
MashQL: A Query-by-Diagram Topping SPARQL
Towards Semantic Data Mashups

Mustafa Jarrar
University of Cyprus

mjarrar@cs.ucy.ac.cy

Marios D. Dikaiakos
University of Cyprus
mdd@cs.ucy.ac.cy

ABSTRACT

This article is motivated by the importance of building web data
mashups. Building on the remarkable success of Web 2.0
mashups, and specially Yahoo Pipes, we generalize the idea of
mashups and regard the Internet as a database. Each internet data
source is seen as a table, and a mashup is seen as a query on these
tables. We assume that web data sources are represented in RDF,
and SPARQL is the query language.

We propose a query-by-diagram language called MashQL. The
goal is to allow people to build data mashups diagrammatically.
In the background, MashQL queries are translated into and
executed as SPARQL queries. The novelty of MashQL is that it
allows querying a data source without any prior understanding of
the schema or the structure of this source. Users also do not need
any knowledge about RDF/SPARQL to get started.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query formulation,
Information filtering, Retrieval models

General Terms
Languages, Human Factors, Design, Management

Keywords
Query-by-Diagram, Mashups, Query Pipelines, Semantic Web,
Data Web, Linked Data, Web 3.0, Web 2.0, RDF, SPARQL

1. Background and Motivation
As this is still an ongoing research, the latest findings can be
followed in the evolving technical article [14].

The rapid growth of Web 2.0 content has created a high demand
for making this content more reusable. Companies are competing
not only on gathering more content and contributions from
people, but also on making their content available for using inside
their own websites. Many companies such as Google, Yahoo,
Microsoft, Amazon, eBay, LinkedIn, and Wikipedia, have made
their content publicly accessible through APIs. People are
encouraged to make their own applications and profit based on

others’ content. For example, one can build a program to access
the content of the Craigslist real-state database to find apartments
in certain area, mix this content with location information from
Google Maps, and provide a new web service that was not
originally provided by either source. Another web service can be
created to find the events happening in a city, by integrating the
content of several event databases (such as Upcoming, and
Google Base), mix the results with relevant photos from Flickr,
and render the final results on Yahoo Maps. Web applications that
consume content originated from third parties and retrieved via a
public interface or API are called Mashups.

To expose the massive amount of public content and to allow
people to build mashups easily, several mashup editors have been
launched, including Google Mashup, Microsoft’s Popfly, IBM’s
Smash, Yahoo Pipes, and few others. Yahoo Pipes have received
the greatest attention thanks to their simplicity. Yahoo Pipes
allow people to combine different data sources into mashups, in a
graphical and user-friendly way without having to write code.
Yahoo Pipes generalize the idea of the mashup, providing a drag
and drop editor that … can easily fetch data from any data source
providing an RSS, Atom or RDF feed, extract the data the user
wants, combine it with data from other sources, apply various
built-in filters, and have the output directed to a web page or to
other users’ pipes” [17]. Some people consider Yahoo Pipes to be
“a milestone in the history of the internet” [17]. The most
interesting part in this, is that a user does not really need to have
technical experience to get started with Yahoo Pipes.

However, the limitation of Yahoo Pipes and other mashup editors
is that they focus only on web feeds that can be published in RSS,
Atoms, or RDF-feeds. These formats are capable of only
representing news items; they are not capable of representing data
items retrieved from the so-called Deep Web and encoded in RDF
and XML. Currently, the development of data mashups requires
extensive programming skills.

To build on the remarkable success of Web 2.0 mashups, we
propose to regard mashups as data queries. In other words, we
would like to generalize the idea of Web 2.0 mashups and regard
the Internet as a database, where each data source is seen as a
table, and a mashup is seen as a query. Querying Internet data
sources should be as easy as querying database tables. This view
is not limited to mashing up Web 2.0 feeds, but can be
generalized to data retrieval and integration scenarios.

Assuming the Internet data is represented in RDF, querying this
data can be done using SPARQL [21], the RDF query language.
SPARQL is a recent recommendation by the W3C. It allows one
to query remote RDF resources, in a manner similar to the
querying of databases using SQL. A SPARQL query is a set of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ONISW’08, October 30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-60558- 255-9 /08/10...$5.00.

graph patterns; any data triple matching these patterns is added to
the query results. An example shown in Figure 1 retrieves
Hacker’s articles published after 2000 from two web locations.
http://Site1.com/RDF

:a1 :Title “Web 2.0”
:a1 :Author “Hacker B.”
:a1 :Year 2007
:a1 :Publisher “Springer”
:a2 :Title “Web 3.0”
:a2 :Author “Smith B.”

http://Site2.com/RDF

:4 :Title “Semantic Web”
:4 :Author “Tom Lara”
:4 :PubYear 2005
:5 :Title “Web services”
:5 :Author “Bob Hacker”

Query:
PREFIX S1: <http://site1.com/rdf>
PREFIX S2: <http://site1.com/rdf>
SELECT ? ArticleTitle
FROM <http://site1.com/rdf>
FROM <http://site2.com/rdf>
WHERE {
 {{?X S1:Title ?ArticleTitle}UNION
 {?X S2:Title ?ArticleTitle}}
 {?X S1:Author ?X1} UNION {?X S2:Author ?X1}
 {?X S1:PubYear ?X2} UNION {?X S2:Year ?X2}
 FILTER regex(?X1, “^Hacker”)
 FILTER (?X2 > 2000)}

Results:
ArticleTitle
Web 2.0

Figure 1. An example of a SPARQL query.

