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Abstract 
 

The enormous need for well engineered ontologies is growing rapidly, as the need for 

ontologies is increasing in many application areas such as data integration, the semantic web, 

knowledge engineering, enhanced information retrieval, etc. Due to the central role ontologies 

are playing, the World Wide Web Consortium (W3C) developed the Web Ontology Language 

(OWL) as a language to author ontologies. However, OWL, like many other similar ontology 

languages, does not provide a practical and methodological means for ontology engineering. 

In addition, one is required to understand the logical foundation underpinning OWL, which is 

very difficult for domain experts. For an ontology language to be easily understood by domain 

experts it must be close to the natural language they speak and the ‘logic’ they use. Also, it 

should have a graphical notation to enable simple and conceptual modeling. The expressive, 

methodological, and graphical capabilities of Object-Role Modeling (ORM) make it a good 

candidate for use in ontology engineering. The modeling approach (ORM) selected here is one 

of the richest graphical modelling approaches and the knowledge and practice of it is easy to 

be acquired at a short period of time. The second version of OWL (OWL 2) is a recommended 

web ontology language from W3C which contains the majority of the constructs to be used for 

building any needed ontology. Many reasoners such as RacerPro 2.0, Pellet, Hermit, Fact++ 

and others support reasoning ontologies represented in OWL 2 which is created using the 

description logic SROIQ (characterized by expressivity and decidability). In this research, we 

(i) map the most commonly used ORM constructs to OWL 2 using SROIQ Description Logic 

and, on the other hand, we (ii) extend the ORM notation to cover all OWL 2 constructs not 

currently covered by ORM. By doing so, we combine the strengths of both ORM and the 

W3C-recommended Web Ontology Language (OWL). This creates a framework that allows 

one to engineer OWL ontologies graphically using ORM.  
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 صللمستخا
 

ية متعددة،  مجالات تطبيقفي  (علم ما هو موجود)لانطولوجياا هندسةنمت الحاجة بصورة كبيرة مؤخرا ل
نظرا للدور و الدلالية، هندسة المعرفة، وتعزيز استرجاع المعلومات.  تكامل البيانات، الشبكةومن أهمها :

تستخدم كلغة  (OWL)  ويبال انطولوجيالغة  باستحداث  W3Cقام اتحادالمهم الذي تلعبه الانطولوجيا، 
 من أغنى لغات بناء الانطولوجيا OWL 2. يعد الإصدار الثاني للغة الانطولوجيا  الانطولوجيافي هندسة

لاحتوائها على الغالبية العظمى من التراكيب التي تمكّن المستخدم من بناء الانطولوجيا المطلوبة، 
لغات  مثل OWL 2 الانطولوجيا  إلا أن لغةبالإضافة إلى احتوائها على العديد من الميزات الجديدة،

المستخدم لهذه  الانطولوجيا، حيث يحتاجمنهجية لهندسة  وأ توفر وسيلة عملية الأخرى لاالانطولوجيا 
ليس بالسهل. ولكي يتم  وهو أمر بها  الخاصالمنطقو البنية الأساسيةفهم إلى  ، الانطولوجيااللغة في بناء

اللغة   قريبة منفهم لغة الانطولوجيا من قبل مستخدمي هندسة الانطولوجيا يجب أن تكون هذه اللغة
 القيام ببناء تتيحبيئة رسومية وأيضا بحاجة ل يستخدمونهو "المنطق" الذي يتحدثون بها أالطبيعية التي 
 ORM ة النمذجلأداة الرسومية والإمكاناتالقدرات التعبيرية والمنهجية، بطريقة بسيطة. تعتبر الانطولوجيا 

 التي  ORM أداة الانطولوجيا. كما أن في هندسة اليتم استخدامه أساسيبشكل من الأسباب التي رشحتها 
 من أغنى تعتبر   OWL2الأطروحة كطريقة عملية ومنهجية لبناء الانطولوجيا بلغة  في هذه ااخترناه

 بما يلي : (أ) ه الأطروحةهذ قمنا في .ذي الرسومات الدلالية التي يتم فهمها وممارستها بسلاسةطرق ال
 طويرت (ب)    SROIQوذلك عن طريق استخدام لغة المنطق OWL 2  بلغةORMتمثيل تراكيب 

ORMلتمثيل كامل لغة OWL 2 وبذلك جمعنا بين نقاط القوة الخاصة ب ، ORM ولغة OWL2  وهذا
  باستخدام الرسومات الدلاليةOWL 2بلغة  هندسة الانطولوجياالمستخدم  من يخلق الإطار الذي يمكّن 

  المطورة.ORM  الخاصة ب
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Chapter One 
 
Introduction 
 
 

1.1 Introduction and Motivation 
 
Ontology engineering is one of the major challenges that brought the attention of the research 

community in the last decade. This is especially due to the growing need for well-engineered 

ontologies [G98] for many application areas such as data integration, the semantic web, 

knowledge engineering, enhanced information retrieval and others [G98, BGME07, CW05, 

ZWL08, F03, F04, HS10, JMY99, VHS10, ZLW08]. Due to the central role ontologies play in 

realizing the vision of the semantic web [DFV03, FH11, LH07], the World Wide Web 

Consortium (W3C) developed the Web Ontology Language (OWL) among its semantic web 

technology stack, as a language to author ontologies for the semantic web. OWL is based on 

Description Logic. In particular, the older version of OWL is based on SHOIN [MLL06] 

description Logic while the newest version (OWL 2 [HKP+09]) is based on SROIQ. OWL is 

fully supported by many description logic reasoning tools such as Racer [HO01], Pellet 

[PP04], Hermit1, Fact++ [ TH06].  

 
However, like other ontology languages, using OWL to engineer ontologies is a difficult task 

as it does not provide a practical and methodological means for ontology engineering. In 

addition, one is required to understand the logical foundation underpinning OWL, which is 

very difficult for domain experts. In fact, the limitations of OWL and other similar languages 

are not that they lack expressiveness or logical foundations, but their suitability for being used 

by subject matter experts.   For an ontology language to be easily understood by domain 

                                                           
1 http://web.comlab.ox.ac.uk/people/boris.motik/HermiT/ 

http://web.comlab.ox.ac.uk/people/boris.motik/HermiT/
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experts, it should at least meet the following two requirements [J05, J07b]: (i) it must be close 

to the natural language the experts speak and the ‘logic’ they use. (ii) The language should 

have a graphical notation to enable simple and conceptual modeling. What we mean by 

‘graphical notation’ here is not merely visualization but a graphical language that allows for 

ontology construction using notations for concepts, relations, and axioms. In other words, such 

language should guide domain experts to think conceptually while building, modifying, and 

validating an ontology [GH08, COL08].  

 
Object-Role Modeling (ORM) is a conceptual modeling approach that has been in use since 

the early 1970s in database modeling, and has recently become popular in ontology 

engineering [JDM03]. Its expressive, methodological and graphical capabilities make it indeed 

one of the best candidates for building ontologies. Specifically, what distinguish ORM as a 

conceptual modeling approach are its simplicity, intuitiveness, stability, and verbalization 

capabilities, among many others.  ORM simplifies the modeling process by using natural 

language, intuitive diagrams, and examples, and by examining information in terms of simple 

elementary facts and expressing them in terms of objects and roles [H89, H01].  

 
Compared to other graphical modeling notations such as EER or UML, ORM is a stable 

modeling notation and more expressive [JDM03, GH08]. This is due to the fact that ORM 

makes no use of attributes (i.e., attribute-free). All facts are represented in terms of concepts 

(object-types or value-types) playing roles [H04a]. This makes ORM not impacted by changes 

that cause attributes to be remodeled as object types or relationships. Also, one of ORM’s 

strongest features is its verbalization capabilities; ORM diagrams can be automatically 

verbalized into pseudo natural language [H04a] (See the example in section 3.1). The 

verbalization capability of ORM simplifies the communication with subject matter experts and 

allows them to better understand, validate, and build ORM diagrams. It is also important to 

note that ORM’s verbalization techniques have been adopted in the business rules community 

and have become an OMG standard. 

 
For ORM to be used as an Ontology Engineering methodology, the underlying semantics of 

the notation must be formally specified (using logic). Mapping of ORM using First Order 

Logic was done comprehensively in [J07a]. In addition, because FOL is not decidable (does 



3 
 

 

not enable automatic reasoning), ORM was formalized in [J07a, J07b] using less complex 

logic languages that allows for automatic reasoning, namely, DLR Description logic [J07a] 

and SHOIN/OWL description logic [HJ10, J07b]. This extensive work on the formalization of 

ORM has indeed played an important role in laying the foundation for using ORM in ontology 

engineering.  

 
In order to fully establish ORM as a practical and methodological means for ontology 

engineering, we propose to combine the strengths of both ORM and the W3C-recommended 

Web Ontology Language (OWL 2) [HKP+09]. In short, we propose to map all ORM 

constructs to OWL 2 using SROIQ Description Logic and, on the other hand, extend the ORM 

notation to cover all OWL2 constructs not currently covered by ORM. By doing so, we exploit 

the advantages of both ORM as an intuitive graphical approach for conceptual modeling and 

OWL2 as a standard W3C-recommended language [BKMP09] for authoring ontologies. This 

creates a framework that allows one to author OWL 2 ontologies graphically using ORM.  

 
In the extension part (extending ORM to completely represent OWL 2), each construct of 

OWL 2 is checked if it is mapped by ORM, if it is not a proposed ORM graphical notation is 

chosen to represent that of OWL 2 according to a surveyed evaluation process. The constructs 

of OWL 2 that are not covered by ORM and are used to extend ORM are Equivalent Classes, 

Disjoint Classes, Intersection of Class Expressions, Class Complement, Class Assertions, 

Individual Equality, Individual Inequality, positive object/data property assertion and negative 

object/data property assertion. In addition to these proposed notations, some of the constructs 

of OWL 2 are represented as non-notational expressions.  

