
Jarrar © 2022 1

Mustafa Jarrar: Lecture Notes Inference Methods in First Order Logic
Birzeit University, 2022

Mustafa Jarrar
Birzeit University

Artificial Intelligence

Inference Methods
in First Order Logic

Version 2

محـــــرّك بحـــــث للمعاجـــــم العربيـــــة

Chapter 9 (& extra Material)

Jarrar © 2022 2

More Online Courses at: http://www.jarrar.info
Course Page: http://www.jarrar.info/courses/AI

Watch this lecture
and download the slides

Note: Most material adapted and improved from [1]

http://www.jarrar.info/
http://www.jarrar.info/courses/AI/

Jarrar © 2022 3

In this lecture:

q Part 1: Motivation

q Part 2: Reducing first-order to propositional inference

q Part 3: Unification

q Part 4: Generalized Modus Ponens

q Part 5: Forward chaining

q Part 6: Backward chaining

q Part 7: Resolution

Artificial Intelligence
Inference Methods in First Order Logic

Mustafa Jarrar: Lecture Notes Inference Methods in First Order Logic
Birzeit University, 2022

Jarrar © 2022 4

Motivation: Knowledge Bases vs. Databases

Evaluating the truth formula for
each tuple in the table “Publish”

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~

Wffs :

Proof

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx

Provability

Query Answer

Knowledge Base System

Query

Proof Theoretic View

Constraints
DBM
S

Transactions
i.e insert, update, delete...

Query

Q
uery A

nsw
er

Model Theoretic View

The KB is a set of formulae and the 
query evaluation is to prove that the 
result is provable.



Jarrar © 2022 5

In this lecture:

q Part 1: Motivation

q Part 2: Reducing first-order to propositional inference

q Part 3: Unification

q Part 4: Generalized Modus Ponens

q Part 5: Forward chaining

q Part 6: Backward chaining

q Part 7: Resolution

Artificial Intelligence
Inference Methods in First Order Logic

Mustafa Jarrar: Lecture Notes Inference Methods in First Order Logic
Birzeit University, 2022



Jarrar © 2022 6

Inference in First-Order Logic

We may inference in FOL by mapping FOL sentences into propositions, and 
apply the inference methods of propositional logic. 

This mapping is called propositionalization.

Thus, Inference in first-order logic can be achieved using:
– Inference rules
– Forward chaining
– Backward chaining
– Resolution

• Unification
• Proofs
• Clausal form
• Resolution as search



Jarrar © 2022 7

Universal Instantiation (UI)

Every instantiation of a universally quantified sentence is entailed by it:
"v α

Subst({v/g}, α)

for any variable v and ground term g

King(John) Ù Greedy(John) Þ Evil(John)
King(Richard) Ù Greedy(Richard) Þ Evil(Richard)

"x King(x) Ù Greedy(x) Þ Evil(x) 
King(John) 
Greedy(John)

• Example:



Jarrar © 2022 8

Existential Instantiation (EI)

For any sentence α, variable v, and constant symbol k that does not appear 
elsewhere in the knowledge base:

Crown(C1) Ù OnHead(C1,John)

$x Crown(x) Ù OnHead(x,John)
Example:

provided C1 is a new constant symbol, called a Skolem constant.

• The variable symbol can be replaced by any ground term, i.e., any constant symbol
or function symbol applied to ground terms only.

• In other words, we don’t want to accidentally draw other inferences about it by
introducing the constant.

• Convenient to use this to reason about the unknown object, rather than constantly
manipulating the existential quantifier.

$v α
Subst({v/k}, α)



Jarrar © 2022 9

Reduction to Propositional Inference
Suppose the KB contains just the following:

"x King(x) Ù Greedy(x) Þ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)

Instantiating the universal sentence in all possible ways, we have:
King(John) Ù Greedy(John) Þ Evil(John)
King(Richard) Ù Greedy(Richard) Þ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

The new KB is propositionalized: proposition symbols are

King(John), Greedy(John), Evil(John), King(Richard), etc.



Jarrar © 2022 10

Reduction contd.