Although RDF has been standardized by W3C since 1999 ˗to play
the role of a semantically enabled metadata model˗ only recently
has it received a special attention from leading companies. For
example, Yahoo announced that the next generation of their
search engine will understand web semantics through RDF [27].
Several models of RDF (such as RDFa and eRDF, microformats,
and standard vocabularies) will also be supported by Yahoo.
MySpace announced that they are adopting the semantic web
technology and that they will use RDF for profile and data
portability [16]. Upcoming is already publishing their content in
microformats and RDFa (which is a new way of annotating
XHTML web pages with RDF triples). Furthermore, Oracle 11g
supports RDF storage and query. Querying RDF in Oracle is done
in a SPARQL-like style. As shown by Oracle in [4], this
implementation is scalable. For example, a query with a medium
size complexity over 80 Million RDF triples (5.2 GB) takes one
or few seconds. This support from the leading companies is
indeed accelerating the adoption of RDF as the main metadata
language. Therefore, we believe that RDF and SPARQL mashups
will be an important trend of web applications in the near future.

The problem is that building data mashups requires high
programming skills and intensive efforts. There is no yet an
approach to easy access and expose structured data on the web.
In the case of using RDF and SPARQL, this challenge is
complicated even for some IT people [9]. Understanding the
structure of an RDF source (in order to formulate a query about it)
is a challenging task indeed. Before formulating a query about an
RDF source, one needs to know how the data is structured, and
what are the labels of the data elements, i.e., the schema. The
problem is that RDF data may come without a schema (as shown
in Figure 1), or the schema is mixed up with the data, which is
difficult to understand. People typically go over the RDF data
manually, read, and mentally build a schematic view of data, as
well as remember the names of the data elements. This scenario of
understanding RDF (which we call eye parsing) can only work
with toy examples. However, in case of large RDF sources with
diverse content, how you would manage to understand the data
structure, inter-relationships, and the unwieldy labels of the data
elements. Compared with databases, writing an SQL query
requires also that the writer understands the underlying database
schema; however, there is no database without a schema and such
schemas are typically small and manageable. Formulating
structured queries in open environments, where data sources may
come without schemes or these schemes are very difficult to eye-

parse, is a hard challenge, and thus may hamper the whole utility
of RDF and SPARQL. In addition, RDF and SPARQL are
unwieldy technical languages, and their intuition ˗of representing
knowledge in directed labeled graphs and graph patterns [19,20]˗
is not familiar to most IT people. The lessons learned from Yahoo
Pipes show that the simplicity of building feed mashups is the key
factor behind its success.

This article proposes presents our early research findings on
developing data mashups intuitively. We propose a query-by-
diagram language called MashQL, which uses SPARQL as a
backend query language. It encapsulates the complexity of
SPARQL and allows people to query RDF sources intuitively (see
Figure 2). In the background, MashQL queries are translated into
and executed as SPARQL queries. The novelty of MashQL is that
it allows one to formulate a query over a data source(s) without
any prior knowledge about its schema. MashQL does not also
assume any knowledge about RDF or SPARQL to get started.
Hence, the average internet user can use MashQL to develop data
mashups easily.

The next section overviews the old and new approaches to query
formulation. Section 3 presents the intuitions and the basics of
MashQL. In section 4 we present three use cases, and in section 5
we discuss the lessons learnt from these cases. Section 6 discusses
the implementation issues. Our conclusions and future directions
are presented in section 7.

2. Related Work and Contributions
In this section we overview different approaches to query
formulation, focusing on the usability of these approaches for
non-IT people.

Query-by-form is an old practice; users can fill in and submit a
form, where all fields in this form are seen as query variables.
This way of data access is simple; however, it is neither flexible
nor expressive. For each query, a form needs to be developed, and
any change to the query implies changing the form.

Query-by-example allows users to formulate their queries as
filling a table [28]. The names of the queried relations and fields
are selected first; then users can enter their keywords. Although
this approach is claimed to be easy to learn by non-IT people,
however, it was not used by such people. In our opinion, this is
because users are still required to understand the relational
structure, which is difficult for non-IT people.

Conceptual query languages are an alternative approach to
query formulation. As many databases are modeled conceptually
using EER or ORM diagrams, one can also query these databases
starting from those diagrams. Users can select some concepts
from a given conceptual diagram, and their selection is
automatically translated into SQL queries. This scenario was
implemented by several EER-based [5,18] and ORM-based [7,8]
approaches. ConQuer [3] is another ORM-based language, but it
has some nice features indeed. Instead of starting from a
conceptual diagram that may not exist, it starts from the logical
schema and converts it into lists of concepts and relations. Users
can then drag-drop from these lists to formulate their queries.
What users drag-drop become a tree of facts, and this tree is seen
as a query. Although this drag-drop scenario is not simple,

however structuring a query as a tree-pattern looks intuitive
indeed.

