
DogmaModeler – a tool for ontology specification

Project ref. IST- 2001-38248
Project Acronym FFPOIROT
Project full title Financial Fraud Prevention –Oriented Information Resources using

Ontology Technology
Availability Restricted

INFORMATION SOCIETY TECHNOLOGIES

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 2/33

Security (distribution level) Restricted

Contractual date of delivery M9

Actual date of delivery May 2003

Document number ffpoirot.TechNote.03.002

Document name DogmaModeler – a tool for ontology specification

Type Report

Status & version V. 1.0

Number of pages 33

WP contributing to the deliverable

WP/Task responsible STARLab VUB

Other contributors

Author Mustafa Jarrar, Andriy Lisovoy

Editor Gang Zhao

EC Project Officer Johan Hagman

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 3/33

Table of Contents

Table of Contents ... 3
Introduction... 4

PURPOSE OF THE DOCUMENT ... 4
DOCUMENT ORGANISATION.. 4
REVISION HISTORY .. 4

Dogma approach to ontology engineering ... 5
ONTOLOGY BASE... 5

Lexons... 5
Context .. 5

COMMITMENTS.. 5
APPLICATION DEPENDENCY AND ONTOLOGY MODELING... 6

Functionalities of DogmaModeler ... 7
References .. 12

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 4/33

Introduction

Purpose of the document

This technical report documents the major functionalities as adapted for the FF POIROT project of
DogmaModeler.

Document Organisation

Chapter 1 Introduction
Chapter 2 Dogma approach to ontology engineering
Chapter 3 User functionalities of DogmaModeler
Chapter 4 Illustration of main operations
Chapter 5 References

Revision history

Version Author Date Comment
0.1 Gang Zhao 24 October 03 Created Chapter 1 based on Mustafa Jarrar’s publication.
0.2 Gang Zhao 26 October 03 Created Chapter 2 based on Mustafa jarrar’s publication.
0.3 Gang Zhao 28 October 03 Created Chapter 3 from Andriy Lisovoy’s user manual draft
1.0 Gang Zhao 1 November 03 Finalised.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 5/33

Dogma approach to ontology engineering

Unlike ontology engineering proposals, which consider an ontology as one “unit”, holding both conceptual
relations and rules together, we decompose an ontology into an ontology base and a layer of ontological
commitments.

Ontology base

The ontology base holds conceptual relations, as domain knowledge. The commitment layer consists of a
set of ontological commitments, where each commitment holds ontology rules, which formally and explicitly
provide an interpretation of an application or task in terms of the domain knowledge. Ontology rules are
mostly application/task-dependent knowledge, i.e. strongly influenced by the intended use of the knowledge
and requirements at hand. Therefore, as a result of the decomposition, the generality of the knowledge in the
ontology base level is increased, while rules influenced by requirements at hand are kept separated in the
commitment layer. Hence, a conceptual schema can be seen as an ontological commitment defined in terms
of the domain knowledge.

Lexons
The ontology base consists of “plausible” intuitive domain fact types, represented and organized as a set of
context-specific binary conceptual relations, called lexons. A lexon is formally described as a 5-tuple of the
form <γ: Term1, Role1, Role2,Term2>, where γ is a context identifier, used to group lexons that are intuitively
and informally “related” in an intended conceptualization of a domain. For each context γ and Term T, the
pair (γ, T) is assumed to refer to a concept.

Context
At the domain level, in our approach, we have introduced the notion of context; so that a term within a
context refers intuitively to a concept. The intuition that a context provides here is: a set of implicit or maybe
tacit assumptions that are necessary for all instances of a concept in all its applications. In other words, a
context is an abstract identifier that refers to implicit and tacit assumptions in a domain, and that maps a term
to its intended meaning (i.e. concept) within these assumptions. Notice that a context in our approach is not
explicit formal knowledge. In practice, we define a context by referring to a source (e.g. a set of documents,
laws and regulations, informal description of “best practice”, etc.), which, by human understanding, is
assumed to “contain” the necessary assumptions.

Commitments

The layer of ontological commitments mediates between the ontology base and its applications. Each
commitment consists of: (1) an ontological view that specifies which lexons from the ontology base are
relevant to this commitment, i.e. selection of lexons, and (2) rules that formally constrain and specify the
intended meaning of the selected lexons. For simplicity, one can see a commitment as a conceptual
schema, where its conceptual relations correspond to lexons in the ontology base. Applications that use (or
more precisely, “commit to”) a certain commitment must satisfy all rules declared in this commitment. In
other words, any possible world, for an application, must conform to the rules declared in its commitment(s).
Each ontological commitment corresponds to an explicit instance of an (intentional) first order interpretation
of the domain knowledge in the ontology base. In other words, it is the role of commitments to provide the
formal interpretation(s) of the lexons. Therefore, the lexons in an ontology base are free of a particular formal
interpretation. This allows different formalizations and interpretations, even if sometimes they disagree about
certain things, to co-exist as different commitments in the commitment layer and to share what they have in

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 6/33

common. In our approach, ontological commitments are not restricted to be expressed in a certain
specification language. Commitments can be modelled using the ORM graphical notation.

