or not to be�.

– to:

• 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

– be:

• 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

Same general method for proximity searches

Jarrar © 2018 38

Positional Index Size

A positional index expands postings storage substantially
– Even though indices can be compressed.

Nevertheless, a positional index is now standardly used because of
the power and usefulness of phrase and proximity queries …
whether used explicitly or implicitly in a ranking retrieval system.

Jarrar © 2018 39

Rules of thumb

• A positional index is 2–4 as large as a non-positional index

• Positional index size 35–50% of volume of original text

– Caveat: all of this holds for �English-like� languages

Jarrar © 2018 40

Combination Schemes (both Solutions)

These two approaches can be profitably combined
– For particular phrases (�Michael Jackson�, �Britney Spears�) it is

inefficient to keep on merging positional postings lists
• Even more so for phrases like �The Who�

Williams et al. (2004) evaluate a more sophisticated mixed
indexing scheme

– A typical web query mixture was executed in ¼ of the time of using
just a positional index

– It required 26% more space than having a positional index alone

Jarrar © 2018 41

Project (Search Engine)

Building an Arabic Search Engine based on a positional inverted index. A

corpus of at least 10 documents containing at least 10000 words should

be used to test this engine.

The engine should support single, multiple word, as phrase queries.

The inverted index should take into account Arabic stemming and stop

words.

The results page will list the titles of all relevant documents in a clickable

manner.

This project is a continuation of the previous project, thus students are

expected to also allow users to “auto complete” their search queries.

Deadline: 9/10/2014

Jarrar © 2018 42

References

[1] Dan Jurafsky: From Languages to Information notes
http://web.stanford.edu/class/cs124

http://web.stanford.edu/class/cs124