 

It is important to note here that the main purpose of this thesis is to develop an expressive and 

methodological graphical notation for OWL 2, which allows people to author OWL 2 

ontologies graphically. This is presented in this thesis in two parts. In the first part, we 

investigate all ORM constructs by mapping/formalizing them into OWL 2 and its 

underpinning SROIQ Description Logic. Here ORM is used and not ORM 2 where ORM is 

the same as ORM 2 except that ORM 2 has modified shapes for graphical notations to occupy 

less space in modeling. Some new notations of ORM 2 are still not mature. ORM notations are 

less complicated than that of ORM 2, where here we concentrate in graphical notations that are 
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more users friendly. In the second part, we investigate OWL 2 constructs that do not have 

equivalent graphical notations in ORM and develop ORM-inspired graphical notations for 

them. By doing so, we have developed an ORM-based graphical notation that expresses OWL 

2 completely. Because of this, all of our work in this paper is based on the semantics of OWL 

2 not on ORM’s semantics as in [J07a, J07b]. That is, the semantics of some ORM constructs 

were altered to adapt them to the semantics of OWL 2. 

  
1.2 Thesis Statement and Objectives 
 
The aim of this research is to map between Object Role Modeling (ORM) and OWL 2 Web 

Ontology Language to enable one to use ORM as a graphical notation in ontology engineering. 

Acquiring the knowledge to build an ontology graphically using ORM can be accomplished 

with minimal effort and time.  However, ORM as a graphical modeling approach is not 

supported by currently available reasoners.  OWL 2 is the recommended language for 

authoring ontologies. However, using the OWL 2 syntax is rather complicated.  So an 

innovative way to solve this problem is proposed by using ORM as interface for OWL2 for 

authoring ontologies.   We map between ORM and OWL 2 and extend ORM for complete 

representation of OWL 2.  The result of mapping enables one to build ontology graphically 

and check the correctness of the built ontology using an appropriate reasoner that supports 

OWL2. 

 

The objectives of the thesis are as follows: 

 
• Mapping from ORM into SROIQ Description Logic/OWL 2. 

 
• Extending the notations of ORM to completely represent OWL 2. 

 
• Evaluating the correctness of mapping (ORM into OWL2), using appropriate reasoning 

services such as instance checking. 

 
• Evaluating the proposed ORM extension using a survey.  

 
• Extending DogmaModeler (modeling tool) to hold the implementation of mapping 

between ORM and OWL 2.  
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1.3 Contributions 
 
The original contributions of this thesis can be summarized as follows:  

 
1. Contributes to the mapping of ORM into SROIQ/OWL 2. This mapping was done for 

each of the twenty nine constructs that forms the ORM notations. This mapping was 

carried out jointly and in a close cooperation with Anton Deik and Dr Mustafa Jarrar, 

and based on previous research published in [J07a] and [J07b]. 

 
2. Contributes to extending the ORM notation by introducing new graphical notations to 

cover OWL 2 constructs not currently covered by ORM. The extended ORM notation 

covers all constructs of OWL 2. This extension was carried out jointly and in a close 

cooperation with Anton Deik and Dr Mustafa Jarrar. 

 
3. Evaluating the correctness of our mapping, where each mapped ORM construct was 

loaded as a complete OWL/XML file into RacerPro 2.0. Different reasoning methods 

like consistency, coherency and special instance checking were used to prove the 

correctness of our mapping. 

 
4. Evaluating the new ORM extension by means of a survey conducted with more than 31 

ORM experts and practitioners. 

 
5. Implementation: We extended DogmaModeler (an ORM-based modeling tool [JM08]) 

to implement (a) our mapping (from ORM into OWL 2) and (b) the new ORM 

extension. Also, we have integrated the Hermit reasoning tool into DogmaModeler so 

that the correctness of the built ontology can be checked by methods of Logical 

reasoning. 

 
The initial and primitive results of this research appeared first in [HJ10], and then it was 

revised, extended, evaluated, and implemented in an article submitted to Data and Knowledge 

Engineering Journal, Elsevier on December 2011. 
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1.4 Overview of the thesis 
 

The thesis is divided into six chapters. The current chapter provides an introduction, aim and 

objectives for this research. Chapter two introduces and defines ORM, Description Logics, and 

OWL 2 in addition to providing a thorough review of related work. Chapter three discusses the 

mapping from ORM into OWL 2; it also describes definitions, requirements, and works of 

mapping. Chapter four includes extending ORM for complete representation of OWL 2. 

Chapter five evaluates the OWL 2 mappings of ORM in addition to our ORM extension. 

Chapter six describes the implementation of our work in DogmaModeler tool. Chapter seven 

concludes the work. 
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Chapter Two 
 
Background and Related Work 
 
 
2.1 Introduction 
 
In this chapter, we shed the light on background and related work. For background we 

highlight three fundamental related topics, namely, Object-Role Modeling (ORM), 

Description Logics, and Ontology Web Language (OWL 2) that are briefly discussed in the 

following related subsections with an example on the Object-Role Modeling (ORM) approach. 

For related work we briefly discus two themes and compare them to our thesis work, one of 

these themes consider the problem of ontology modeling a problem of visualization and the 

other develop formal semantics (i.e., formalize) such as UML and EER. 

 
2.2 Object Role Modeling (ORM) 
 
Object Role Modeling (ORM) which was introduced in the mid of 1970s, is used to model, 

transform and query about business information in a fact-oriented context. All facts and rules 

can be verbalized in natural languages that are understood of interested users including 

unknowledgeable technical users. ORM is an attribute-free modeling language, unlike Entity 

Relationship (ER) modeling and Unified Modeling Language (UML) class diagramming, 

where ORM treats all elementary facts as relationships between objects making implemented 

structures of ORM irrelevant to business semantics. The fact that ORM is an attribute-free 

modeling tool maintains the semantic of modeled domain, enhances semantic stability and 

makes it easy for ORM structures (of grouping facts) to be verbalized.  

 
In order to build a needed ontology we can graphically use ORM notations to implement the 

conceptual modeling techniques in a reasonable way [GH08, JDM03, CH05].  
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ORM is a conceptual modeling method that allows the semantics of a universe of discourse to 

be modeled at a highly conceptual level and in a graphical manner. As mentioned earlier, 

ORM has been used commercially for more than thirty years as a database modeling 

methodology and has been recently becoming popular not only for ontology engineering but 

also as a graphical notation in other areas such as modeling of business rules, XML schemes, 

data warehouses,  requirements engineering, web forms, etc. ORM has an expressive and 

stable graphical notation. It supports not only n-ary relations and reification, but a fairly 

comprehensive treatment of many ‘practical’ and ‘standard’ business rules and constraint 

types such as mandatory, uniqueness, identity, exclusion, implications, frequency occurrences, 

subsetting, subtyping, equality, and many others [H89, H01, H04b, J07a, J07b].  

 

ORM makes it easy to simplify the presented conceptual model using both natural language 

(via its verbalization capabilities) and graphical notations to present facts in their simple or 

elementary forms. In addition, ORM diagrams can be populated by examples to measure the 

correctness of the design [H01, H04b]. Practical use cases have shown that skills and know-

how of using ORM can be acquired easily and in a short period of time even by non-IT 

specialists [J07a, JDM03]. Moreover, several modeling tools support ORM notation such as: 

Microsoft Visio ™, DogmaModeler, and Norma.  

 

The example in Fig. 2.1.a below depicts a sample ORM diagram including several rules and 

constraints that ORM is capable of expressing graphically. Note the three basic constructs of 

ORM; object types, value types, and roles (forming relations).Object types are represented as 

solid-line ellipses, value types are presented as dashed-line ellipses and relations as rectangles, 

where one or more ORM roles for each ORM relation. For example, the relation 

(WorksFor/Employs) in Fig. 2.1.a is a binary relation (i.e., composed of two roles).  

  

The preceding knowledge that underpinning ORM is NIAM (Natural Language Information 

Analysis Method) [H89]. NIAM was introduced in the early 70’s. An important reason under 

designing NIAM is to use natural language to declare the “semantics'” of a business 

application’s data. Fig. 2.1b shows the verbalization of the ORM rules presented graphically in 
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Fig. 2.1a. One of the most powerful features of ORM is its verbalization capability in which 

ORM diagrams can be automatically verbalized into pseudo natural sentences. In other words, 

all rules in a given ORM diagram can be translated into fixed syntax sentences [H01, JDM03, 

H04a, HC06 JKD06]. For example, the Mandatory constraint (y) between ‘Person’ and ‘Has 

Gender’ is verbalized by rule-1 in Fig.1b as “Each Person Has at least one Gender”. Similarly, 

the role uniqueness constraint (↔) is verbalized by rule 2, Subtype (→) by rule 3, (�) by rule 

6, (⨀) and (⨂) between subtypes by rules 4 and 5, and between roles by rules 7 and 8. The 

value constraint ({‘M’,’F’} on Gender) is verbalized by rule 9. These verbalizations are 

generated automatically by the DogmaModeler tool through using verbalization templates 

parameterized over a given ORM diagram. DogmaModeler enables verbalization in 11 

different human languages [JKD06]. The main purpose of this verbalization is to simplify the 

communication with non-IT specialists and to allow them to better validate and build ontology 

models. 

 

 

1. Each Person Has at least one Gender. (Mandatory) 
2. Each Person  Has at most one Gender. (Role uniqueness) 
3. Each Male is a Person. Each Female is a Person. (Subtype) 
4. Each Person cannot be a Male and a Female at the same time. 

(Exclusive) 
5. Each Person must be, at least, Male or Female. (Totality) 
6. If a Person is AffiliatedWith a Company then this Person 

WorksFor that Company. (Subset) 
7. Same Car cannot be OwnedBy by  Person and OwnedBy a 

Company at the same time. (Exclusion) 
8. Each Car should be OwnedBy by Person or OwnedBy a 

Company, or both. (Disjunctive Mandatory) 
9. A Gender can only be one of {M,F}. (Value Constraint) 

(a)  (b)  
 

Figure 2.1: Sample ORM Diagram along with the verbalization of its rules. 
 
2.3 Description Logics (ALC, SHOIN and SROIQ) 
 
Description logics [BCM+07] are a family of knowledge representation formalisms. 