Every FOL KB can be propositionalized so as to preserve entailment

(A ground sentence is entailed by new KB iff entailed by original KB)

Idea: propositionalize KB and query, apply resolution, return result

Problem: with function symbols, there are infinitely many ground terms,
– e.g., Father(Father(Father(John)))



Jarrar © 2022 11

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by 
a finite subset of the propositionalized KB

Idea: For n = 0 to ∞ do

create a propositional KB by instantiating with depth-$n$ terms
see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed.
Godel's Completeness Theorem says that FOL entailment is only 
semidecidable:

– If a sentence is true given a set of axioms, there is a procedure that will determine this.
– If the sentence is false, then there is no guarantee that a procedure will ever 

determine this–i.e., it may never halt.



Jarrar © 2022 12

Completeness of some inference techniques

Truth Tabling is not complete for FOL because truth table size may be infinite.

Natural Deduction is complete for FOL but is not practical because the 
“branching factor” in the search is too large (so we would have to potentially 
try every inference rule in every possible way using the set of known 
sentences).

Generalized Modus Ponens is not complete for FOL.

Generalized Modus Ponens is complete for KBs containing only Horn clauses.



Jarrar © 2022 13

Problems with Propositionalization
Propositionalization seems to generate lots of irrelevant sentences.

E.g., from:
"x King(x) Ù Greedy(x) Þ Evil(x)
King(John)
"y Greedy(y)
Brother(Richard, John)

It seems obvious that Evil(John), but propositionalization produces lots 
of facts such as Greedy(Richard) that are irrelevant

With p k-ary predicates and n constants, there are p·nk instantiations.



Jarrar © 2022 14

Problems with Propositionalization

Given this KB:
King(x) Ù Greedy(x) Þ Evil(x)
King(John)
Greedy(John)

How do we really know that Evil(John)?
– We find x that is a King and Greedy, if so then x is Evil.
– That is, we need to a substitution {x/John}

But Given this KB:
"x King(x) Ù Greedy(x) Þ Evil(x)
King(John)
"y Greedy(y)

How do we really know that Evil(John)?
– That is, we need to the substitutions {x/John, y,John}, but how?



Jarrar © 2022 15

In this lecture:

q Part 1: Motivation

q Part 2: Reducing first-order to propositional inference

q Part 3: Unification

q Part 4: Generalized Modus Ponens

q Part 5: Forward chaining

q Part 6: Backward chaining

q Part 7: Resolution

Artificial Intelligence
Inference Methods in First Order Logic

Mustafa Jarrar: Lecture Notes Inference Methods in First Order Logic
Birzeit University, 2022



Jarrar © 2022 16

Unification

We can get the inference immediately if we can find a substitution θ such that 
King(x) and Greedy(x) match King(John) and Greedy(y)

θ = {x/John,y/John} 

This is called Unification, a “pattern-matching” procedure:
– Takes two atomic sentences, called literals, as input
– Returns “Failure” if they do not match and a substitution list, θ, if they do

Unify(P,Q) = θ if Pθ = Qθ 

• That is, unify(p,q) = θ means subst(θ, p) = subst(θ, q) for two atomic sentences, p
and q

• θ is called the Most General Unifier (MGU) 
• All variables in the given two literals are implicitly universally quantified.
• To make literals match, replace (universally quantified) variables by terms



Jarrar © 2022 17

Unification Example

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.

P Q θ 
Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,Elizabeth) 



Jarrar © 2022 18

Unification Example

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,Elizabeth) 

P Q θ 
{x/Jane}

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.



Jarrar © 2022 19

Unification Example

P Q θ 
{x/Jane}
{x/Bill,y/John}

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,Elizabeth) 

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.



Jarrar © 2022 20

Unification Example

P Q θ 
{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,Elizabeth) 

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.



Jarrar © 2022 21

Unification Example

P Q θ 
{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
fail

• The last unification failed because x cannot take on the values John and Elizabeth at the same time.
• Because it happens that both sentences use the same variable name.
• Solution: rename x in Knows(x,Elizabeth)  into Knows(z17,Elizabeth) , without changing its meaning. 

(this is called standardizing apart)

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(x,Elizabeth) 

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.