Although conceptual query languages received a considerable
amount of research, but none of these languages was used in
practice. In our opinion, this is because formulating a query
starting from a conceptual diagram is still a difficult task for non-
IT people. In addition, the need to query databases at the
conceptual level is not an important issue, because a database is a
single enterprise’s project, and the world of its developers and
users is closed. In open worlds such as the Web, structured data is
being created and consumed by different users, and the need for a
mechanism to mash up and consume this distributed and
heterogeneous data easily is a real demand.

In the recent years, we are observing some advanced techniques
start to emerge for filtering streams of information, which we call
Query-by-Filter. For example, Yahoo Pipes does not support any
query language; however, the Filter module has some general
concepts, which allow people to permit/block items according to a
certain set of conditions. One may block any web feed that
contains (/doesn’t contain/the same as/ LessThan…) a certain
keyword in the title of a feed. This way of expressing filters is
also used in most email applications for filtering and organizing
emails. Google Base allows one to search information in a
mixture of query-by-form and query-by-filter manner. Although
the flexibility and expressivity of such filters are very limited, if
compared to query languages; however, this approach is well
understood and being successfully used by non-IT people.

Furthermore, the need for simplified query techniques is receiving
a high importance within the semantic web community. Most
approaches are proposing to Visualize Triple Patterns, see
GRQL [2], iSPARQL [10], NITELIGHT [23] and RDFAuthor
[22]. The idea is to represent triple patterns graphically as ellipses
connected with arrows, so that one would need less programming
skills to formulate a query. Other semantic web approaches are
suggesting to use visual scripting languages, such as
SPARQLMotion [25] and Deri Pipes [26]. Their idea is to allow
users to use visual box and lines, however, queries are written in a
textual form. We found all of these approaches assume advanced
knowledge of RDF and SPARQL, thus cannot be used by the
casual user.

Please refer to [15] about a usability study on what casual users
prefer, which concludes that a query language should be close to
natural language and graphically intuitive.

MashQL is a generalization and extension to many aspects of the
above approaches, yielding a formal and expressive but yet
simple, query-by-diagram language. MashQL inherits some
aspects from conceptual queries and query-by-filters. Similar to
ConQuer (and somehow LISA-D), MashQL queries are
represented as trees, which makes queries easy to understand.
Tree branches in MashQL are similar to filtering rules, which
makes query formulation as simple as building filters. The look-
and-feel of the MashQL is inspired from Yahoo Pipes.

The difference between MashQL and the query-by-filter
approaches is that MashQL is a general language for querying any
structured data, not only filtering a specific structure of a data
stream, as in Yahoo Pipes. In addition, unlike conceptual queries
that start from a conceptual or logical database schema, MashQL

is fundamentally different as it assumes that it is not necessary for
the queried data sources to have a schema at all.

3. The Basics of MashQL
The goal of MashQL it to allow people to query and mash up web
data sources easily. In the background, MashQL queries are
automatically translated into and executed as SPARQL queries.
People can build data mashups without having to know the
underlying structure or technical details of the data sources.
Figure 2 shows a MashQL query that is equivalent to the
SPARQL query in Figure 1. The first module specifies the query
input, while the second MashQL module specifies the query body.
The output of this query can be piped into a third module (not
shown here), which renders the results into a certain format (such
as HTML or XML), or as RDF input to other MashQL queries.

Figure 2. An example of MashQL query.

The intuition of MashQL is described as the following: Each
MashQL query is seen as a tree. The root of this tree is called the
query subject (e.g. Article), which is the subject matter being
inquired. Each branch of the tree is called a query restriction and
is used to restrict a certain property of the query subject. Branches
can be expanded to allow sub trees (called query paths), which
enable one to navigate the underlying data sources (see Figure 3).
This query retrieves the recent articles from Cyprus, i.e. every
article that is written by an author, who has an address, this
address has a country called Cyprus, and the article is published
after 2000.

PREFIX …
SELECT ?ArticleTitle, ?Institute
FROM …
WHERE {
 ?Article :Title ?ArticleTitle
 ?Article :Author ?X1
 ?X1 :Address ?X2
 ?X2 :Country ?X3
 OPTIONAL{?X1 :Affiliation ?Institute}
 ?Article :Year ?X4
 FILTER (?X3 = “Cyprus”)
 FILTER (?X4 > 2000)}

Figure 3. Query paths (/sub trees) in MashQL.
Formulating MashQL queries is designed to be an interactive
process, in which the complexity and the responsibility of
understanding data structures are moved from the user to the
query editor. Users only use drop-down lists to express their
queries. While interacting with the query editor, the editor
performs some background queries and dynamically generates
these lists. In what follows, we describe these background queries.

After a user selects the dataset in the RDF Input module,
formulating a MashQL query is done by first selecting the query

subject, which is offered through a drop-down list generated from
(the union of all subject and object identifiers in the dataset), no
matter whether an identifier represents an instance or a type.
Users can also choose not to select from the list and introduce
their own subject label. In this case, the subject is seen as a
variable and displayed in italic, which means any data item1.

To add a restriction on the chosen subject, a (list of the possible
properties for this subject) is dynamically generated. For example,
given the data in Figure 1, if a user chooses a1 as a subject, the
list of the a1’s properties will be {Title, Author, Publisher, Year};
if the subject is a variable, the list will be the set of all properties
in the dataset. Users can also choose whether this property is
required, optional, or unbound. If a property is prefixed with
“maybe” this property is considered optional (see Figure 3), if it is
prefixed with “without” it is considered unbound, and if it is not
prefixed then it is required.