Description logics are decidable fragments of first-order logic, associated with a set of 

automatic reasoning procedures [HST99]. The basic primitives of description logic are the 

notion of a concept and the notion of a relationship. Complex concept and relationship 

expressions can be built from atomic concepts and relationships. For example, one can define 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒 as 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒 ⊑ 𝐹𝐹𝑒𝑒𝐻𝐻𝐻𝐻𝐹𝐹𝑒𝑒 ⨅  ∃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑖𝑖𝐹𝐹𝑖𝑖.𝑃𝑃𝑒𝑒𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻. All DLs implies the 

open world assumption [NB02].  
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ALC [HST06] is simple description logic stands for Attributive Concept Language with 

Complements. Each feature of description logic has a letter assigned to it for example ALC is 

AL augmented with complements. ALC syntax is as follows, where NC, NR and NO are atomic 

concepts. The followings are concepts: ⊤, ⊥ and every A ∈ NC (all atomic concepts are 

concepts). If C and D are concepts and R is a role (binary relation) then C⊓D, C ⊔ D, ¬ C, 

∀R.C, ∃R.C are concepts.  

 

We can use the constructs (primitives of the notations of concept and relationship) of ALC to 

represent the complex concept and relationship expressions. As an example the expression 

Person⊓ Doctor (Person and Doctor are atomic concepts) means persons that are also doctors. 

The expression Doctor ⊓  ∀hasPatient.Person (hasPatient is an atomic role) means that doctors 

have only persons as patients. 

 

For the semantic of ALC’s we need the notation of interpretation I = (∆I, .I), where ∆I is the 

non empty set which is the domain of I and .I which is the interpretation function used to map 

every individual to an element aI ∈ ΔI , every atomic concept A to a subset of ΔI and every role 

name to a binary relation(subset of ΔI x ΔI). The following definitions represent the semantic 

of ALC constructs: 

⊤I     =     ΔI

⊥I     =     ∅
(C⊓D) I     =     CI⋂DI (intersection)       
(C⊔  -D) I     =     CI⋃DI    (union)

(¬C) I     =     ∆I\CI (complement)
(∃R.C) I     =     {x∈ ΔI | y∈ ΔI : 〈x,y〉 ∈RI and y ∈ CI} (exists restriction)
(∀R.C) I     =     {x∈ ΔI | 〈x,y〉 ∈RI implies y ∈ CI} (universal restriction)

 
   Figure 2.2: Semantic of ALC 
 
SHOIN which is the base of Web Ontology Language (OWL) is expressive and decidable 

description logic. SHOIN equals ( ALC extended with transitive roles(R+)) +  role hierarchy 

(H)( R ⊑ S) + nominals (O)  (C ≡ {a,b,c}) + inverse (I)( S ⊑ R⁻ ) + number restrictions (N).  

 

SROIQ Description Logic [HST06] compromises both features of expressivity and 

decidability. SROIQ is an extension of SHOIN which is the underlying description logic of 
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OWL [BHH+04].  However, the rise of the Semantic Web increased the need for a more 

featured and expressive Description Logic to author ontologies.  As a result of this increasing 

demand, SROIQ was introduced with many new features (especially regarding expressivity) 

which led to adopting SROIQ as the underpinning logic for OWL 2.  

 

A Description Logic knowledge base is composed of two components: a TBox and an ABox. 

The TBox contains intensional knowledge in the form of a terminology. TBox is built through 

declarations that describe general properties of concepts. The ABox contains extensional 

knowledge which is also called assertional knowledge. It is knowledge that is specific to the 

individuals of the domain of discourse (knowledge specific to the instances) [BCM+07]. 

 

SROIQ syntax can be defined as follows. If 𝐻𝐻 and 𝐷𝐷 are concepts and 𝑅𝑅 is a binary relation 

(also called role), then (𝐻𝐻 ⨅ 𝐷𝐷), (𝐻𝐻 ⨆ 𝐷𝐷), (¬𝐻𝐻), (∀ 𝑅𝑅.𝐻𝐻), and (∃𝑅𝑅.𝐻𝐻) are also concepts. If 𝑅𝑅 is 

simple (i.e., neither transitive nor has any transitive sub-relations), then (≤ 𝐻𝐻𝑅𝑅) and (≥ 𝐻𝐻𝑅𝑅) 

are also concepts, where 𝐻𝐻 is a non-negative integer. For 𝐻𝐻 and 𝐷𝐷 (possibly complex) 

concepts, 𝐻𝐻 ⊑ 𝐷𝐷 is called general concept inclusion. SROIQ also allows hierarchy of roles 

(𝑅𝑅 ⊑  𝑆𝑆), transitivity of roles (𝑅𝑅+), and inverse of roles (𝑆𝑆 ⊑  𝑅𝑅−). In addition, SROIQ allows 

everything SHOIN allows, in addition to the following [HST06]: 

 

i) Disjoint roles: most description logics do not support disjoint roles and this makes 

them unbalanced. SROIQ is said to be balanced because it allows the expressivity of 

disjoint between roles. For example, the roles brother and father should be declared 

as being disjoint.   

 

ii) Reflexive, reflexive and antisymmetric roles: these constraints are useful when using 

ABox to represent individuals. E.g., the role loves should be declared as being 

reflexive (one can love himself), and the role hasSibling should be declared as being 

irreflexive (one cannot be the sibling of himself). 

iii) Negated role assertion: Although most Abox formalisms allow for only positive role 

assertions, SROIQ allows for negated roles assertions as well. For example, such 
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statements can be found in a SROIQ Abox: (𝑅𝑅𝐻𝐻𝐻𝐻𝑖𝑖,𝑇𝑇𝐻𝐻𝐻𝐻𝑇𝑇): ¬𝑘𝑘𝐻𝐻𝐻𝐻𝑘𝑘𝐻𝐻, which means 

that Rami do not know Tony. 

 

iv) Role inclusion axioms: these roles are of the form 𝑅𝑅 ∘  𝑆𝑆 ⊑ 𝑅𝑅  and  𝑆𝑆 ∘  𝑅𝑅 ⊑ 𝑅𝑅. For 

example, given the following two axioms (1) 𝐻𝐻𝑘𝑘𝐻𝐻𝐻𝐻 ∘  ℎ𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝑒𝑒𝐻𝐻 ⊑ 𝐻𝐻𝑘𝑘𝐻𝐻𝐻𝐻, and (2) the 

fact that each car contains an engine 𝐻𝐻𝐻𝐻𝑒𝑒 ⊑  ∃ℎ𝐻𝐻𝐻𝐻𝑃𝑃𝐻𝐻𝑒𝑒𝐻𝐻.𝐸𝐸𝐻𝐻𝐸𝐸𝑖𝑖𝐻𝐻𝑒𝑒. This implies that 

an owner of a car is also an owner of an engine, i.e., the following subsumption is 

implied: ∃𝐻𝐻𝑘𝑘𝐻𝐻𝐻𝐻.𝐻𝐻𝐻𝐻𝑒𝑒 ⊑  ∃𝐻𝐻𝑘𝑘𝐻𝐻𝐻𝐻.𝐸𝐸𝐻𝐻𝐸𝐸𝑖𝑖𝐻𝐻𝑒𝑒. 

 
v) Universal role  𝑼𝑼. 

 
vi) Local reflexivity of the form ∃𝑅𝑅. 𝑆𝑆𝑒𝑒𝐹𝐹𝑆𝑆. For example, the following expresses the fact 

that somebody loves himself/herself:  ∃𝐹𝐹𝑖𝑖𝑘𝑘𝑒𝑒𝐻𝐻. 𝑆𝑆𝑒𝑒𝐹𝐹𝑆𝑆. 

 

vii) SROIQ also provides what is referred to as Rbox which contains all statements 

concerning roles. 

 

SROIQ (D) consists of ALC (description logic) + role chains = SR, SR + O (nominals(closed 

classes)), SRO+I(inverse roles), SROI+Q(qualified cardinality restrictions) and 

SROIQ+D(data types). Since SROIQ is an extension of ALC (introduced above) we will 

introduce the constructs of SROIQ not present in ALC through the following table that shows 

syntax and semantic of SROIQ description logic. 

 
Table 2.1 : Syntax and Semantic of SROIQ other than ALC 

S
R 

Name Syntax Semantic  Name Syntax Semantic 
Role chains R o S ⊑ 

R  
∀x ∀y (∃z((R(x,z) ˄S(z,y)) 
→ R(x,y))) 

S
R 
+ 
O 

Nominals {a}  {aI} 

Transitivity R*  (RI )* Individual equality a = b aI = bI 

role hierarchies R  ⊑ S  CI ⊆ DI         Individual inequality a ≠ b aI ≠ bI 
SRO     +       I 
inverse roles  R− {〈x,y〉 | {〈y,x〉 ∈ RI }   
SROI    +      Q 
Qualified  
Number 
Restriction 
 

 ≥ n R.C {x∈ ΔI | #{y∈ ΔI |〈x,y〉 ∈RI  and y ∈ CI}≥n} 
 ≤ n R.C {x∈ ΔI | #{y∈ ΔI |〈x,y〉 ∈RI  and y ∈ CI}≤n} 
 = n R.C {x∈ ΔI | #{y∈ ΔI |〈x,y〉 ∈RI  and y ∈ CI}=n} 
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2.4 OWL 2 Web Ontology Language 
 
The W3C-recommended Web Ontology Language (OWL) [BHH+04]  is a knowledge 

representation language [MMH04] used to publish and share ontologies on the Web, where 

this ontology language includes formally defined meanings. While the underpinning 

description logic of OWL is SHOIN, OWL 22 (the new version of OWL) is based on SROIQ 

description logic. Roughly speaking, one can often view OWL 2 as SROIQ written in other 

syntaxes (XML, RDF/XML, etc).  Among OWL 2 basic constructs are: Class (corresponds to 

a ‘concept’ in SROIQ or called ‘object-type’ in ORM), Property (corresponds to a SROIQ 

‘relationship’ or an ORM ‘role’), and Object (corresponds to a SROIQ individual/assertion). 

 

It is worth also noting here that OWL 2 is supported by several semantic reasoners such as 

RacerPro 2, Hermit, Pellet and Fact++3. 