Jarrar © 2022 22

Unification Example

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(z17,Elizabeth) 

P Q θ 
{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
{x/Elizabeth, z17/John}

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.

• The last unification failed because x cannot take on the values John and Elizabeth at the same time.
• Because it happens that both sentences use the same variable name.
• Solution: rename x in Knows(x,Elizabeth)  into Knows(z17,Elizabeth) , without changing its meaning. 

(this is called standardizing apart)



Jarrar © 2022 23

Unification Example

P Q θ 
{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
{x/Elizabeth, z17/John}

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(z17,Elizabeth) 



Jarrar © 2022 24

Unification Example

P Q θ 
{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
{x/Elizabeth, z17/John}

In the last case, we have two answers:
θ= {y/John,x/z}, or
θ= {y/John,x/John, z/John}

??

This first unification is more general,
as it places fewer restrictions on the
values of the variables.

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(z17,Elizabeth) 



Jarrar © 2022 25

Unification Example

P Q θ 
{x/Jane}
{x/Bill,y/John}
{y/John,x/Mother(John)}
{x/Elizabeth, z17/John}

For every unifiable pair of
expressions, there is a
Most General Unifier MGU

In the last case, we have two answers:
θ= {y/John,x/z}, or
θ= {y/John,x/John, z/John}

{y/John,x/z}

Unify (p,q)  = θ where Subst(θ,p) = Subset(θ,q)

Suppose we have a query Knows(John,x), we need to unify Knows(John,x) with all 
sentences in KD.

Knows(John,x) Knows(John,Jane) 
Knows(John,x) Knows(y,Bill) 
Knows(John,x) Knows(y,Mother(y))
Knows(John,x) Knows(z17,Elizabeth) 



Jarrar © 2022 26

Another Example

Example:
– parents(x, father(x), mother(Bill)) 
– parents(Bill, father(Bill), y)
– {x/Bill, y/mother(Bill)}

Example:
– parents(x, father(x), mother(Bill))
– parents(Bill, father(y), z)
– {x/Bill, y/Bill, z/mother(Bill)}

Example:
– parents(x, father(x), mother(Jane))
– parents(Bill, father(y), mother(y))
– Failure



Jarrar © 2022 27

In this lecture:

q Part 1: Motivation

q Part 2: Reducing first-order to propositional inference

q Part 3: Unification

q Part 4: Generalized Modus Ponens

q Part 5: Forward chaining

q Part 6: Backward chaining

q Part 7: Resolution

Artificial Intelligence
Inference Methods in First Order Logic

Mustafa Jarrar: Lecture Notes Inference Methods in First Order Logic
Birzeit University, 2022



Jarrar © 2022 28

Generalized Modus Ponens (GMP)

• A first-order inference rule, to find substitutions easily.
• Apply modus ponens reasoning to generalized rules.
• Combines And-Introduction, Universal-Elimination, and Modus Ponens . 

Example: {P(c), Q(c), "x(P(x) Ù Q(x)) Þ R(x)} derive R(c)
• General case: Given

– Atomic sentences P1, P2, ..., Pn
– Implication sentence (Q1 Ù Q2 Ù ... Ù Qn) Þ R

• Q1, ..., Qn and R are atomic sentences 
– Substitution subst(θ, Pi) = subst(θ, Qi)      (for i=1,...,n)
– Derive new sentence: subst(θ, R)  

• Substitutions
– subst(θ, α) denotes the result of applying a set of substitutions defined by θ to the 

sentence α
– A substitution list θ = {v1/t1, v2/t2, ..., vn/tn} means to replace all occurrences of variable 

symbol vi by term ti
– Substitutions are made in left-to-right order in the list



Jarrar © 2022 29

Generalized Modus Ponens (GMP)

where Pi θ = Qi θ for all i

A first-order inference rule, to find substitutions easily.

• GMP used with KB of definite clauses (exactly one positive literal).

• All variables assumed universally quantified.