Users may then choose an object filter such as (Equals, Contains,
Doesn’t contain, OneOf, Between, MoreThan, Not, etc.), or may
select an object identifier from a list, which is generated from (the
set of the possible objects, depending on the previously chosen
subject and predicate). Furthermore, users can also click on the
restriction icon to expand the tree, i.e., declare a query path as
shown in Figure 3. The symbol can be used before subject,
property, or object variables to indicate that this variable will be
returned in the results. For example, the results of the above query
are a one-column table that contains the list of all retrieved titles.

MashQL supports several other constructs that are not presented
in this paper, such as union (denoted as “\”) between objects,
predicates, subjects, and queries; as well as, a type operator (“a”),
reverse predicates, OneOf, datatype and language tags, and many
object filters. The full syntax of MashQL, formal semantics, and
the mapping into SPARQL are being completed and can be found
in our evolving technical report [14].

The trade-off between expressivity and simplicity in MashQL is
achieved by making technical variables and namespaces to be
implicit, and through the tree structure of MashQL queries, which
is close to the intuition people use in their natural language
communication. For example, the query path shown in Figure 3
means, retrieve the article that has an Author x1, and x1 has an
address x2, and x2 has a country x4, and x4 equals “Cyprus”.
Furthermore, suppose you would like to ask; “Give me the list of
all stores that sell parts of the iPhone mobile, and that are located
in Brussels”; or, “Which cinemas are located in Brussels, offer a
movie called ‘Fahrenheit’ and will be played between 20:00 and
23:00”. Apart from some terms (such as: give me the list of all,
which, who, that are), all of these inquiries can be directly
converted into MashQL queries. Hence, MashQL can be used by
both the average internet users and IT professionals to create data
mashups intuitively and as expressive as SPARQL.

Remark: MashQL supports some novel interface issues that are
lengthy or difficult to illustrate here, especially the edit-and-
verbalize modes. For example, when a user clicks on a restriction,
it gets the editing mode and all other restrictions get the verbalize
mode (i.e., all boxes and lists are made invisible, but the

1 The default value for a subject (in case a user does not select

from the offered list or introduce his own label) is the variable
“Everything”.

verbalization of their content is generated and displayed instead,
as shown in all figures). This does not only make the query
formulation process even easier and joyful, but more importantly,
from a methodology viewpoint it makes the readability of the
queries closer to natural language, by which users are guided to
achieve what they intended to query. Similarly, when two
predicates originating from different sources have the same label,
their namespaces are hidden and one of them is displayed, unless
the user decided not so.

Furthermore, similar to the idea of pipelining web feeds in Yahoo
Pipes, or pipelining software processes in Unix, MashQL allows
queries to be pipelined. The idea is that the output of a query is
used as input to another (see Figure 4). In this way, people who
develop data mashups can reuse the output of others’ mashups.
For example, person A builds a mashup to query all articles
published by Springer (Q1); Person B builds a mashup to query all
articles published by ACM (Q2); Person C filters the results of Q1
and Q2 to get only the articles published in 1997 and by Italian
authors. Query pipelining is a built-in concept in MashQL, not
only as a user interface issue. As Figure 4 shows, depending on
the structure of the queries and how they connect to each other,
MashQL generates either a SELECT or a CONSTRUCT statement.

4. Use Cases
To demonstrate the utility of MashQL in solving some real-life
problems, and to learn what are the important constructs to
include or exclude, we developed a number of use cases
corresponding to “real-life” application scenarios [14]. Here, we
briefly illustrate three scenarios. In the section, we discuss the
lessons learnt from these cases.

4.1 Use case: Job Seeking
Bob has a PhD in bioinformatics. He is looking for a full-time,
well paid, and research-oriented job in some European countries.
He spent an enormous amount of time searching different job
portals, each time trying many keywords and filters. Instead, Bob
used MashQL to find the job that meets his specific preferences.
Figure 4 shows Bob’s queries on Google Base and on Jobs.ac.uk.
First, he visited Google Base and performed a keyword search
(bioinformatics OR "computational biology" OR "systems biology"
OR e-health); he copied the link of the retrieved results from
Google into the RDFInput module2; and then created a MashQL
query on these results. He performed a similar task to query
Jobs.ac.uk. The third MashQL module in Figure 4, mixes the
results of the above two queries and filters them based on location
preferences (provided in the UserInput module). The SPRQAL
equivalent to Bob’s MashQL query is shown in Figure 5.
Notice that we translate MashQL queries that pipe each other
using "CONSTRUCT *", which is not part of the current SPARQL
standard. However, this construct is one of the top proposed
extensions to SPARQL (see [24]). Otherwise, if this construct will
not be included in the next version of SPARQL, our translation
will return every triple involved in the query patterns.

2 We assume that both Google and Jobs.ac.uk render their search results in

RDFa (i.e. the RDF triples are embedded in HTML), as many companies
started to do nowadays. However, Bob can also use a third party’s
service (e.g. triplify.org) to extract triples from HTML pages.

Figure 4. Bob’s MashQL Queries.