Application dependency and ontology modelling

We suppose that the ontology base –as intuitive domain knowledge- is free of any particular formal
interpretation; or rather, lexons are assumed (by human understanding) to be “true within their context’s
source”. The formal interpretation of the lexons is provided through ontological commitments, which are
explicit and formal (and thus machine-understandable) knowledge.
As a result and as we have illustrated before, we enable the use of conceptual modelling methods for
modelling ontological commitments. The application-independency level of an ontology is increased, by
separating the commitments (mostly application/task-dependent knowledge) from the ontology base (intuitive
domain knowledge). In other words, the interaction problem has “neglect able” influence on the generality of
the ontology base level, because ontology modellers are prevented from entering their application-specific
rules at this level.

In accordance to the given independency discussion, we emphasize that modelling ontological commitments
should not be specific to certain needs, they should be made more generic (e.g. describing application kinds,
generic tasks, etc.), and seen as reusable components of knowledge. In our approach, the ontological
commitments that are specific to a limited number of applications do not affect the independency of other
commitments in the same commitment layer. Rather, commitments -especially large ones- can even be
modularized into smaller and interrelated commitments, so that the general purpose –i.e. reusable- parts can
be separated from the more specific parts. And therefore, not only the ontology base (i.e. lexons and the
intuitive definitions of their terms) can be shared and reused among commitments, but also the ontological
commitments themselves can be modularized and seen as a set of reusable knowledge components.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 7/33

Functionalities of DogmaModeler

This section briefly outlines our DogmaModeler Tool prototype for ontology engineering. Its implementation
is based on the approach described in the paper [1].

User interface windows

DogmaModeler supports functionalities for modelling, browsing, and managing both the ontology base and
the commitments. It supports modelling ontological commitments using the ORM graphical notation, and it
generates the corresponding ORM-ML [1] automatically. In addition, DogmaModeler supports verbalization
of ontological commitments into pseudo natural language. Fig. 13 shows a screenshot of DogmaModeler
with demonstrates its three main windows: the ontology base window, the commitment modelling window,
and the commitment library window. We will describe these windows in what follows.

DogmaModeler consists of four window panes:
• Ontology base window. It is working space for editing and creating lexons in an ontology base.

Ontology Base

Commitments
Library

Message Bar

Commitments modeling window

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 8/33

• Commitment modeling window. It is the working space for editing and creating commitments using
such conceptual modeling language as ORM

• Commitment Library window. It represents all commitments relevant to the lexons shown in the e
ontology base window.

• Message window. It shows system messages to the user.

Ontology base window
Before building ontological commitments, ontology builders should define their lexons in the ontology base
window, in case it is empty. This window presents the set of lexons – {< γ : Term1, Role, Term2>} - in a tree-
like structure. The first level, (Ω) represents ontology bases (e.g. Biblio-Ontologybase). In the second level,
each node (γ) represents a context (e.g. Books). Within a context, each node (Τ), in the third level,
represents a term; while nodes () in the fourth level, represent the set of (Role, Term2) for that term.
Notice that level 0 () in the tree represents an ontology base server, where the content of ontology bases
is hosted and managed. All transactions on the ontology base (e.g. creating contexts, editing lexons, etc.)
will be transmitted, verified and executed on the server side. As one can see in Fig. 13, DogmaModeler is
connected with our DogmaServer1, which stores and serves the ontology base and the commitment layer.

Commitment modelling window
This window consists of three panels: ORM, ORM-ML, and Pseudo NL. To build an ontological commitment,
ontology builders can drag and drop lexons from the ontology base window into the ORM panel (i.e. defining
the ontological view). When doing so, lexons will be mapped automatically into ORM fact types. Then, in
order to define rules on these lexons, ontology builders can use the ORM family of constraints; see icons in
the top of the ORM panel.
Remark: mapping lexons as intuitive domain knowledge into ORM fact types that have predefined formal
semantics is done as the following: a Term within a context is mapped directly into an Object Type in ORM,
Roles within a context are also mapped directly into ORM roles. While in case of ORM Subtype relations that
have specific “build-in” semantics, commitment builders need to customize the “Graph settings” window, in
order to specify which roles should be mapped. Further, DogmaModeler does not support ORM unary roles
and nested fact types.
DogmaModeler supports saving ORM-ML into text files, or uploading it into an ontology server. The following
graph shows the ORM-ML tab of the commitment modelling window.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 9/33

The graph below shows the commitments in Pseudo Natural language (fixed-syntax English sentences) of the
ORM model.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 10/33

It is automatically generated by the tool by applying predefined templates to the commitments’ content. We believe that
this allows non-experts to (help to) check, validate or build the commitment rules and will simplify the modeling
process.