P1, P2, … , Pn,   ( Q1 Ù Q2 Ù … Ù QnÞR)
Subst (R, θ)

King(John), Greedy(y),     (King(x), Greedy(x) Þ Evil(x))
Subst(Evil(x),  {x/John, y/John})



Jarrar © 2022 30

Soundness of GMP

Need to show that 

P1, …, Pn, (Q1 Ù … Ù Qn Þ Q) ╞ R θ

provided that Pi θ = Qi θ for all i

Lemma: For any sentence Q, we have Q ╞ Q θ by UI
(P1 Ù … Ù Pn Þ R) ╞ (P1 Ù … Ù pn Þ R) θ = (P1 θ Ù … Ù Pn θ Þ R θ)

Q1\ …, \Pn ╞ Q1 Ù … Ù Qn ╞ P1 θ Ù … Ù Qn θ
From 1 and 2, R θ follows by ordinary Modus Ponens



Jarrar © 2022 31

In this lecture:

q Part 1: Motivation

q Part 2: Reducing first-order to propositional inference

q Part 3: Unification

q Part 4: Generalized Modus Ponens

q Part 5: Forward chaining

q Part 6: Backward chaining

q Part 7: Resolution

Artificial Intelligence
Inference Methods in First Order Logic

Mustafa Jarrar: Lecture Notes Inference Methods in First Order Logic
Birzeit University, 2022



Jarrar © 2022 32

Forward Chaining

Proofs start with the given axioms/premises in KB, deriving new 
sentences using GMP until the goal/query sentence is derived

This defines a forward-chaining inference procedure because it 
moves “forward” from the KB to the goal

Natural deduction using GMP is complete for KBs containing 
only Horn clauses 



Jarrar © 2022 33

Example Knowledge Base

The law says that it is a crime for an American to sell 
weapons to hostile nations.  The country Nono, an enemy of 
America, has some missiles, and all of its missiles were sold 
to it by Colonel West, who is American.

Prove that Col. West is a criminal



Jarrar © 2022 34

Example Knowledge Base contd.

... it is a crime for an American to sell weapons to hostile nations:
American(x) Ù Weapon(y) Ù Sells(x,y,z) Ù Hostile(z) Þ Criminal(x)

Nono … has some missiles, i.e., $x Owns(Nono,x) Ù Missile(x):
Owns(Nono,M1) Ù Missile(M1)

… all of its missiles were sold to it by Colonel West
Missile(x) Ù Owns(Nono,x) Þ Sells(West,x,Nono)

Missiles are weapons:
Missile(x) Þ Weapon(x)

An enemy of America counts as "hostile“:
Enemy(x,America) Þ Hostile(x)

West, who is American …
American(West)

The country Nono, an enemy of America …
Enemy(Nono,America)



Jarrar © 2022 35

Forward Chaining Proof

American(x) Ù Weapon(y) Ù Sells(x,y,z) Þ Criminal(x)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)



Jarrar © 2022 36

Forward Chaining Proof

American(x) Ù Weapon(y) Ù Sells(x,y,z) Þ Criminal(x)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)



Jarrar © 2022 37

Forward Chaining Proof

American(x) Ù Weapon(y) Ù Sells(x,y,z) Þ Criminal(x)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)



Jarrar © 2022 38

Forward Chaining Proof

American(x) Ù Weapon(y) Ù Sells(x,y,z) Þ Criminal(x)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)



Jarrar © 2022 39

Forward Chaining Proof

American(x) Ù Weapon(y) Ù Sells(x,y,z) Þ Criminal(x)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)

Hostine(z)Ù



Jarrar © 2022 40

Forward Chaining Proof

American(x) Ù Weapon(y) Ù Sells(x,y,z) Þ Criminal(x)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)



Jarrar © 2022 41

Properties of Forward Chaining

Sound and complete for first-order definite clauses.

Datalog = first-order definite clauses + no functions
FC terminates for Datalog in finite number of iterations.

May not terminate in general if α is not entailed.

This is unavoidable: entailment with definite clauses is semidecidable.



Jarrar © 2022 42

Efficiency of Forward Chaining

Incremental forward chaining: no need to match a rule on iteration k 
if a premise wasn't added on iteration k-1

Þ Match each rule whose premise contains a newly added positive literal.

Matching itself can be expensive:
Database indexing allows O(1) retrieval of known facts

e.g., query Missile(x) retrieves Missile(M1)

Forward chaining is widely used in deductive databases.