 
As of October 27, 2009, OWL 2 has been set as a W3C recommended as a standard for 

ontology representation on the Web. Classes, properties, individuals, and data values are all 

supported by OWL 2 and stored semantically on the Web. OWL 2 ontologies are primary 

exchanged as RDF documents, where these ontologies can be used with information written in 

RDF. In addition to XML/RDF syntax which is used to serialize and exchange OWL 2 

ontologies, functional syntax is used to determine the structure of OWL 2 and OWL/XML 

syntax is used as an XML serialization for better interoperability. OWL 2 elements are 

identified by Internationalized Resource Identifiers (IRIs). It extends OWL 1 which uses 

Uniform Resource Identifiers (URIs) [MGH+09, GW09]. Every IRI must be absolute to be 

published internationally. OWL 2 increases expressive language power for properties. 

 

The following are some of the new features that distinguish OWL 2 from its OWL predecessor 

[GW09]: 

 
i) Syntactic sugar 

 

                                                           
2 www.w3.org/2009/pdf/REC-owl2-overview-20091027.pdf 
 
3 http://owl.man.ac.uk/factplusplus/ 
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• DisjointUnion states that if we have the classes A, B and C then class A is the 

union of classes B or C and at the same time class B and C are disjoint to each 

other, where no individual can be an instance of class B and C at the same time. 

 
• DisjointClasses states that if we have a set of classes’ constraint by the construct 

DisjointClasses then these classes are disjoint to each another, where an individual 

of one class of the set cannot be an instance of the other classes of the set. 

 
• NegativeObjectPropertyAssertion (also we have NegativeDataPropertyAssertion) 

states that a given individuals are not related to the intended object property. 

 
ii) New constructs for properties 

 
• Self restriction: ObjectHasSelf states that if we have an object property such as 

likes related to a class person then the individuals of this class are related to 

themselves by the object property likes. 

 
• Property Qualified Cardinality Restrictions: ObjectMinCardinality, 

ObjectMaxCardinality, and ObjectExactCardinality; and respectively 

DataMinCardinality, DataMaxCardinality, and DataExactCardinality allow 

asserting minimum, maximum or exact qualified cardinality restrictions for object 

and data properties. 

 
• Reflexive, Irreflexive, and Asymmetric Object Properties [MGH+09]. 

 
• Disjoint Properties states that if two or more object properties restricted by 

DisjointObjectProperties construct then these object properties are exclusive to 

each others. Also the same for data properties restricted by DisjointDataProperties 

construct. 

 
• Property Chain Inclusion states that if we have two or more object properties 

chained by the construct ObjectPropertyChain in a SubObjectPropertyOf axiom 

then as a result we have  a property that is the composition of several properties. 
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• Keys: HasKey allows defining keys for a given class. 

 
iii) Simple metamodeling capabilities 

 
• Punning: OWL 2 allows using the same term for both a class and an individual at 

the same time. 

 
iv) Extended Annotations 

 
• Annotations: the construct AnnotationAssertion is used to assert annotations for 

classes, properties and individuals. 

 
• Axioms about annotation properties: (AnnotationPropertyDomain) and ranges 

(AnnotationPropertyRange) and participate in an annotation property hierarchy 

(SubAnnotationPropertyOf). These special axioms have no semantic meaning in 

the OWL 2 Direct Semantics, but carry the standard RDF semantics in the RDF-

based Semantics (via their mapping to RDF vocabulary). 

 
v) Declarations: The prior announcement for an entity such as a class is important for 

error catching where a declaration in OWL 2 for an entity such as class, datatype, 

object property, data property, annotation property, or individual indicates that an 

entity is part of the terminology of ontology. 

 
vi) Top and Bottom Properties: In addition to top and bottom classes (owl:Thing and 

owl:Nothing), OWL 2 provides top and bottom object 

properties(owl:topObjectProperty, owl:bottomObjectProperty) and data properties 

(owl:topDataProperty, and owl:bottomDataProperty). 

 
vii) IRIs: OWL 2 uses Internationalized Resource Identifiers (IRIs) for identifying the 

elements of ontologies and ontologies themselves in order to come over the language 

limitations of URIs [MPP09, SWM04] that were used in OWL 1. 
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2.5 Related Work 
 

As discussed previously, our work revolves around establishing ORM as a practical and 

methodological means for ontology engineering by combining its strengths with those of the 

Web Ontology Language (OWL). There are several approaches and tools similar to our work, 

which aim to use graphical notations such as UML and EER for ontology modeling. Also, in 

particular, some of them aim to model OWL ontologies graphically.  Some of these 

approaches and tools consider the problem of ontology modeling a problem of visualization, 

thus ignoring the underpinning semantics. However, some efforts exist to develop formal 

semantics (i.e., formalize) UML and EER. In this section, we discuss these efforts and 

compare them to our approach.  

 

Many efforts exist to use UML or UML-based notations for graphical representation of 

ontologies. Cranefield et al, in [CHD+02], proposed using UML  as an ontology visualization 

and editing tool. Although their goal is to visualize and edit ontologies, they did not consider 

the underpinning semantics. Their work does not also provide any type of mapping of the 

graphical notation (i.e., UML) into OWL. Brockmans et al, in [BVEL04], introduced a UML-

based notation for the visualization of OWL ontologies by developing a UML profile. In such 

approach, OWL is visualized based on the UML profiles of the Ontology Definition 

Metamodel (ODM4). ODM defines a set of UML metamodels and profiles for the 

development of RDF and OWL. These UML profiles adapt UML notations to provide a 

suitable visual representation of RDF and OWL ontologies. This representation of ontologies 

using ODM enables one to only visualize the ontology but does not capture the semantics of it. 

This is due to the challenges of developing well-formed and usable UML models with 

equivalent semantics in OWL.  However, in [KBB+09], Kendall et al presented some potential 

extensions to the UML profiles of ODM to address some of the requirements of OWL 2. It is 

important to note also that UML itself is a very basic notation; as will be demonstrated later, 

ORM is much more expressive as it allows 20 types of rules to be expressed graphically, while 

UML support only cardinality rules. 

 

                                                           
4 http://www.omg.org/spec/ODM/1.0/ 

http://www.omg.org/spec/ODM/1.0/
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Many ontology editing tools are available such as Protégé5, TopBraid6, NeOn7 and 

GrOWL[KWF07]. These tools are used to build and edit ontologies by enabling the creation of 

classes, object properties and various constraints. After building the needed ontology, it can be 

visualized graphically. However, such tools do not capture the ontology semantics. In our 

methodology, we build the ontology graphically using ORM notation which is then mapped 

into the equivalent OWL 2 constructs capturing the semantics of the ontology. 

 

Protégé is an open source ontology editor for OWL and recently OWL 2. Protégé is built using 

Java and it is a framework for other project plug-ins. By using protégé you can build the 

needed ontology by using all the constructs of OWL 2 based in SROIQ (D) description logic. 

One can create classes, object properties, data object properties, class expressions, individuals 

and the relations between these concepts using the various constraints of OWL 2. But here we 

still talk about building the intended ontology in a tree-based hierarchy methodology 

(composed of classes, properties and individuals) and not in a graphical context representation, 

besides not gaining the big picture of modeling. Protégé provides two main techniques of 

modeling ontologies, one is Protégé-OWL8 editor, and the other is Protégé-Frames editor, 

based on Open Knowledge Base Connectivity protocol (OKBC).  The built ontology can be 

visualized in the shape of tree indicating the classes and the relations between them, but here 

we are talking about just displaying the built ontology in a graph representation and not 

capturing the semantic of built ontology. OntoViz which is a visualization plug-in included in 

Protégé and uses the library of GraphViz9 to create an ontology in 2D graph. The built 

ontology is displayed in 2D graph showing the classes, their properties, role relations and 

instances. Indeed our work is in opposite context where we can build the needed ontology 

graphically using the extended ORM. The extended ORM includes all the needed OWL 2 

constructs for building the intended ontology. Once the ontology is built graphically in an easy 

way with capturing the semantic of ontology, it is automatically formalized into OWL 2 using 

the DogmaModeler tool. This highlights our wok in enabling the building of ontology 

graphically and in an easy way in comparison with the wide used Protégé modeling tool. 

                                                           
5 http://protege.stanford.edu/ 
6 http://www.topquadrant.com/products/TB_Composer.html 
7 http://neon-toolkit.org 
8 http://protege.stanford.edu/publications/ontology_development/ ontology101.pdf 
9 http://graphViz.org 

http://protege.stanford.edu/
http://www.topquadrant.com/products/TB_Composer.html
http://neon-toolkit.org/
http://protege.stanford.edu/publications/ontology_development/
http://graphviz.org/
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TopBraid is a commercial modeling tool for developing ontologism in semantic web context. 

TopBraid Composer is an RDF (Resource Description Framework)  and OWL editor, where 

one can create the RDF/OWL files and query over them using SPARQL. By using the 

TopBraid editor you can create and edit the needed classes, object properties and various 

constraints. After creating ontology you can display the graph representation of it, similar to 

that of Protégé. As we said before our work is opposite where you can create an ontology 

graphically using the extended ORM and consequently you will have its semantic equivalent 

in OWL 2. 

 

NeOn is an open source tool that provides an ontology engineering environment based on 

Eclipse Integrated Development Environment (IDE). It includes many plug-ins that support 

many ontology engineering activities and provides a means of visualizing the ontology as it is 

being built.  

 

GrOWL [KWF07] is also a tool for visualizing and editing OWL ontologies with advanced 

browsing and navigation tools. Our approach enables one to graphically build the ontology 

using ORM notation with semantic capturing and this Ontology is automatically mapped into 

OWL and validated.  

 

Mapping EER is done in [BCM+07] and UML is done in [BCG05]. Formalizing form EER 

and UML into DLRidf description logic is done in these two works [BCM+07, BCG05]. Jarrar 

[J07a] implemented mapping from ORM to SHOIN/OWL description logic. SHOIN is chosen 

because of its ability of expressiveness and decidability. Each rule of ORM that is supported 

by SHOIN is mapped into SHOIN. Twenty two cases of ORM constructs are mapped, where 

the purpose is to use ORM as a technique and expressive notation for ontology engineering.  