…
CONSTRUCT *
WHERE {
{{?Job :Category :Health}UNION
{?Job :Category :Medicine}}
?Job :Role ?X1.
?Job :Salary ?X2.
?X2 :Currency :UPK.
?X2 :Minimun ?X3.
FILTER(?X1=“Research” ||
 ?X1=”Academic”)
FILTER (?X3 > 50000) }

…
CONSTRUCT *
WHERE{?Job :JobIndustry ?X1.
 ?Job :Type ?X2.
 ?Job :Currency ?X3.
 ?Job :Salary ?X4.
FILTER(?X1=“Education”||
 ?X1=“HealthCare”)
FILTER(?X2=“Full-Time”||
 ?X2=“Fulltime”)||
 ?X2=“Contract”)
FILTER(?X3=“^Euro”||
 ?X3=“^€”)
FILTER(?X4>=75000||
 ?X4<=120000)}

…
SELECT ?Job ?Firm
WHERE {?Job :Location ?X1. ?X1 :Country ?X2.
 FILTER (?X2=“Italy”||?X2=“Spain”)||
 ?X2=“Greece”||?X2=“Cyprus”)}
 OPTIONAL{{?job :Organization ?Firm}UNION
 {?job :Employer ?Firm}}

Figure 5. The SPARQL translation of the MashQL queries in
Figure 4.

4.2 Use case: eHealth Research
Alice is a PhD student in biology, she wants to search an online
eHealth database, to know what causes prostate cancer most.
First, she wrote a simple query to find all patients that certainly
have a prostate cancer i.e. every person whose prostate biopsy test
is positive. Suppose she found 3500 cases. Then she started to add
and remove restrictions to this query. Her goal was to reach the
closest number to 3500, with a maximum number of relevant
restrictions. Alice found that the restrictions shown in Figure 6 are
the indicators for 90% of the people who had cancer.

Figure 6. Alice’s research query.

4.3 Use case: Car Rental

This use case demonstrates a different and an offline use of
MashQL for declaring business rules in an auditing application.
The government usually audits whether car rental companies
comply with the local regulations. All companies have to open
their databases for auditing. The auditors visit companies
irregularly, and run a set of queries (called auditing queries) to
discover violations. As each company has different database
design and vocabulary, the auditors have to analyze and
understand the database schema, and write the auditing queries
each time from scratch. The government decided to introduce the
new semantic technology. They built a wrapper that connects to
any database and automatically converts this into one large RDF
table, this takes few minutes to complete. See a sample of such
data in Figure 7. The auditors then use the MashQL editor to write
and execute their set of auditing queries. Figure 8 shows three
examples of such auditing queries.
The first query checks whether there is a car rental that occurred
during a period that this car was not insured. The result was
{<:Rental1>} as the car was not insured during the first 3 days of
the rental. The second query checks whether there is a car rental
occurred for a customer who does not have a driving license; the
result is empty. The third query checks whether there is a car
rental occurred for a customer whose driving license does not
authorize him to drive that type of car ; the result is {<:Rental2>},
because the license of Customer2 is B, while the category of the
car he rented requires license C or higher.

<http://localhost/Company1>
:Vehicle1 rdf:type :Vehicle
:Vehicle1 :PlateNumber “ABC323”
:Vehicle1 :VehicleCategory “C”
:Vehicle1 :Insurance :InsContract1
:Vehicle2 rdf:type :Vehicle
:Vehicle2 :PlateNumber “BDC987”
:Vehicle2 :VehicleCategory “B”
:Vehicle2 :Insurance :InsContract2
:InsContract1 rdf:type :VehicleInsurance
:InsContract1 :InsuranceType “Full”
:InsContract1 :InsuranceSDate 23-11-2007
:InsContract1 :InsuranceEDate 22-11-2008
:InsContract2 rdf:type :VehicleInsurance
:InsContract2 :InsuranceType “Full”
:InsContract2 :InsuranceSDate 10-04-2007
:InsContract2 :InsuranceEDate 11-04-2008
:Customer1 rdf:type :Customer
:Customer1 :CustomerID “6783”

:Customer1 :LicenseNumber “8723”
:Customer1 :LicenseType “B”
:Customer2 rdf:type :Customer
:Customer2 :CustomerID “3456”
:Customer2 :LicenseNumber “8723”
:Customer2:LicenseType “B”
:Rental1 rdf:type :Rental
:Rental1 :Vehicle :Vehicle2
:Rental1 :Customer :Customer1
:Rental1 :StartOn 20-11-2007
:Rental1 :EndsOn 25-11-2007
:Rental2 rdf:type :Rental
:Rental2 :Vehicle :Vehicle1
:Rental2 :Customer :Customer2
:Rental2 :StartsOn 15-02-2008
:Rental2 :EndsOn 16-02-2008

Figure 7. Sample of RDF for a car rental company.

(a)

(b)

(c)

Figure 8. Examples of Auditing Queries.

5. Discussion and Lessons Learnt

5.1 Coverage and Elegance
We have learned from these use cases that some MashQL
constructs (especially the OneOf, Between, and the Union “\”) are
useful to have in the language, because they were used in most
cases. On the other hand, we found that some important constructs
are missing, specially the aggregation functions. Thus, we decided
to extend our approach and use Oracle’s SPARQL, instead of
only the W3C’s SPARQL standard. Oracle’s SPARQL inherits all
functionalities of SQL, including aggregation functions, grouping,
among others.