Commitment library window
The purpose of this window (Under the ontology base window) is to enhance the reusability, management,
and organization of ontological commitments. The current implementation allows ontology builders to access
and browse ontological commitments stored in a library (Θ). Each node () in the first level of the tree
represents a commitment. By expanding a commitment node, the set of lexons and the set of rules -subject
to this commitment- will appear in the second level. Advanced features e.g. indexing,
modularization/composing, versioning, etc. of ontological commitments are ongoing research issues.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 11/33

Illustration of main operations

Set up an ontology base

The operations on ontology bases are under the menu, Ontology Base.

The Ontology Base database connection window will appear. Press “Default” button, if you don’t know
exactly what information you have to enter. You will be connected according to the last successful
connection.

When you are connected, you will need to specify new Ontology Base name and its properties:

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 12/33

The name of the Ontology Base must be unique. When finished you will see your new empty Ontology Base.

Open an ontology base

You will need to connect to the database of ontologies as if you set up a new ontology base described in the
above. Once done, you will be presented a list of ontologies.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 13/33

When you make your choice, the ontology will be shown in the ontology base window, as below.

Creating a context

With a right-click on the mouse on an ontology base node you can choose “new Context”.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 14/33

This allows you to create new context within the ontology.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 15/33

The new context will appear in the ontology base window:

Delete a context
You can delete the context by right-click on the context node and select “Delete Context”. Note that the
action “Delete Context” will delete all terms and lexons in this context as well.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 16/33

Creating a term

Once a context is created, terms and lexons can be created within the context. “Create new term” can be
brought up by a right-click on the context.

A term is created in the term property form. The following graph shows the definition tab.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 17/33

With Multilingual tab, you may add, delete or edit multilingual expressions of the term

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 18/33

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 19/33

A new term will appear in a chosen context:

Delete a term
Right click on the term to delete and choose “Delete Term”.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 20/33

Creating a lexon
You can choose New Lexion by a right click on a term.

Three comboboxes will appear under the selected term, so the user can choose from existing Roles and
Terms. If they are not in the lists, the user needs to add new ones by selecting “New Role”/”New Term”:

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 21/33

A new lexon will appear under the chosen term:

Creating a new commitment

• First, an ontology base should be opened (see chapter – opening an ontology base)
• In the menu “Commitments’ select “New Commitment”

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 22/33

• Then a context for a new commitment should be chosen. Note that afterwards you cannot use
lexons from other context

• In “Commitment Meta Data” form you must provide a name for the new commitment

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 23/33

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 24/33

Select lexons
• Set of lexons (from the chosen context) you want to use in a commitment can be dragged and

dropped one by one from the ontology base tree to a diagram. For this you press with the left button
of the mouse on a lexon node, drag it to a desired place of the diagram and release the left button of
the mouse

• By pressing ctrl+shift and using arrow keys on your keyboard you are able to move a graphical
object pixel by pixel (first select desired object/set of objects);

Object

Relationship

Corole
Role

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 25/33

Set object properties
Click with the right button of the mouse on an object. In the appeared popup, you will see values defined for
selected object:

You can select “Properties to “view/edit” object properties:

The “Object Type Properties” Form will appear with 4 tabs:

• Definition – you may view the definition of the concept represented by this object and you may
defined this object as LOT/NOLOT:

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 26/33

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 27/33

• Multilingual – you may view interpretations of a concept in different languages.

• Values – you may define values for the object

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 28/33

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 29/33

• Data Type – you may define a data type for the selected object.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 30/33

Add constraints

Types of constraints

• Mandatory constraint

• Uniqueness constraint -

• Subset constraint -

• Equality constraint -

• External uniqueness -

• External mandatory -

• Exclusion -

• Total constraint

• Exclusive constraint

• Ring constraint

• Frequency constraint

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 31/33

Save a Commitment

In the menu “Commitments’ select “Save Commitment”:

If you choose “save (as) to file”, it will ask you where you want to save this commitment.
Save to DB will save this commitment into a database you currently connected. After saving into a database
you will see it in the commitment library.

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 32/33

IST-2001-38248, FFPOIROT v. 1.1

 DogmaModeler FF Poirot V1 Release Note Page 33/33

References

[1] Jarrar M., Demy J. and Meersman R., On Using Conceptual Data Modeling for Ontology
Engineering. In Aberer K., March S., and Spaccapietra S., (eds): Journal on Data Semantics,
Special issue on "Best papers from the ER/ODBASE/COOPIS 2002 Conferences", Vol. 1.1,
Springer,(2003)