Although mapping ORM into SHOIN is achieved in [J07b], but mapping ORM into OWL is 

not achieved. In our research, mapping between ORM and OWL 2 is achieved and is 

implemented automatically by DogmaModeler tool. 
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It is also worth noting that the ICOM tool was one of the first tools to enable automated 

reasoning with conceptual modeling. ICOM [FN00] is a conceptual modeling tool, which is 

used for knowledge representation by allowing one to design multiple extended ontologies. 

ICOM was first released in 2000 [FN00], but recently it has version 3 release [FFT10]. ICOM 

has reasoning capabilities. ICOM supports ontology modeling using a graphical notation that 

is a mix of UML and EER notations. ICOM10 enables one to build ontologies using multiple 

ER or UML class diagrams with various inter and intra constraints. The class diagrams and 

constraints are formally translated into class-base logic. It can express EER and UML class 

diagrams enriched with various constrains, into classes and relations involved with 

expressions, representing various ontologies. ICOM is integrated with a description logic 

reasoning server that acts as a background inference engine to enable automatic reasoning. 

 

ICOM does not express ORM, where our work express extended ORM for full representation 

of OWL 2, where ORM is friendlier for use than ER and UML and at the same time more rich 

with needed constrains for knowledge representation. ICOM represents ER or UML class 

diagrams into DIG for the purpose of reasoning, but not into OWL 2, where in our work we 

map extended ORM into OWL 2. The implementation of mapping is done using the extended 

DogmaModeler (extended to hold mapping between ORM and OWL 2). Once we build the 

needed ontology graphically using ORM under DogmaModeler tool. An OWL 2 file is 

automatically generated. We can reason about the generated OWL 2 file by using Hermit 

reasoned(integrated with DogmaModeler) that supports OWL 2. 

 

Bārzdiņš et al. [BBC+10] proposed a hard extension of UML class diagrams to visualize OWL 

2 in a dense way, but here we still talking about visualization method that not exactly capture 

the semantics of OWL 2. Here textual representation is still used to represent OWL 2 

constructs in a graphical way like disjoint, equivalent and others, so here the representation of 

OWL 2 constructs is not graphically pure while our work semantically represents OWL 2 

constructs with pure graphic notations. The proposed extension is implemented to visualize 

OWL 2 using a UML graphical editor called OWLGrEd. As we said, in our work we are 

talking about extending ORM to graphically represent the constructs of OWL 2 that are not 

                                                           
10 www.inf.unibz.it/~franconi/icom/files/icommanual.pdf 
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represented by ORM, in order to be able to use ORM as an interface of OWL 2 in order to be 

able to build an ontology graphically in an easy way . This extension is implemented using the 

extended tool (DogmaModeler). Some of the extension that is done in [BBC+10] to represent 

uncovered OWL 2 constructs by UML is already included in ORM like equivalent and disjoint 

properties, in addition to the Boolean relations between class and class expression or even 

between class expressions themselves. OWL 2 is indicated by its expressive power of class 

expressions and at the same time ORM graphically do represent the relation between class and 

class expression, as also between class expressions themselves. Where ORM as a basis of 

concepts and relations between them in addition to the used constraints graphically represents 

the class expressions like denoting that a class A is a subclass of an expression of ‘some values 

from’ or ‘all values from’.  All these features indicate that ORM is a robust graphical tool as a 

fact oriented conceptual modeling tool and contains a rich set of constraints not covered in 

UML and ER.  

 

Many other similar tools and frameworks which enable a text tree-based methodology for 

knowledge representation and not enabling graphical building of ontology are available such 

as, IBM Integrated Ontology Development Toolkit [IIODT11], SWOOP12, DOME, and 

DERI13 Ontology Management Environment among many others. Although all of these tools 

allow a graphical representation of the ontology, this representation is merely a visualization 

that ignores the underpinning semantics, in contrast to our proposed ORM ontology 

engineering paradigm. 

 

The investigation of the ORM notation is done by formalizing it using both DLRidf description 

logic [J07a, K07] and SHOIN description logic [HJ10, J07b]. The main purpose of this 

formalization/mapping was to enable automated reasoning on the formal properties of ORM 

diagrams, such as detecting constraint contradictions and implications. Thus, in this study of 

ORM, the native semantics of ORM were used which were expressed in DLR and SHOIN 

Description Logics. Anoher point we are concerning about SROIQ which is the logic 

underpinning OWL 2 that is decidable and supported by many reasoners and not DLRidf as in 

                                                           
11 http://www.alphaworks.ibm.com/tech/ 
12  http://www.mindswap.org/2004/SWOOP/ 
13 http://dome.sourceforge.net/ 

http://www.alphaworks.ibm.com/tech/
http://www.mindswap.org/2004/SWOOP/
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[K07]. In [BMST07] an attempt of mapping OWL into ORM/RIDL was done but it was not 

complete where not all ORM constructs were covered in this research as Ring constraints and 

role disjoitness; In addition the author did not rely in specified description logic and relied in 

OWL and not OWL 2 that includes new features where OWL 2 was not available at that time 

of research. However, in the mapping presented in this thesis, we have altered the native 

semantics of ORM to adapt it to that of OWL 2 (i.e., we have used the semantics of OWL 2 

not of ORM). That is, we have expressed the semantics of OWL 2 graphically using the ORM 

notation, without employing the semantics of ORM. For example, ORM subtypes are proper 

subtypes. We say that 𝐵𝐵 is a proper subtype of 𝐴𝐴 if and only if the population of 𝐵𝐵 is always a 

subset of the population of 𝐴𝐴, and 𝐴𝐴 ≠ 𝐵𝐵. This implies that the subtype relationship is acyclic; 

hence, loops are illegal in ORM. However, such loops according to the semantics of OWL 2 

are allowed which means that the classes involved in the loop are equivalent. Furthermore, 

object types (i.e., classes) in ORM are mutually exclusive. That is, according to ORM 

semantics, it is not allowed for an object-type to be a subtype of two different object-types, 

unless these two supertypes have a common supertype. However, such a multiple inheritance 

is allowed according to the semantics of OWL 2.  

 

Another important difference between ORM and OWL 2 semantics is that ORM adopts a 

close world assumption while OWL 2 adopts an open world assumption [NB02]. A closed 

world assumption states that any statement that is not known to be true or false is false. On the 

contrary, an open world assumption states that, unless the truth-value of a statement is 

explicitly determined, it is unknown. For instance, originally, ORM assumes that any two 

object types are disjoint, without the need to state it explicitly (closed world assumption). 

Here, we follow OWL 2’s open world assumption where any two object types are not known 

whether they are disjoint or not, except if stated explicitly. The same applies, for example, to 

instances (assertions), where OWL 2 semantics states that any two instances are not 

considered different (unequal) or equal unless it is explicitly stated (open world assumption). 

In short, in this thesis, we don’t present or follow ORM semantics, but rather use the ORM 

graphical notation to depict OWL 2 constructs using OWL 2 semantics.   
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Chapter Three 
 
Mapping ORM into SROIQ/OWL 2 
 
 
 
3.1 Introduction 

Since we concentrate on the ability of expressivity and decidability for our mapping results 

(SROIQ achieves this ability [HST06]), we will use SROIQ Description Logic (which is the 

most common in ontology engineering and it is the language underpinning OWL 2) as a 

reference to map from ORM into OWL 2. First, we formally map the ORM construct into 

SROIQ Description Logic and then we represent this model in OWL 2.  Our scope of 

conversion is every construct of ORM. 

 
3.2 Use Case 

Before delving into the details of the mapping of ORM using SROIQ/OWL2, we first present 

a use case where we map the sample ORM diagram in Figure 2.1 into OWL2. Part of the 

mapping is depicted in Figures 3.1 through 3.3 along with a brief discussion. The full mapping 

using OWL/XML is provided in Appendix A-1. 

  

The basic ORM constructs are mapped to OWL 2 as follows. An object/value type is mapped 

as a Class in OWL 2 whereas an ORM role is mapped as an ObjectProperty/DataProperty. 

Before mapping the ORM rules and constraints to OWL 2, one must first declare the 

object/value types and roles in OWL 2. Fig. 3.1 depicts the declarations of the object types 

Person and Company and the ORM relation WorksFor/Employs of Fig. 3.2.a. The complete 

declarations of the ORM diagram are provided in the Appendix. 
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1. <Declaration> 
2.    <Class IRI="#Person"/> 
3. </Declaration> 

 
4. <Declaration> 
5.    <Class IRI="#Company"/> 
6. </Declaration> 

7. <Declaration> 
8.    <ObjectProperty IRI="#Employs"/> 
9. </Declaration> 

 
10. <Declaration> 
11.    <ObjectProperty IRI="#WorksFor"/> 
12. </Declaration> 

Figure 3.1: OWL 2 declarations of Classes and Object Properties  

The diagram in Fig. 3.2.a contains 9 rules which we map into SROIQ/OWL-2 in Fig. 3.2.b 

below. These rules are: (1) Subsumption (subtype), (2) Mandatory, (3) Role Uniqueness, (4) 

Total Constraint, (5) Exclusive Constraint, (6) Subset Constraint, (7) Disjunctive Mandatory 

(inclusive-or), (8)Exclusion, and (9)Value Constraint.  

