

Extracting Synonymsfrom Bilingual Dictionaries

Mustafa Jarrar Birzeit University

Muhammad Khalifa Cairo University **Eman Karajah**Birzeit University

Khaled ShaalanBritish University in Dubai

Lexical Resources at Birzeit University

Lexicographic Database

150 lexicons
largest Arabic-multilingual
database

Arabic Ontology

Formal Arabic Wordnet with ontologically clean content

Dialect Corpus

Annotated dialectal corpus,

each word is annotated with 16 features

Big Linguistic Data Graph

Why do we need Synonyms

The importance of synonyms is growing:

- Application areas: computational linguistics, information retrieval, question answering, and machine translation.
- Essential parts in thesauri, wordnets (Miller et al., 1990), and linguistic ontologies (Jarrar, 2021).

Notions of Synonymy

- Word embeddings: words appearing in similar contexts.
- Thesauri: closely related words.
- ❖ Wordnets: based on substitutionablity: "two expressions are synonymous in a linguistic context c if the substitution of one for the other in c does not alter the truth value" (Miller et al., 1990).
- Linguistic Ontology: equivalence relation (i.e., reflexive, symmetric, and transitive). Two terms are synonyms *iff* they have the exact same concept (i.e., refer, intentionally, to the same set of instances). Thus, $T_1 =_{C_i} T_2$. (Jarrar, 2021)

Related Work

Three main tasks related to synonyms extraction:

Wordnet construction

Using other wordnets, machine translation, corpora, emeddings, (Oliveira and Gomes, 2014), (Ercan and Haziyev, 2019), (Khodak et al., 2017) (Wu and Zhou, 2003), (Al-Tarouti et al., 2016)

Discovering new translations

Using multilingual translation graphs (Villegas et al., 2016), (Torregrosa et al., 2019)

Improving existing dictonaries

Analyzing the Ragazzini-Biagi English-Italian dictionary (Flati and Navigli, 2012)

The Algorithm – Extract Synonyms from bilingual dictionary

- *Input:* set of bilingual translation pairs (a_i, e_j)
- **Do:** Extract bilingual synonyms, of the form $\{a_1,...,a_k\} = \{e_1,...,e_l\}$.

Step 1: Extract cyclic paths

- Build undirected translation graph, from a dictionary: keep expanding until:
 - 1) The root node is found, i.e., cycle,
 - 2) No more translations are found,
 - 3) The max *k* level is reached.
- Output: Nodes participating in the same path are considered candidate synonyms, and converted into bilingual synsets, e.g., $\{a_1, a_2\} = \{e_1, e_2\}$.

Step 2: Consolidation

- Arabic synsets are consolidated (i.e., unioned) if they have the same English synsets
- Similarly, English synsets are consolidated if they have the same Arabic synsets.
- Repeated until no more consolidations are found.
- Output: the final sets of bilingual synonyms.

Example

Synsets extracted from AWN

أَدْغَال غَاب غَابَة	forest wood woods		
غأبَة	forest timber timberland woodland		
خَشَب	wood		
اَلَة نَفْخ	wood woodwind woodwind instrument		
أَحْرَاشِ أَدْغَالَ حِرْشِ دَغْلَ غابَة	jungle		
نَغْمَة	quality timber timbre tone		
نَوْعِيَّة	quality		
صَبْغَة صِبْغَة دَرَجَة لَوْن لَوْن خَفِيف	shade tincture tint tone		

Bilingual dictionary

l	ألَّة نَفْخ	wood
l		woodwind
	آلَة نَفْخ	woodwind instrument
	أَحْرَاش	jungle forest
	أدْغَال	forest
	أدْغَال	jungle
	أدْغَال	wood
	أدْغَال	woods woods
	حِرْش	jungle
	خَشَب	wood
		shade
		tincture
	خَفِيف	
		tone
		shade
		tincture
	دَرَجَة	tint
		tone
	دَغْل	jungle
	صبيغة	shade
		tincture
	صنبغة	
		tone
	صِبْغَة	shade
		tincture
	صِبْغَة	tint
	صبغه	tone
	غابَه	forest
	غابه	timber
		timberland
	غابه	woodland
	غاب	forest
	غاب	wood
	غاب	woods jungle
	غابه	jungie
	غابه غَابَة	forest
		woods
		shade tincture
		tint
l		tone
		quality
	ا الله الله الله الله الله الله الله ال	timber
	ا الله الله الله الله الله الله الله ال	timbre
	ا الله الله الله الله الله الله الله ال	tone
	عدد عدد	quality
	توحيت	quanty

Example (Step 1: Extract cyclic paths)

Translation Graph for ġābať (غَابَة), *k*=7

Build undirected translation graph, from a dictionary: keep expanding until:

- 1) The root node is found, i.e., cycle,
- 2) No more translations are found,
- 3) The max k level is reached.
- → Cyclic paths are Candidate bilingual synsets

Example (Step 1: Extract cyclic paths)