Jarrar © 2022 43

In this lecture:
q Part 1: Motivation
q Part 2: Reducing first-order to propositional inference
q Part 3: Unification

q Part 4: Generalized Modus Ponens
q Part 5: Forward chaining

q Part 6: Backward chaining

q Part 7: Resolution

Artificial Intelligence
Inference Methods in First Order Logic

Mustafa Jarrar: Lecture Notes Inference Methods in First Order Logic
Birzeit University, 2022



Jarrar © 2022 44

Backward Chaining

Proofs start with the goal query, find implications that would allow you to 
prove it, and then prove each of the antecedents in the implication, 
continuing to work “backwards” until you arrive at the axioms, which we 
know are true.

Backward-chaining deduction using GMP is complete for KBs containing 
only Horn clauses.



Jarrar © 2022 45

Backward chaining example

American(x) Ù Weapon(y) Ù Sells(x,y,z) Þ Criminal(x)

Missile(M1)Owns(Nono,M1) Ù
Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ

Weapon(x)Missile(x) Þ
Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)

Hostile(x)Ù



Jarrar © 2022 46

Backward chaining example

American(x) Ù Weapon(y)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)

Ù Sells(x,y,z) Þ Criminal(x)Hostile(z)Ù



Jarrar © 2022 47

Backward chaining example

American(x) Ù Weapon(y)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)

Ù Sells(x,y,z) Þ Criminal(x)Hostile(z)Ù



Jarrar © 2022 48

Backward chaining example

American(x) Ù Weapon(y)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)

Ù Sells(x,y,z) Þ Criminal(x)Hostile(z)Ù



Jarrar © 2022 49

Backward chaining example

American(x) Ù Weapon(y)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)

Ù Sells(x,y,z) Þ Criminal(x)Hostile(z)Ù



Jarrar © 2022 50

Backward chaining example

American(x) Ù Weapon(y)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)

Ù Sells(x,y,z) Þ Criminal(x)Hostile(z)Ù



Jarrar © 2022 51

Backward chaining example

American(x) Ù Weapon(y)
Missile(M1)Owns(Nono,M1) Ù

Missile(x) Owns(Nono,x) Sells(West,x,Nono)Ù Þ
Weapon(x)Missile(x) Þ

Enemy(x,America) Hostile(x)Þ
American(West)
Enemy(Nono,America)

Ù Sells(x,y,z) Þ Criminal(x)Hostile(z)Ù



Jarrar © 2022 52

One More Backward Chaining Example

1. Pig(y) Ù Slug(z) Þ Faster (y, z) 

2. Slimy(a) Ù Creeps(a) Þ Slug(a) 

3. Pig(Pat) 

4. Slimy(Steve) 

5. Creeps(Steve)



Jarrar © 2022 53

Properties of Backward Chaining

Depth-first recursive proof search: space is linear in size of proof.

Incomplete due to infinite loops
Þ fix by checking current goal against every goal on stack.

Inefficient due to repeated subgoals (both success and failure).
Þ fix using caching of previous results (extra space)

Widely used for logic programming.

Based on [2]



Jarrar © 2022 54

Forward  vs.  Backward Chaining

FC is data-driven
– Automatic, unconscious processing
– E.g., object recognition, routine decisions
– May do lots of work that is irrelevant to the goal
– More efficient when you want to compute all conclusions.

BC is goal-driven, better for problem-solving
– Where are my keys?  How do I get to my next class?
– Complexity of BC can be much less than linear in the size of the KB
– More efficient when you want one or a few decisions.

Based on [2]



Jarrar © 2022 55

Logic Programming

to show/solve H, show/solve B1 and … and Bn.

• Algorithm = Logic + Control
• A backward chain reasoning theorem-prover applied to declarative sentences in 

the form of implications:

If B1 and … and Bn then H

• Implications are treated as goal-reduction procedures:

where implication would be interpreted as a solution of problem H given solutions of B1 … Bn. 

• Find a solution is a proof search, which done Depth-first backward chaining.

• Because automated proof search is generally infeasible, logic programming relies on the 
programmer to ensure that inferences are generated efficiently. Also by restricting the 
underlying logic to a "well-behaved" fragment such as Horn clauses or Hereditary Harrop
formulas.