All SPARQL constructs are somehow supported by MashQL; and
all MashQL constructs can be easily expressed in SPARQL. Some
constructs are mapped directly, but some other constructs require
lengthy emulation. This shows indeed that MashQL constructs are
more concise and intuitive than SPARQL. For example, SPARQL
query scripts containing the union operator require almost twice
the size than their MashQL equivalents. The OneOf operator,
which is represented as a set of constants in MashQL, is emulated
by long SPARQL filters.

The main limitation of MashQL’s elegancy is that in case an RDF
data source contains unwieldy terms, this may yield inelegant
MashQL queries. For example, suppose you want to query this
dataset: {<:C1,:eno,AB12345> <:C1,:eid,987665> <:C1,:efname,Bob>}. The
technical labels of predicates ˗which are difficult to understand by
people that did not create them˗ may yield inelegant or technical
queries. However, we believe that if an RDF source is made
public for external users, predicate vocabularies will be clear and
mostly based on standard RDF vocabularies (such as Dublin Core,
FOAF, GeoRSS, etc.), or based on a shared ontology [11].
Furthermore, the use cases also taught us that representing queries
visually (as modules connected through pipes) helps non-IT users
to visualize and understand the information flow in their queries.
In other words, this visualization facilitates users to organize and
modularize their queries at a high level of abstraction. For
example, one may notice that Bob can create only one query and
get the same results of the three queries shown in Figure 4.
However, instead of building such a complex query, Bob
preferred to modularize his queries in this way, as it is easier for
him to build and maintain. In short, modularizing queries and
piping them in this way is easier to abstract for non-IT experts.

5.2 Performance and Complexity
Suppose one asks how long it takes to execute the query shown in
Figure 2. The answer is: exactly the same time the query shown in
Figure 1 would take, which is its SPARQL translation. In other
words, although users build and view their mashups using
MashQL, but MashQL queries are not executed themselves, their
SPARQL translation that is executed. The time complexity of
translating a MashQL query into SPARQL is neglectable as it
takes less than a second. Thus, the complexity of executing a
MashQL query is bounded to the complexity and performance of
its backend query language, which is SPARQL in our case.

Executing a SPARQL query over a huge RDF dataset is indeed
very fast. As shown by Oracle in [4] and AllegroGraph [1], a
query with a medium size complexity over hundreds of millions
of triples takes only one or few seconds. Oracle has proven indeed

that both querying and bulk-loading of RDF data is scalable [4,6].
However, a problem may arise in case of querying remote RDF
sources. When a user defines a query over a set of remote sources,
as shown in Figure 1, these sources must be transferred and stored
locally before executing the query [26]. Hence, the time required
to execute a query depends mainly on the amount of the
transferred data and the transferring bandwidth. The performance
of using SPARQL (and thus MashQL) to mash up large remote
sources might be unacceptable in case these sources are very
large. However, in most application scenarios in practice (see the
use cases in [14]), people would build mashups on acceptable
sizes of data sources. For example, querying HTML pages that
contain RDFa, small RDF files, or retrieved results from online
RDF stores that support SPARQL endpoints, among many other
scenarios. As this topic is related to the performance of SPARQL,
rather than MashQL, we tackle it separately; see the future work
section.

Furthermore, recall that when formulating a MashQL query, there
are some background queries that are used to generate drop-down
lists (see section 3). These queries should be fast enough to allow
efficient query formulation. For example, after specifying the
RDF sources to be queried, users can select the query subject,
which is offered through a drop-down list that is dynamically
generated from the union of the subject and object identifiers in
the data sources. Similarly, predicates and objects are selected
from dynamic lists (see section 3). In general, for a query with n
restrictions, there are at most (2n+1) queries that will be
performed in the background, i.e. during the query formulation
process. The performance of these queries should be fast: as soon
as a user selects from a list and moves the mouse to select from
another list, this list should be ready. As discussed above, in case
the queried sources are stored locally, the performance of the
background queries is indeed fast, as each query takes only one
second. However, in case of remote input sources, these sources
need to be transferred and stored locally, before the query
formulation process starts. Therefore, query formulation in case
of large remote sources might be unacceptable. In section 7, we
shall discuss our future plans to overcome this challenge, which a
SPARQL rather than a MashQL issue.

6. Implementation Specification
We have developed a MashQL markup based on XML. The goal
of this markup is to serialize MashQL pipes in a textual and
interchangeable format. Hence, one would save, reload, process,
and exchange MashQL queries easily. Figure 9 illustrates the
markup of the MashQL pipes shown in Figure 2, which is also
equivalent to the SPARQL query in Figure 1. As shown in this
figure, the markup of the MashQL pipe consists of three main
elements: Meta, RDFInput, and Query. The Meta is used to
represent metadata about the pipe itself, and the RDFInput
represents the sources in an RDFInput module. The Query
consists of three sections: Header, Body, and Footer. While the
Body serializes mainly query conditions, the Header serializes the
input sources, prefixes, and some metadata about the query. The
result modifiers, ordering preferences, and output styles are
serialized in the Footer part. These parameters are usually not
displayed in the main window of a MashQL query, but can be
configured as “query options”. The XML schema of the complete
MashQL markup is presented and discussed in [14]. This schema

is used as the technical specification, (i.e. the reference grammar)
for MashQL. Any markup of a MashQL pipe should be valid
according to this XML-Schema.