Translation Graph for ġābať (غَابَة), *k*=7

Build undirected translation graph, from a dictionary: keep expanding until:

- 1) The root node is found, i.e., cycle,
- 2) No more translations are found,
- 3) The max *k* level is reached.
- → Cyclic paths are Candidate bilingual synsets

Example (Step 1: Extract cyclic paths)

Translation Graph for ġābať (غَابَة), *k*=7

Output: nodes participating in cyclic paths are candidate bilingual synsets:

غَاب غَابَة	Forest woods	
غَاب أَدْغَال غَابَة	wood woods forest	
غَاب غَابَة	wood woods	
أَدْغَال غَابَة	wood woods	
أَدْغَال غَابَة	woods forest	
أَدْغَال غَابَة	wood forest	
غَاب غَابَة	wood forest	

duplicates are removed

(12)

Example (Step 2: Consolidation)

- Arabic synsets are consolidated (i.e., unioned) if they have the same English synsets
 - Similarly, English synsets are consolidated if they have the same Arabic synsets.
 - Repeated until no more consolidations are found.
 - Output: the final sets of bilingual synonyms.

Consolidating Arabic Using English **Candidate Synsets** غَابَة | غَاب forest | woods غَابَة | أَدْغَال | غَاب forest | woods غَابَة | أَدْغَال woods | forest غَابَة | غَاب wood | woods غَابَة | أَدْغَال | غَاب wood | woods غَانَة | أَدْغَال wood | woods غَابَة | أَدْغَال wood | forest غَابَة | أَدْغَال | غَاب wood | forest غَابَة | غَاب wood | forest غَابَة | أَدْغَال | غَاب wood | woods | forest |غَابَة | أَدْغَال | غَابِ اللهِ عَالِية | wood | woods | forest

Example (Step 2: Consolidation)

- Arabic synsets are consolidated (i.e., unioned) if they have the same English synsets
 Similarly, English synsets are consolidated if they have the same Arabic synsets.
 - Repeated until no more consolidations are found.
 - Output: the final sets of bilingual synonyms.

Consolidating English Using Arabic

no more consolidations needed

Example (Step 2: Consolidation)

- Arabic synsets are consolidated (i.e., unioned) if they have the same English synsets
- Similarly, English synsets are consolidated if they have the same Arabic synsets.
- Repeated until no more consolidations are found.
- Output: the final sets of bilingual synonyms.

Final output:

خَابَة | أَدْغَال | غَاب wood | woods | forest

Consolidation Heuristics

The consolidation is designed based on the following **heuristics**:

- 1. It is less likely for bilingual synsets to refer to multiple concepts.
- 2. It is less likely that a synset is a subset of another synset. Cases like $\{a, b, c, d\}$ and $\{a, b, c\}$ may affect our accuracy.
- 3. It is less likely for the same English synset, to be translated into multiple Arabic synsets.

Evaluation

- Evaluation of synonyms is known to be difficult (Wu et al., 2003).
- Proposed Evaluation Methodology:

^{*} Arabic Wordnet is very challenging – contains polysemous synsets.

Evaluation

Evaluation matrices:

$$Precision = \frac{\sum_{x \in extracted} \max_{y \in AWN} Cosine(x,y)}{|Extracted \ synsets|}$$

$$Recall = \frac{\sum_{y \in AWN} \max_{x \in Extracted} Cosine(x,y)}{|AWN|}$$

$$F-Measure = 2 * \frac{Precision .Recall}{Precision + Recall}$$

Results:

	Precision	Recall	F-Measure
k=6, no consolidation	62.5	91.9	74.4
k=6, with consolidation	80.5	84.2	82.3
k=8, with consolidation	64.4	84.3	73.0

Remarks: (i) no tuning or any language-specific treatment, (ii) AWN is polysemous

18

Summary

Conclusions:

- Algorithm to extract synonyms from flat bilingual dictionaries.
- No tuning, No language-specific treatments.
- Good accuracy although AWN is very polysemous.

Proposed Improvements:

- Fine tuning
- Use part-of-speech, and other morphological features
- Combine words with compatible diacritics or inflections
- Use the algorithm to enrich the Arabic Ontology