Jarrar © 2022 56

Logic Programming: Prolog

Developed by Alain Colmerauer(Marseille)  and Robert Kowalski(Edinburgh)
in 1972.

Program = set of clauses of the form
P(x)1 Ù … Ù p(xn) Þ head 

written as
head :- P(x1), … , P(xn). 

For example:
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Closed-world assumption ("negation as failure").
– alive(X) :- not dead(X).
– alive(joe) succeeds if dead(joe) fails.



Jarrar © 2022 57

Logic Programming: Prolog

mother(Nuha, Sara). 
father(Ali, Sara).
father(Ali, Dina). 
father(Said, Ali).
sibling(X, Y) :- parent(Z, X), parent(Z, Y). 
parent (X, Y) :- father(X, Y). 
parent(X, Y) :- mother (X, Y). 

?- sibling(Sara, Dina). 
Yes 

?- father(Father, Child). // enumerates all valid answers



Jarrar © 2022 58

In this lecture:
q Part 1: Motivation
q Part 2: Reducing first-order to propositional inference
q Part 3: Unification

q Part 4: Generalized Modus Ponens
q Part 5: Forward chaining
q Part 6: Backward chaining

q Part 7: Resolution

Artificial Intelligence
Inference Methods in First Order Logic

Mustafa Jarrar: Lecture Notes Inference Methods in First Order Logic
Birzeit University, 2022



Jarrar © 2022 59

Resolution in FOL

Recall: We saw that the propositional resolution is a refutationly complete inference 
procedure for Propositional Logic.

Here, we extend resolution to FOL. 

First we need to covert sentences in to CNF, for example:

"x American(x) Ù Weapon(y) Ù Sells(x,y,z) Ù Hostile(z) Þ Criminal(x)

becomes

¬American(x)  Ú ¬Weapon(y) Ú ¬Sells(x,y,z) Ú ¬Hostile(z) Ú Criminal(x)

Every sentence of first-order logic can be converted into inferentially equivalent CNF 
sentence.

The procedure for conversion to CNF is similar to the propositional case.



Jarrar © 2022 60

Conversion to CNF

• The procedure for conversion to CNF is similar to the positional case.

• For example: “Everyone who loves all animals is loved by someone”, or 

"x ["y Animal(y)  Þ Loves(x,y)]     Þ [$y Loves(y,x)]

Step 1 Eliminate Implications

"x [¬"y ¬Animal(y) Ú Loves(x,y)] Ú [$y Loves(y,x)]

Step 2. Move ¬ inwards: ¬"x p ≡ $x ¬p,  ¬ $x p ≡ "x ¬p
"x [$y ¬(¬Animal(y) Ú Loves(x,y))] Ú [$y Loves(y,x)] 
"x [$y ¬¬Animal(y) Ù ¬Loves(x,y)] Ú [$y Loves(y,x)] 
"x [$y Animal(y) Ù ¬Loves(x,y)] Ú [$y Loves(y,x)] 



Jarrar © 2022 61

Conversion to CNF contd.

Step 2. Move ¬ inwards:

"x [$y Animal(y) Ù ¬Loves(x,y)] Ú [$y Loves(y,x)] 
Step 3. Standardize variables: each quantifier should use a different one

"x [$y Animal(y) Ù ¬Loves(x,y)] Ú [$z Loves(z,x)]

Step 4. Skolemize: a more general form of existential instantiation. Each 
existential variable is replaced by a Skolem function of the enclosing universally 
quantified variables:

"x [Animal(F(x)) Ù ¬Loves(x,F(x))] Ú Loves(G(x),x)

Step 5. Drop universal quantifiers:
[Animal(F(x)) Ù ¬Loves(x,F(x))]  Ú Loves(G(x),x)

Step 6. Distribute Ú over Ù :

[Animal(F(x)) Ú Loves(G(x),x)] Ù [¬Loves(x,F(x)) Ú Loves(G(x),x)]



Jarrar © 2022 62

Resolution in FOL

The inference rule (FOL version):
l1 Ú ··· Ú lk,          m1 Ú ··· Ú mn

(l1 Ú ··· Ú li-1 Ú li+1 Ú ··· Ú lk Ú m1 Ú ··· Ú mj-1 Ú mj+1 Ú ··· Ú mn) θ

where Unify(li, ¬mj) = θ.