Furthermore, we have also developed a MashQL-to-SPARQL
translator, which is a java program. This translator takes the
markup of a MashQL query as input and generates its SPARQL
equivalence. When a user debugs or executes a MashQL query,
the query editor calls the translator to generate its SPARQL
equivalent on the fly, and then executes it as a SPARQL query.
More details about the translator and other implementation issues
can be found also in [14].

<Pipe ID="0" xsi:noNamespaceSchemaLocation="MashQL.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Meta Content="Title" Name="Bob's Citations"/><Meta Content="Creator" Name=" Hacker"/>

 <RDFInput ID="1" X1="10" Y1="10" X2="50" Y2="110">
 <Source Order="1">
 <Ref>http://www.site1.com/rdf</Ref><LastUpload>2008-06-02T09:30:47.0Z </LastUpload>
 </Source>
 <Source Order="2">
 <Ref>http://www.site2.com/rdf</Ref><LastUpload>2008-06-02T09:32:47.0Z </LastUpload>
 </Source>
 </RDFInput>

 <Query ID="0" X1="0" X2="0" Y1="xs:integer" Y2="0" InputModule="1">
 <Header> <Meta Content="Title" Name=""/>
<Prefix Tag="S1" Ref="http://www.site1.com/ "/><Prefix Tag="S2" Ref="http://www.site2.com/ "/>
 </Header>

 <Body>
 <Subject Name="Article" Type="Variable" isRetrun="false"/>
 <Restriction Prefix="">
 <Predicate Name="S1:Title" Type="Identifier" isReturn="false" />
 <Predicate Name="S2:Title" Type="Identifier" isReturn="false" />
 <Object Name="ArticleTitle" Type="Variable" isReturn="true" /> </Restriction>
 <Restriction Prefix="">
 <Predicate Name="S1:Author" Type="Identifier" isReturn="false" />
 <Predicate Name="S2:Author" Type="Identifier" isReturn="false" />
 <Object Name="X1" Type="Variable" isReturn="false" />
 <ObjectFilter xsi:type="Contains" Value="^Hacker" Type="Variable" Language=""
DataType="" />
 </Restriction>
 <Restriction Prefix="">
 <Predicate Name="S2;Year" Type="Identifier" isReturn="false" />
 <Predicate Name="S2:PubYear" Type="Identifier" isReturn="false" />
 <Object Name="X2" Type="Variable" isReturn="false" />
 <ObjectFilter xsi:type="MoreThan" Value="2000" Type="Constant" DataType="" />
 </Restriction>
 </Body>

 <Footer>
 <Order><Variable Name="" Direction=""/></Order>
 <Modifier Limit="" Offset="" Duplication=""/>
 <Output Stylesheet="" Format=""/>
 </Footer>
 </Query>
</Pipe>

Figure 9. MashQL Markup in XML.

MashQL can generally be implemented by online mashup editors
(similar to or as an extension to Yahoo Pipes), or as a query
interface for online RDF datasets (e.g., Freebase, DBpedia, or
DBLP). It can be implemented also as a query plug-in to offline
RDF stores (e.g., AllegroGraph or Oracle); or it can be used to
filter metadata streams in, e.g., iTunes, jobs.ac.uk, eBay, or
Upcoming.

Although this article focuses on using MashQL for querying RDF
data sources using SPARQL, however, MashQL can be similarly
used for querying relational databases or XML documents. In this
case, one needs to either develop a stylesheet that translates
MashQL markups into SQL, XQuery, or any preferred backend
query language; or maybe map the dataset (e.g. using views) into
an RDF-like model.

As we have discussed earlier, our implementation prototype does
not only generate the W3C’s standard SPARQL, but being

extended to also generate Oracle’s SPARQL [4], as it supports
aggregation and grouping.

7. Conclusions and Future Work
In this article, we have proposed a query-by-diagram language in
order to allow building data mashups intuitively. Not only
MashQL is user-friendly for non-IT people, but also it allows
querying (and navigating) RDF data sources without having to
know the schema or the technical details of these sources. We
have demonstrated the use of MashQL using different use cases,
and discussed the lessons learned regarding the elegancy,
coverage, and performance of MashQL. As we have discussed
and demonstrated, MashQL is not merely an interface of
SPARQL. Although it can be used as such, but it can be used also
as a general query language by its own. In addition, MashQL can
be used also for filtering metadata streams. In this article, we
focus on using the W3C’s SPARQL standard as the backend
query language.

However, we plan to also translate MashQL into Oracle’s
SPARQL. This translation is being implemented as an AJAX
web-based plug-in to Oracle 11g. Choosing Oracle is not only
because of its scalability, but also because Oracle’s SPARQL
inherits all functionalities of SQL, including aggregation and
grouping functions, which are not supported in the standard
SPARQL. Furthermore, as querying large remote sources using
SPARQL matters (see our discussion in the section 5.2), we are
developing a framework called Semantic Web Pipes. This
framework extends MashQL and allows caching remote sources,
materializing query result, distributing queries, publishing, and
discovery of queries, among other issues. Last but yet important,
we also plan to extract schemas from RDF sources and depict
these schemas using ORM and based on [12,13], which would be
an extra offline support for MashQL users.