 

(a) The ORM diagram in Fig. 2.1.a 
Subtype:  Male ⊑  Person, Female ⊑  Person 
1. <SubClassOf> 
2.    <Class IRI="#Female"/> 
3.    <Class IRI="#Person"/> 
4. </SubClassOf> 
5. <SubClassOf> 
6.    <Class IRI="#Male"/> 
7.    <Class IRI="#Person"/> 
8. </SubClassOf> 

Mandatory: Person ⊑  ∃HasGender. String 

9. <EquivalentClasses> 
10.    <Class IRI="#Person"/> 
11.    <DataSomeValuesFrom> 
12.      <DataProperty IRI="#HasGender"/> 
13.      <Datatype abbreviatedIRI="xsd:string"/> 
14.   </DataSomeValuesFrom> 
15. </EquivalentClasses> 

Role Uniqueness: Person ⊑ ≤ 1HasGender. String 

16. <EquivalentClasses> 
17.   <Class IRI="#Person"/> 
18.    <DataMaxCardinality cardinality="1"> 
19.     <DataProperty IRI="#HasGender"/> 
20.     <Datatype abbreviatedIRI="xsd:string"/> 
21.    </DataMaxCardinality> 
22.  </EquivalentClasses> 

Total and Exclusive Constraints: Person ⊑ Male Female,  
                        Male ⊓ Female ≡ ⊥ 
23. <DisjointUnion> 
24.    <Class IRI="#Person"/> 
25.    <Class IRI="#Female"/> 
26.    <Class IRI="#Male"/> 
27. </DisjointUnion> 

 Subset: AffiliatedWith⊑ WorksFor 
28. <SubObjectPropertyOf> 
29.    <ObjectProperty IRI="#AffiliatedWith"/> 
30.    <ObjectProperty IRI="#WorksFor"/> 
31. </SubObjectPropertyOf> 

Disjunctive Mandatory: 
Car ⊑  ∃OwnedBy. Person ∃OwnedBy. Company 

32. <EquivalentClasses> 
33.    <Class IRI="#Car"/> 
34.    <ObjectUnionOf> 
35.      <Class IRI="#OwnedByC.Company"/> 
36.      <Class IRI="#OwnedByP.Person"/> 
37.    </ObjectUnionOf> 
38. </EquivalentClasses> 

Exclusion: OwnedBy. Person ⊑  ¬ OwnedBy. Company 

39. <EquivalentClasses> 
40.    <Class IRI="#OwnedByC.Company"/> 
41.    <ObjectComplementOf> 
42.      <Class IRI="#OwnedByP.Person"/> 
43.    </ObjectComplementOf> 
44. </EquivalentClasses> 

Value Constraint: Gender ⊑  STRING, Gender ≡ {M, F} 

45. <DataPropertyRange> 
46.   <DataProperty IRI="#HasGender"/> 
47.     <DataOneOf> 
48.       <Literal datatypeIRI="&xsd;string"> M 

</Literal> 
49.       <Literal datatypeIRI="&xsd;string"> F 

</Literal> 
50.      </DataOneOf> 
51.  </DataPropertyRange>  

(b) The SROIQ/OWL 2 mapping of the ORM rules in (a) 
Figure 3.2: The ORM diagram of Fig. 2.1.a and the mapping of its rules to SROIQ/OWL 2 
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Subsumption (subtype) is depicted as an arrow (→) in ORM. In our example, this arrow is 

seen in two places: between Male and Person, and between Female and Person. This means 

that all instances of Male (all males) form a subset of the population of Person (all persons). 

This is also true for the object-type Female. In OWL 2, SubClassOf construct is used to 

represent this rule (lines 1-8, Fig. 3.2.b). 

Mandatory is depicted as a dot (•) on the line connecting Person object type with hasGender 

role. This constraint indicates that, in every interpretation of this schema, each instance of the 

object-type Person must have at least one Gender. This rule is mapped in OWL 2 in lines 9-

15, Fig. 3.2.b.  

Role Uniqueness is depicted by an arrow ↔ spanning along the role hasGender. In OWL 2, 

we map this rule as shown in lines 16-22 in Fig. 3.2.b. This constrains indicates that, in every 

interpretation of this schema, each instance of the object-type Person must have at most one 

Gender.  

 

Total and Exclusive Constraints are depicted as (⨀) and (⨂) between the Male and Female 

subtypes. The Total Constraint means that the population of Person is exactly the union of the 

population of Male and Female subtypes. The exclusive constraint means that the intersection 

of the population of Male and Female is always empty. In our example, we use DisjointUnion 

OWL 2 construct (lines 23-27, Fig. 3.2.b) which expresses both Total and Exclusive 

constraints.  

 

Subset Constraint is depicted in the ORM diagram in Fig. 3.2.a as an arrow (�) between the 

roles AffiliatedWith and WorksFor; which means that the role AffiliatedWith is a subset of role 

WorksFor. That is, all Persons who are affiliated with a Company must work for that 

company. This is written in SROIQ as: AffiliatedWith ⊑ WorksFor. Representation in OWL 

2 is done using SubObjectPropertyOf  (lines 28-31, Fig. 3.2.b) 

 

Disjunctive Mandatory (inclusive-or), is depicted as (⨀) between two or more roles, 

illustrating that the disjunction of these roles is mandatory for members. In our example, each 

instance of object-type Car must be owned by at least a Person or a Company or both. This is 
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written in SROIQ description logic as: Car ⊑  ∃OwnedBy. Person ⊔

 ∃OwnedBy. Company). This rule is mapped in OWL 2 in lines 32-38. 

 

Exclusion, is represented as (⨂) between the roles it connects (in Fig. 3.a, it connects between 

the two OwnedBy roles of object-type Car). It means that each member of the population 

cannot play both roles constrained by exclusion. In the example, no car can be owned by a 

Person and a Company at the same time (OwnedBy. Person ⊑  ¬ OwnedBy. Company). 

Representation in OWL 2 is depicted in Fig 3.2.b (lines 39-44). 

 

Value Constraint, is represented as {‘M’,’F’} above the Gender dashed-line ellipse. This 

constraint indicates the possible set of values that the value type Gender can be populated 

with. Here, Gender can take any of the two STRING values: ‘M’ and ‘F’. No other value is 

allowed. This constraint is mapped in OWL 2 in lines 45-51.  

 
In the following subsections we thoroughly discuss the mappings of the ORM constructs into 
OWL 2 and its underpinning SROIQ Description Logic. 
 
3.3 Object-Types and relations 

3.3.1 Binary and N-ary relationships (𝒏𝒏 ≥ 𝟏𝟏): 
 
ORM supports n-ary relationships, where 𝐻𝐻 ≥ 1. Each argument of a relationship in ORM is 

called a role. For example, consider the binary ORM relationship WorksFor/Employs in Fig. 

3.2.a which has two roles, namely, WorksFor and Employs. However, SROIQ only supports 

binary relationships. Note that an ORM role is represented as a relationship in SROIQ. Thus, 

a binary ORM relationship is represented by two SROIQ relationships (that represent ORM 

roles) in addition to an inverse axiom to state that both SROIQ relationships are inverse to 

each other. Fig. 4.a (Rule-1) depicts a binary ORM relationship, its formalization into SROIQ, 

and its mapping into OWL 2. Fig. 3.3.b (Case-1) shows the general case of an ORM n-ary 

relationship, which cannot be represented in SROIQ/OWL 2. One can refer to [J07a] for the 

representation of Case-1 using DLR Description Logic. In this case, however, the n-ary 

relationship can be converted to binary relationships [H01] and then mapped into 

SROIQ/OWL 2. 
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The mapping of the binary ORM relation presented in Rule-1 represents the case where A and 

B (Fig. 3.3.a) are both object-types (equivalent to OWL 2 classes). However, in the case where 

either A or B are ORM value-types, the value-type is mapped into a “Literal” (the universal 

datatype) in OWL 2, or to any of its sub-datatypes. If, for example, B is a value-type, as 

depicted in Rule-1’, the ORM role rA is mapped into an OWL 2 DataProperty with datatype 

“Literal”. Notice that this DataProperty is called rAB; the concatenation of the names of both 

the ORM role (rA) and the ORM value-type (B). Also note that we don’t need an additional 

inverse axiom, because in this case only one DataProperty is needed to represent the ORM 

relation between an object-type and a value-type. 

 

 

(a) (b) 
Figure 3.3: Binary and N-ary relationship 

 
3.3.2 Unary Relationship: 

Although unary roles are allowed in ORM, they cannot be represented directly in 

SROIQ/OWL 2. The example below (Fig. 3.4.a) shows an ORM unary relationship which 

means that a person may smoke; or in FOL [J07b]: ∀𝑥𝑥 (𝑆𝑆𝐻𝐻𝐻𝐻𝑘𝑘𝑒𝑒𝐻𝐻(𝑥𝑥) → 𝑃𝑃𝑒𝑒𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻(𝑥𝑥)). The 

population of this fact is either true or false. In order to map ORM unary roles into 

SROIQ/OWL 2, we introduce a new class called BOOLEAN, which takes one of two values: 

{TRUE, FALSE}. Each ORM unary fact is seen as a binary relationship in SROIQ/OWL 2, 

where the second concept is BOOLEAN. Rule-2 in Fig. 3.4.b presents the general case 

mapping of ORM unary fact types to SROIQ/OWL 2. 
 

<ObjectPropertyDomain>
<ObjectProperty IRI="#rA"/>
<Class IRI="#A"/>

</ObjectPropertyDomain>
<ObjectPropertyDomain>

<ObjectProperty IRI="#rB"/>
<Class IRI="#B"/>

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="#rA"/>
<Class IRI="#B"/>

</ObjectPropertyRange>
<ObjectPropertyRange>

<ObjectProperty IRI="#rB"/>
<Class IRI="#A"/>

</ObjectPropertyRange>
<InverseObjectProperties>

<ObjectProperty IRI="#rA"/>
<ObjectProperty IRI="#rB"/>

</InverseObjectProperties>

Rule-1

A⊑∀rA.B, B⊑∀rB.A, rB⊑∀rA¯
A BrA rB

A⊑∀rA.B, B⊑ LITERAL
A BrA

Rule-1’

<DataPropertyDomain>
<ObjectProperty IRI="#rAB"/>
<Class IRI="#A"/>

</DataPropertyDomain>

<DataPropertyRange>
<DataProperty IRI="#rAB"/>
<Datatype 
abbreviatedIRI="rdfs:Literal"/>

</DataPropertyRange>

n > 2

A1 An

rnr1

Cannot be represented in SROIQ/OWL2

Case-1
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 (a)                                            (b) 

Figure 3.4: Unary Relationship 
 
3.4 Subtypes 
 
ORM subtypes are proper subtypes. That is, as discussed earlier, we say that 𝐵𝐵 is a proper 

subtype of 𝐴𝐴 if and only if the population of 𝐵𝐵 is always a subset of the population of 𝐴𝐴, and 

𝐴𝐴 ≠ 𝐵𝐵, i.e., loops are illegal in ORM. However, because the focus of this thesis is to establish 

a graphical representation of OWL 2, we adopt the semantics of OWL 2, whose subtype 

relation, SubClassOf, is not a proper subtype (i.e., loops are allowed). Thus, for example, the 

axiom “Female is a Person” is written using OWL 2 semantics as: 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 ⊑ 𝑃𝑃𝑒𝑒𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻, 

without the need to add the axiom (𝑃𝑃𝑒𝑒𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻 ⋢ 𝑊𝑊𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻), as opposed to following ORM 

semantics. Rule-3 presents the mapping of the general case of subtypes using SROIQ/OWL 2. 