Thank You

Mustafa Jarrar mjarrar@birzeit.edu

- → Email me questions
- → Email me dictionaries to extract you the synonyms

References

- Alhafi, D., Deik, D., & Jarrar, M. (2019): Usability Evaluation of Lexicographic e-Services. In Proceedings 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications, Abu Dhabi (pp.1-7). IEEE. doi:10.1109/AICCSA47632.2019.9035226
- Daher, J., & Jarrar, M. (2010). Towards a Methodology for Building Ontologies Classify by Properties. In Proceedings 3rd Palestinian International Conference on Computer and Information Technology (PICCIT), Palestine.
- Elkateb, S., Black, W., Vossen, P., Farwell, D., Pease A., & Fellbaum, C. (2006). Arabic WordNet and the Challenges of Arabic. In Proceedings Arabic NLP/MT Conference (pp. 665-670). Emerson, G. (2020). What are the Goals of Distributional Semantics. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. ACL. (pp. 7436-7453).
- Ercan, G., & Haziyev, F. (2019). Synset expansion on translation graph for automatic wordnet construction. Information Processing & Management, 56(1), 130-150.
- Helou, M. A., Palmonari, M., & Jarrar, M. (2016). Effectiveness of Automatic Translations for Cross-Lingual Ontology Mapping. Journal of Artificial Intelligence Research, 55, 165-208. doi:10.1613/jair.4789
- Helou, M. A., Palmonari, M., & Jarrar, M., Fellbaum, F. (2014). Towards Building Lexical Ontology via Cross-Language Matching. In Proceedings 7th Conference on Global WordNet. Global WordNet Association. (pp. 346–354). EID: 2-s2.0-84859707947
- Jarrar, M., & Meersman, R. (2002). Scalability and Knowledge Reusability in Ontology Modeling. In Proceedings International Conference on Advances in Infrastructure for Electronic Business, Science, and Education on the Internet (SSGRR 2002s). Scuola Superiore G Reiss Romoli. Rome, Italy.
- Jarrar, M. (2005). Towards Methodological Principles for Ontology Engineering. Doctoral dissertation, Vrije Universiteit Brussel, Belgium.
- Jarrar, M., (2006). Towards the Notion of Gloss, and the Adoption of Linguistic Resources in Formal Ontology Engineering. In Proceedings 15th international conference on World Wide Web, (pp.497-503). ACM. doi: 10.1145/1135777.1135850
- Jarrar, M. (2011): Building A Formal Arabic Ontology (Invited Paper). In Proceedings Experts Meeting on Arabic Ontologies and Semantic Networks, Tunis. ALECSO, Arab League.
- Jarrar, M., Habash, N., Alrimawi, F., Akra, D., & Zalmout, N. (2016). Curras: An Annotated Corpus for the Palestinian Arabic Dialect. Language Resources and Evaluation, 50(219), 1-31. doi:10.1007/S10579-016-9370-7
- Jarrar, M., Zaraket, F., Asia, R., & Amayreh, H. (2018). Diacritic-based Matching of Arabic Words. ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP), 18(2), 1-21. doi: 10.1145/3242177
- Jarrar, M., & Amayreh, H. (2019). An Arabic-Multilingual Database with a Lexicographic Search Engine. In Proceedings 24th International Conference on Applications of Natural Language to Information Systems (NLDB 2019). Lecture Notes in Computer Science (vol. 11608, pp. 234-246). Springer. Doi:10.1007/978-3-030-23281-8_19
- Jarrar, M., Amayreh, H., & McCrae, J. (2019): Representing Arabic Lexicons in Lemon a Preliminary Study. In Proceedings 2nd Conference on Language, Data and Knowledge, Leipzig, Germany. CEUR-WS (vol. 2402, pp. 29-33).
- Jarrar, M. (2021). The Arabic Ontology An Arabic Wordnet with Ontologically Clean Content. Applied Ontology Journal, IOS Press.
- Johnson, D. B. (1975). Finding all the elementary circuits of a directed graph. SIAM Journal on Computing, 4(1), 77-84.
- Khodak, M., Risteski, A., Fellbaum, C., & Arora, S. (2017). Automated WordNet construction using word embeddings. In Proceedings of the 1st Workshop on Sense, Concept and Entity Representations and their Applications (pp. 12-23).
- Lam, K., Tarouti, F., & Kalita J. (2014). Automatically constructing Wordnet synsets. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 106-111).
- Miller, J., Beckwith, R., Fellbaum, C., Gross D., & Miller, K. (1990). Introduction to Wordnet: An on-line Lexical Database. International Journal of Lexicography, 3(4), 235-244.
- Oliveira, H., & Gomes, P. (2014). ECO and Onto. PT: a flexible approach for creating a Portuguese wordnet automatically. Language resources and evaluation, 48(2), 373-393.
- Tarouti, F., & Kalita, J. (2016). Enhancing automatic wordnet construction using word embeddings. In Proceedings Workshop on Multilingual and Cross-lingual Methods in NLP (pp. 30-34).
- Tiziano, F., & Navigli. R. (2012). The CQC algorithm: Cycling in graphs to semantically enrich and enhance a bilingual dictionary. Journal of Artificial Intelligence Research, 43, 135-171.

 Torregrosa, D., Mihael, A., Ahmadi, S., & McCrae, J. (2019). TIAD 2019 Shared Task: Leveraging knowledge graphs with neural machine translation for automatic multilingual dictionary generation. Translation Inference Across Dictionaries.
- Villegas, M., Melero, M., Gracia J., & Bel, N. (2016). Leveraging RDF graphs for crossing multiple bilingual dictionaries. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16) (pp. 868-876).
- Wu, H., & Zhow M. (2003). Optimizing synonym extraction using monolingual and bilingual resources. In Proceedings of the second international workshop on Paraphrasing (pp. 72-79).1