The two clauses are assumed to be standardized apart so that they share no 
variables. 

Apply resolution steps to CNF(KB Ù ¬α).

Let’s extend the previous example, and apply the resolution:
Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Ali loves all animals.
Either Ali or Kais killed the cat, who is an animal and its is named Foxi.
Did Kais killed the cat?



Jarrar © 2022 63

Resolution in FOL (Example)

Let’s extend the previous example, and apply the resolution:
Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Ali loves all animals.
Either Ali or Kais killed the cat, who is an animal and its is named Foxi.
Did Kais killed the cat?

In FOL: 
A.   "x ["y Animal(y)  Þ Loves(x,y)]     Þ [$y Loves(y,x)]
B.   "x,y,z [Animal(x)  Þ Kills(y,x)]     Þ ¬Loves(z,y)
C.   "x Animal(x)  Þ Loves(Ali,x)
D.   Kills (Ali,Foxi) Ú Kills(Kais, Foxi)
E.   Cat(Foxi)
F.   "x Cat(x) ÞAnimal (x)

¬G.   ¬Kills(Kais,Foxi)



Jarrar © 2022 64

Resolution in FOL (Example)

A.   "x ["y Animal(y)  Þ Loves(x,y)]     Þ [$y Loves(y,x)]
B.   "x,y,z [Animal(x)  Þ Kills(y,x)]     Þ ¬Loves(z,y)
C.   "x Animal(x)  Þ Loves(Ali,x)
D.   Kills (Ali,Foxi) Ú Kills(Kais, Foxi)
E.   Cat(Foxi)
F.   "x Cat(x) ÞAnimal (x)

¬G.   ¬Kills(Kais,Foxi)

After applying the CNF, we obtain:
A1.   Animal(F(x))  Ú Loves(G(x),x)
A2.  ¬Loves(x,F(x))  Ú Loves(G(x),x)
B1. Animal(x)    Ú ¬Loves(z,y)
B2. ¬Kills(y,x)    Ú ¬Loves(z,y)

C.   ¬Animal(x) Ú Loves(Ali,x)
D.   Kills(Ali,Foxi) Ú Kills(Kais, Foxi)
E.    Cat(Foxi)
F.   ¬Cat(x)  ÚAnimal (x)

¬G.   ¬Kills(Kais,Foxi)



Jarrar © 2022 65

A1 Animal(F(x))  Ú Loves(G(x),x)
A2 ¬Loves(x, F(x))  Ú Loves(G(x), x)
B1 Animal(x)    Ú ¬Loves(z,y)
B2 ¬Kills(y,x)    Ú ¬Loves(z,y)
C ¬Animal(x) Ú Loves(Ali, x)
D Kills(Ali, Foxi) Ú Kills(Kais, Foxi)
E Cat(Foxi)

F ¬Cat(x)  ÚAnimal (x)
G ¬Kills(Kais, Foxi)
H Animal (Foxi) E,F {x/Foxi}
I Kills(Ali, Foxi) D,G {}
J ¬Animal(F(Ali)) Ú Loves(G(Ali), Ali) A2,C {x/Ali, F(x)/x}
K Loves(G(Ali), Ali) J,A1 {F(x)/F(Ali), X/Ali}
L ¬Kills(Ali,x) B2, K z/G(Ali), y/Ali
M Kills(Kais, Foxi) D,L {x/Foxi}
N . M,G

Resolution in FOL (Example)

H Animal (Foxi) E,F {x/Foxi}
I Kills(Ali, Foxi) D,G {}
J ¬Animal(F(Ali)) Ú Loves(G(Ali), Ali) A2,C {x/Ali, F(x)/x}
K Loves(G(Ali), Ali) J,A1 {F(x)/F(Ali), X/Ali}
L ¬Kills(Ali,x) B2, K z/G(Ali), y/Ali
M Kills(Kais, Foxi) D,L {x/Foxi}
N . M,G