 
3.5 Total Constraint 
 
Total constraint (⨀) in ORM is equivalent to UnionOf construct in OWL 2. This rule means 

that the population of the supertype is exactly the union of the population of all subtypes 

constrained by this rule. Rule-4 represents the formalization of the general case. 

 
3.6 Exclusive Constraint 

 
ORM exclusive constraint (⨂) is equivalent to DisjointClasses construct in OWL 2. It means 

that the population of the subtypes constraint by this rule is pairwise distinct, i.e., the 

intersection of the population of each pair of the subtypes must be empty. Rule-5 represents 

the formalization of the general case of the exclusive constraint. 

Please note that in most of the examples and general case mappings in this thesis, the OWL 2 

declarations are omitted due to space limitations. 

A ⊑∀r.Boolean

<Declaration>
<Class IRI="#A"/>

</Declaration>
<Declaration>

<DataProperty IRI="#r"/>
</Declaration>
<DataPropertyDomain>

<DataProperty IRI="#r"/>
<Class IRI="#A"/>

</DataPropertyDomain>
<DataPropertyRange>
<DataProperty IRI="#r"/>
<Datatype 
abbreviatedIRI="xsd:boolean"/>

</DataPropertyRange>

A r
Rule-2

Person
Smokes

Person ⊑∀Smokes.BOOLEAN

<Declaration>
<Class IRI="#Person"/>

</Declaration>
<Declaration>

<DataProperty IRI="#Smokes"/>
</Declaration>
<DataPropertyDomain>

<DataProperty IRI="#Smokes"/>
<Class IRI="#Person"/>

</DataPropertyDomain>
<DataPropertyRange>
<DataProperty IRI="#Smokes"/>
<Datatype 
abbreviatedIRI="xsd:boolean"/>

</DataPropertyRange>
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<EquivalentClasses>
<Class IRI="#A"/>
<ObjectUnionOf>

<Class IRI="#A1"/>
<Class IRI="#A2"/>
…
<Class IRI="#An"/>

</ObjectUnionOf>
</EquivalentClasses>

Rule-4 A

A1 A2 An…
⨀

𝐴𝐴 ⊑ 𝐴𝐴1⨆ 𝐴𝐴2 ⨆…⨆ 𝐴𝐴𝐻𝐻 

 
  

<DisjointClasses>
<Class IRI="#A1"/>
<Class IRI="#A2"/>
…
<Class IRI="#An"/>    

</DisjointClasses>

Rule-5 �𝐴𝐴𝑖𝑖  ⨅ 𝐴𝐴𝑗𝑗  ≡ ⊥� A

A1 A2 An…
⨂

𝑆𝑆𝐻𝐻𝑒𝑒 𝑒𝑒𝐻𝐻𝑒𝑒ℎ 𝑖𝑖 ∈ {1, … , 𝐻𝐻 − 1}, 
𝑗𝑗 ∈ {𝑖𝑖 + 1, … ,𝐻𝐻}  

 
  

(a) (b) (c) 

Figure 3.5: Formalization of ORM Subtype, Total Constraint and Exclusive Constraint. 

 

3.7 Mandatory Constraints 

3.7.1 Role mandatory: 
 
ORM’s Role mandatory constraint is depicted as a dot on the line connecting a role with an 

object type. Rule-6 of Fig. 3.6.a presents the general case formalization of this rule. Each 

instance of the object-type 𝐴𝐴 must be related to at least one instance of object-type 𝐵𝐵 by the 

relation 𝑒𝑒𝐴𝐴/𝑒𝑒𝐵𝐵. In OWL 2, this rule is mapped using ObjectSomeValuesFrom/ 

DataSomeValuesFrom constructs as shown in Fig. 7.a. ObjectSomeValuesFrom is used when 

𝐵𝐵 is object-type, where as DataSomeValuesFrom is used when 𝐵𝐵 is value-type. OWL 2 

qualified minimum cardinality (ObjectMinCardinality/DataMinCardinality) construct can also 

be used to restrict the population of A to at least relate with one instance of B. However, the 

usage of ObjectSomeValuesFrom/ DataSomeValuesFrom is more elegant than 

MinCardinality. 

 
3.7.2 Disjunctive Mandatory: 
 
The Disjunctive Mandatory constraint is used to constrain a set of two or more roles connected 

to the same object type. It means that each instance of the object type’s population must play 

at least one of the constrained roles. In the general case presented in Fig. 3.6.b along with its 

formalization, each instance of object-type A must play at least one of the constrained roles: 

(𝑒𝑒1,…,𝑒𝑒𝐻𝐻 ) related to the instances of classes A1, … An respectively.    
 

B⊑A

<SubClassOf>
<Class IRI="#B"/>
<Class IRI="#A"/>

</SubClassOf>

Rule-3 A
B
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<EquivalentClasses>
<Class IRI="#A"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#rA"/>
<Class IRI="#B"/>

</ObjectSomeValuesFrom>
</EquivalentClasses> 

Rule-6

A ⊑∃rA.B A BrA rB

 

A
A1r1

Anrn

⨀

<EquivalentClasses>
<Class IRI="#r1.A1"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#r1"/>
<Class IRI="#A1"/>

</ObjectSomeValuesFrom>
</EquivalentClasses>

…
<EquivalentClasses>

<Class IRI="#rn.An"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#rn"/>
<Class IRI="#An"/>

</ObjectSomeValuesFrom>
</EquivalentClasses>

<EquivalentClasses>
<ObjectUnionOf>

<Class IRI="#r1.A1"/>
…

<Class IRI="#rn.An"/>
</ObjectUnionOf>
<Class IRI="#A"/>

</EquivalentClasses>

A ⊑∃ r1.A1⊔…⊔ ∃ rn.An

Rule-7

 
(a) (b) 
Figure 3.6: Mapping of ORM Mandatory Constraints 

 

3.8 Uniqueness Constraints 
One can distinguish between three types of Uniqueness Constraints in ORM, namely, role uniqueness, 

predicate uniqueness, and external uniqueness. 

3.8.1 Role Uniqueness: 
 
Role uniqueness is represented by an arrow spanning a single role in a binary relationship. 

Rule-8 of Fig. 3.7.a presents the general case mapping of this rule. This constraint means that 

each instance of an object-type A plays the relation rA for at most one instance of B. Role 

uniqueness is mapped to OWL2 using qualified maximum cardinality 

(ObjectMaxCardinality/DataMaxCardinality) construct (restricted by ‘1’).  

 
3.8.2 Predicate Uniqueness: 
 
This constraint is represented in ORM, as shown in Fig. 3.7.b, by an arrow spanning more than 

a role in an n-ary relationship. In the example shown in Fig. 3.7.b, in any instance of this 

relation, both Student and Vehicle must be unique together, i.e., functional dependency. 

Although this constraint can be represented using First Order Logic (FOL) and DLRidf 

Description Logic [J07a, J07b], it cannot be represented using SROIQ/OWL 2. 

 
3.8.3 External Uniqueness: 
 
As shown in Fig. 3.7.c, ORM External Uniqueness constraint (denoted by ‘U’), applies to 

roles from different relationships. The roles that participate in such a uniqueness constraint 

uniquely refer to an object-type. For example (Fig. 3.7.c), the combination of (Author, Title, 
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Edition) must be unique, i.e., different values of (Author, Title, Edition) refer to different 

books. This constraint cannot be represented using SROIQ/OWL 2. 

 

n > 2
i ≠ nr1 ri rn

Case-2

Cannot be represented in SROIQ/OWL2

… has ... in … 
Student

Grade

Course

Example

 

r1 r2

rn-1 rn

U

Case-3

Cannot be represented in SROIQ/OWL2

WrittenBy/Writes

U

Example

Book

Author

Title

Edition

Has/isOf

Has/isOf  

(a) (b) (c) 

Figure 3.7: Uniqueness Constraints 
  

3.9 Frequency Constraints 
 
We distinguish between frequency constraints that span (1) a single role, which we call ‘Role 

Frequency’ constraints and (2) multiple roles, which we call ‘Multiple-Role Frequency’ 

constraints. 

 
3.9.1 Role Frequency:  
 
A frequency constraint (min-max) on a role is used to specify the number of occurrences that 

this role can be played by its object-type. Fig. 3.8.a depicts the general case formalization of 

this rule. This constraint means that role rA is played by the object-type A for a number of 

occurrences between n and m. We map this constraint to OWL2 by using the qualified number 

restrictions of OWL 2 ObjectMinCardinality/DataMinCardinality and 

ObjectMaxCardinality/DataMaxCardinality constructs.   

 
3.9.2 Multiple-Role Frequency:  
 
A multiple-role frequency constraint spans more than one role (Figure 3.8.b). This constraint 

means that, in the population of the constraint relationship, the constraint roles must be played 

together by the related object-types for a number of occurrences between n and m. Multiple-

role Frequency Constraint cannot be formalized in Description Logic [J07b]  and OWL 2. 
 