The complete syntax of MashQL, its formal semantics,
implementation, and evaluation, are being finalized and can be
followed in the evolving technical article [14].

Acknowledgement
We are indebted to George Pallis for his valuable comments and
feedback on the early drafts of this paper. This research is
partially supported by the SEARCHiN project (FP6-042467,
Marie Curie Actions).

References
[1] AllegroGraph http://www.franz.com/products/allegrograph

(May 2008)
[2] Athanasis, N., Christophides, V., and Kotzinos, D.:

Generating On the Fly Queries for the Semantic Web. In
Proceedings of the ISWC. LNCS, Springer. 2004.

[3] Bloesch, A. and Halpin, T.: Conceptual Queries using
ConQuer–II. In Proceedings of the ER. LNCS, Springer.
1997.

[4] Chong, E., Das, S., Eadon, G., and Srinivasan, J.: An
efficient SQL-based RDF querying scheme. In Proceedings
of VLDB. LNCS, Springer. 2005

[5] Czejdo, B., Elmasri, R., Rusinkiewicz, M., and Embley, D.:
An algebraic language for graphical query formulation
using an EER model. In Proceedings of the ACM
Conference on Computer Science. 1987.

[6] Das, S., Chong, E., Wu, Z., Annamalai, M., and Srinivasan,
J.: A Scalable Scheme for Bulk Loading Large RDF Graphs
into Oracle. In Proceedings of the ICDE. ACM. 2008.

[7] De Troyer, O., Meersman, R., and Verlinden, P.: RIDL on
the CRIS Case: A Workbench for NIAM. In Proceedings of
the IFIP.8.1 Conference. 1988.

[8] Hofstede, A., Proper, H., and van der Weide, T.: Computer
Supported Query Formulation in an Evolving Context. In
Proceedings of the ADC. 1995.

[9] Iskold, A.: Semantic Web: Difficulties with the Classic
Approach. The ReadWriteWeb magazine. Sep. 19, 2007

[10] iSPARQL http://demo.openlinksw.com/isparql (May 2008)
[11] Jarrar, M.: Towards Methodological Principles for

Ontology Engineering. PhD Thesis. Vrije Universiteit
Brussel. May 2005

[12] Jarrar, M.: Towards Automated Reasoning on ORM
Schemes -Mapping ORM into the DLRidf Description
Logic. In Proceedings of the ER. LNCS, Springer. 2007.

[13] Jarrar, M.: Mapping ORM into the SHOIN/OWL
Description Logic -Towards a Methodological and
Expressive Graphical Notation for Ontology Engineering.
In Proceedings of the OTM’07 Workshops. LNCS,
Springer. 2007

[14] Jarrar, M., and Dikaiakos, M. D.: MashQL: A Query-By-
Diagram Language for Data Mashups. Technical Article
(No. TAR200805). University of Cyprus, 2008
http://www.jarrar.info/publications/JD08.pdf

[15] Kaufmann, E., and Bernstein, A.: How Useful Are Natural
Language Interfaces to the Semantic Web for Casual End-
Users. In Proceedings of the ISWC. LNCS, Springer. 2007.

[16] O'Donoghue, J.: MySpace joins the 'semantic' web. The
Web User online magazine. May 9, 2008

[17] O'Reilly, T.: http://radar.oreilly.com/archives/
2007/02/pipes-and-filters-for-the-inte.html (May 2008)

[18] Parent, C., and Spaccapietra, S.: About Complex Entities,
Complex Objects and Object-Oriented Data Models. In
Proceedings of the IFIP 8.1 conference. 1989

[19] Perez, J., Arenas, M., and Gutierrez, C.: Semantics and
Complexity of SPARQL. In Proceedings of the ISWC.
LNCS, Springer. 2006

[20] Polleres, A.: From SPARQL to rules (and back). In
proceedings of the WWW. ACM. 2007

[21] Prud’hommeaux, E. (ed.): SPARQL Query Language for
RDF, W3C Working Draft, 4 Oct. 2006

[22] RFAuthor (May 2008)
http://rdfweb.org/people/damian/2001/10/RDFAuthor

[23] Russell, A., Smart, R., Braines, D., and Shadbolt, R.:
NITELIGHT: A Graphical Tool for Semantic Query
Construction. In Proceedings of the Semantic Web User
Interaction Workshop (SWUI). 2008.

[24] SPARQL Extensions (March 2008)
http://esw.w3.org/topic/SPARQL/Extensions?highlight=%2
8sparql%29

[25] SPARQLMotion
http://www.topquadrant.com/sparqlmotion (May 2008)

[26] Tummarello, G., Polleres, A., and Morbidoni, C.: Who the
FOAF knows Alice? A needed step toward Semantic Web
Pipes. In Proceedings of the ISWC Workshops. 2007

[27] Yahoo Blog (Mar.08) http://www.ysearchblog.com/
archives/ 000527.html

[28] Zloof, M.: Query-by-Example: A Data Base Language.
IBM Systems Journal, 16(4). 1977