Jarrar © 2022 66

Resolution in FOL (Another Example)

The law says that it is a crime for an American to sell weapons to hostile 
nations.  The country Nono, an enemy of America, has some missiles, and all of 
its missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal
Assume this is represented in FOL (and in CNF):

¬ American(x)  Ú ¬Weapon(y) Ú ¬Sells(x,y,z) Ú ¬Hostile(z) Ú Criminal(x)
¬Missile(x) Ú ¬Owns(Nono,x) Ú Sells(West,x,Nano)
¬Enemy(x,America) Ú Hostile(x) 
¬Missile(x) Ú Weapon(x)
Owns(Nono,M1)
Missile(M1) 
American(West) 
Enemy(Nano,America)
¬Criminal (West)



Jarrar © 2022 67

Resolution in FOL (Another Example)

1 ¬ American(x)  Ú ¬Weapon(y) Ú ¬Sells(x,y,z) Ú ¬Hostile(z) Ú Criminal(x)
2 ¬Missile(x) Ú ¬Owns(Nono,x) Ú Sells(West,x,Nano)
3 ¬Enemy(x,America) Ú Hostile(x) 
4 ¬Missile(x) Ú Weapon(x)
5 Owns(Nono,M1)
6 Missile(M1) 
7 American(West) 
8 Enemy(Nano,America)
9 ¬Criminal (West)
10
11
12
13
14
15
16
17
18



Jarrar © 2022 68

Resolution in FOL (Another Example)

1 ¬ American(x)  Ú ¬Weapon(y) Ú ¬Sells(x,y,z) Ú ¬Hostile(z) Ú Criminal(x)
2 ¬Missile(x) Ú ¬Owns(Nono,x) Ú Sells(West,x,Nano)
3 ¬Enemy(x,America) Ú Hostile(x) 
4 ¬Missile(x) Ú Weapon(x)
5 Owns(Nono,M1)
6 Missile(M1) 
7 American(West) 
8 Enemy(Nano,America)
9 ¬Criminal (West)
10 ¬ American(West)  Ú ¬Weapon(y) Ú ¬Sells(West,y,z) Ú ¬Hostile(z) 1,9 {x/West}
11 ¬Weapon(y) Ú ¬Sells(West,y,z) Ú ¬Hostile(z) 7,10 {x/West}
12 ¬Missile(y) Ú ¬Sells(West,y,z) Ú ¬Hostile(z) 4,11 {x/y}
13 ¬Sells(West,M1,z) Ú ¬Hostile(z) 6,12 {y/M1}
14 ¬Missile(M1) Ú ¬Owns(Nono, M1) Ú ¬Hostile(Nano) 2,13 {x/M1, z/Nano}
15 ¬Owns(Nono, M1) Ú ¬Hostile(Nano) 6,14 {}
16 ¬Hostile(Nano) 5,15 {}
17 ¬Enemy(Nano,America) 3,16 {x/Nano}
18 . 8,17 {}



Jarrar © 2022 69

Resolution in FOL (Another Example)

9

10

11

12

13

14

15

16

17

18

1

7

6

2

6

4

5

3

8

Another representation (as Tree) 



Jarrar © 2022 70

Summary
• Instantiating quantifiers is typically very slow.

• Unification is much more efficient than Instantiating quantifiers.

• Generalized Modus Ponens  = Modus Ponens + unification, which is then used in 
forward/backward chaining.

• Generalized Modus Ponens is complete but semidecidable.

• Forward chaining is complete, and used in deductive databases, and Datalogs with 
polynomial time.

• Backward chaining is complete, used in logic programming, suffers from redundant 
inference and infinite loops.

• Generalized Resolution is refutation complete for sentences with CNF.

• There are no decidable inference methods for FOL.

• The exam will evaluate: What\How\Why (for all above)

• Next Lecture: Description logics are decidable logics.



Jarrar © 2022 71

References

[1] S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach Prentice Hall, 2003, Second Edition
[2] Paula Matuszek: Lecture Notes on Artificial Intelligence

http://www.csc.villanova.edu/~matuszek/fall2008/Logic.ppt

http://www.csc.villanova.edu/~matuszek/fall2008/Logic.ppt