< EquivalentClasses>
<Class IRI="#A"/>

<ObjectMaxCardinality cardinality="1">
<ObjectProperty IRI="#rA "/>
<Class IRI="#B"/>

</ObjectMaxCardinality>
</EquivalentClasses>

Rule-8

A ⊑ ≤1 rA .BA BrA rB
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A BrA rB

n-m
𝐴𝐴 ⊑  ∃≥𝐻𝐻 ,≤𝐻𝐻  𝑒𝑒𝐴𝐴.𝐵𝐵 ⊔ ⊥ 

Rule-9

<ObjectPropertyRange>
<ObjectProperty IRI="#rA"/>
<ObjectMinCardinality cardinality="n">

<ObjectProperty IRI="#rA"/>
<Class IRI="#B"/>

</ObjectMinCardinality>
</ObjectPropertyRange
<ObjectPropertyRange>

<ObjectProperty IRI="#rA"/>
<ObjectMaxCardinality cardinality="m">

<ObjectProperty IRI="#rA"/>
<Class IRI="#B"/>

</ObjectMaxCardinality>
</ObjectPropertyRange>

 

1 i1 ui2 ir

n-m
Case-4

Not supported in SROIQ/OWL2

 

(a) (b) 
Figure 3.8: Frequency Constraints 

  
3.10 Value Constraint 
 
The value constraint in ORM indicates the possible set of values (i.e., instances) that an 

object-type can be populated with. A value constraint on an object-type A is denoted as a set 

of values {x1, x2, …, xn} depicted near an object type. Value constraints can be declared only 

on ORM Lexical Object Types (LOT), which are depicted as dotted-line ellipses, and the 

values should be well-typed, i.e., their data types should be either String such as {‘hi’, ‘98’, 

‘it’} or Number such as {3,4,5}. Notice that quotes are used to distinguish string values from 

number values. It is worth noting that OWL 2 supports many data types besides integer and 

string which is an advantage of OWL 2 over OWL 1 (which only supports integers and 

strings). OWL 2  DataOneOf construct is used to map the Value constraints (Fig. 3.9). 
 

 
Figure 3.9: Value Constraints 

 
3.11 Subset Constraint  
 
The subset constraint (→) between two roles is used to restrict the population of these roles so 

as one is a subset of the other. Fig. 3.10.a (Rule-11) depicts the general case mapping into 

SROIQ/OWL 2. It shows that all instances of A which plays the role‘s’ must also play the role 

Rule-10

< DataPropertyRange>
<DataProperty IRI="#rB"/>

<DataOneOf>
<Literal datatypeIRI="&xsd;string"> x1 </Literal>
<Literal datatypeIRI="&xsd;string"> x2 </Literal>

. . .
<Literal datatypeIRI="&xsd;string"> xn </Literal>

</DataOneOf>
</DataPropertyRange>

rB⊑ STRING,  rB ≡ {x1,…,xn}

{‘x1’, … , ‘xn’}
rB⊑NUMBER,  rB ≡ {x1,…,xn}

{x1, … , xn}
... Br ... Br

< DataPropertyRange>
<DataProperty IRI="#rB"/>

<DataOneOf>
<Literal datatypeIRI="&xsd;int"> x1 </Literal>
<Literal datatypeIRI="&xsd;int"> x2 </Literal>

. . .
<Literal datatypeIRI="&xsd;int"> xn </Literal>

</DataOneOf>
</DataPropertyRange>
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‘r’. Rule-12 formalizes the case of subset constraint between two relations: the set of tuples of 

the subsuming relation is a subset of the tuples of the subsumed relation. 

  
ORM also allows subset constraints between tuples of roles (not necessarily contiguous) as 

shown in case-5, where each ith and jth roles must have the same type.  The population of the 

set of the jth roles is a subset of the population of the set of the ith roles. However, this last case 

cannot be represented in SROIQ/OWL 2. 

 

 
(a) (b) (c) 

Figure 3.10: Subset Constraints 
 
3.12 Equality Constraint  
 
Similar to the subset constraint, the equality constraint (↔) between roles and relations are 

mapped as shown in rules 13 and 14 (Fig. 3.11) respectively. 

 

 
(a) (b) (c) 

Figure 3.11: Equality Constraints 
 
 
 
 
 

C

Br

s
A s.C ⊑ r.B

< EquivalentClasses>
<Class IRI="#r.B"/>     
<ObjectAllValuesFrom>

<ObjectProperty IRI="#r"/>
<Class IRI="#B"/>

</ObjectAllValuesFrom>
< /EquivalentClasses>
< EquivalentClasses>

<Class IRI="#s.C"/>
<ObjectAllValuesFrom>

<ObjectProperty IRI="#s"/>
<Class IRI="#C"/>              

</ObjectAllValuesFrom>
< /EquivalentClasses>

< SubClassOf>
<Class IRI="#s.C"/>
<Class IRI="#r.B"/>

< /SubClassOf>

Rule-11
r

s
s  ⊑ r

Rule-12 ...

......

...

< SubObjectPropertyOf>
<ObjectProperty IRI="#s"/>
<ObjectProperty IRI="#r"/>

< /SubObjectPropertyOf>

ri1 ri2 rik

rj1 rj2 rjk

Case-5

Cannot be represented in SROIQ/OWL2

R1

R2

r

s
s  ≡ r

Rule-14 ...

......

...

< EquivalentObjectProperties>
<ObjectProperty IRI="#s"/>
<ObjectProperty IRI="#r"/>

< /EquivalentObjectProperties>

C

Br

s
A s.C ≡ r.B

< EquivalentClasses>
<Class IRI="#r.B"/>     
<ObjectAllValuesFrom>

<ObjectProperty IRI="#r"/>
<Class IRI="#B"/>

</ObjectAllValuesFrom>
< /EquivalentClasses>
< EquivalentClasses>

<Class IRI="#s.C"/>
<ObjectAllValuesFrom>

<ObjectProperty IRI="#s"/>
<Class IRI="#C"/>              

</ObjectAllValuesFrom>
< /EquivalentClasses>

< EquivalentClasses>
<Class IRI="#s.C"/>
<Class IRI="#r.B"/>

< /EquivalentClasses>

Rule-13
ri1 ri2 rik

rj1 rj2 rjk

Case-6

Cannot be represented in SROIQ/OWL2

R1

R2
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3.13 Exclusion Constraint  
 
Similar to the subset and equality constraints, the exclusion constraint (⨂) between roles and 

relations are mapped as shown in rules 15 and 16 (Fig.3.15) respectively. OWL 2 construct 

(DisjointObjectProperty) is a new feature of OWL 2 which states that two roles are disjoint to 

each other ( It is representation in  SROIQ is “Dis(s,r)”). 

 

 
(a) (b) (c) 

Figure 3.12: Exclusion Constraints 
 
3.14 Ring Constraints   
 
ORM allows ring constraints to be applied to a pair of roles (i.e., on binary relations) that are 

connected directly to the same object-type, or indirectly via super types. Six types of ring 

constraints are supported by ORM as illustrated in what follows. 

 
OWL 2 supports Reflexive, Irreflexive, and Asymmetric object properties as a new feature in 

addition to Symmetric and Transitive that are supported by OWL 1. 

 
3.14.1 Symmetric (sym): 
 
This constraint states that if a relation holds in one direction, it also holds on the other. Fig. 

3.13.a (Rule-17) depicts the general case formalization using SROIQ/OWL2.  

 
3.14.2 Asymmetric (as): 
 
Asymmetric constraint is the opposite of the symmetric constraint. If a relation holds in one 

direction, it cannot hold on the other. Fig. 3.13.b (Rule-18) depicts the general case 

formalization using SROIQ/OWL2.  

r

s
s ⊑ ¬ r

Rule-16 ...

......

...

< DisjointObjectProperties>
<ObjectProperty IRI="#s"/>
<ObjectProperty IRI="#r"/>

< /DisjointObjectProperties>

C

Br

s
A s.C ⊑ ¬ r.B

< EquivalentClasses>
<Class IRI="#r.B"/>     
<ObjectAllValuesFrom>

<ObjectProperty IRI="#r"/>
<Class IRI="#B"/>

</ObjectAllValuesFrom>
< /EquivalentClasses>
< EquivalentClasses>

<Class IRI="#s.C"/>
<ObjectAllValuesFrom>

<ObjectProperty IRI="#s"/>
<Class IRI="#C"/>              

</ObjectAllValuesFrom>
< /EquivalentClasses>

< EquivalentClasses>
<Class IRI="#s.C"/>
<ObjectComplementOf>      

<Class IRI="#r.B"/>
</ObjectComplementOf>

< /EquivalentClasses>

Rule-15
ri1 ri2 rik

rj1 rj2 rjk

Case-7

Cannot be represented in SROIQ/OWL2

⨂ ⨂
⨂

R1

R2
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3.14.3 Antisymmetric (ans): 
 
The antisymmetric constraint is also an opposite of the symmetric constraint, but not exactly the 

same as asymmetric. The difference is that all asymmetric relations must be irreflexive, which is 

not the case for antisymmetric.  Fig. 3.13.c (Case-8) shows an example of this constraint in 

addition to the general case formalization in SROIQ. Note that, up to our knowledge, this 

constraint cannot be expressed in OWL 2 because one cannot express role complement in OWL 

2. 

 
3.14.4 Irreflexive (ir) 
 
The Irreflexive ring constraint states that an object cannot participate in a relation with 

himself. For example a person cannot be the ‘parent of’ himself (cannot play the role of 

‘ParentOf’ with himself). However, for example, one can love himself, i.e., the ‘love’ relation 

is reflexive; a ring constraint supported by SROIQ/OWL but not by ORM. Fig. 3.13.d (Rule-

19) depicts the general case formalization using SROIQ/OWL 2. 

 
3.14.5 Acyclic (ac):  
 
The acyclic constraint is a special case of the irreflexive constraint. For example, stating that 

the relation ‘ParentOf’ is acyclic means that a person cannot be directly (or indirectly through 

a chain) ‘ParentOf’ himself. In ORM, this constraint is preserved as a difficult constraint. 

“Because of their recursive nature, acyclic constraints maybe expensive or even impossible to 

enforce in some database systems”[ J07a].Up to our knowledge, acyclicity with any depth on 

binary relations cannot be represented in SROIQ/OWL 2 (see Fig. 3.13.e). 

 
3.14.6 Intransitive (it): 
 
A relation R is intransitive over its population 𝑖𝑖𝑆𝑆𝑆𝑆 ∀𝑥𝑥,𝑇𝑇, 𝑧𝑧 [𝑅𝑅(𝑥𝑥,𝑇𝑇) ⋀ 𝑅𝑅(𝑇𝑇, 𝑧𝑧) →  𝑅𝑅(𝑥𝑥, 𝑧𝑧)]. For 

example, if a Person X is FatherOf Person Y and Y is FatherOf Z, then it cannot be that X is 

FatherOF Z. See Fig. 3.13.f for the general case formalization in SROIQ. However, as in the 

case of the antisymmetric constraint, this constraint cannot be expressed in OWL2 because 

one cannot express role complement in OWL2.  
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siblingOf/

Sym ( R )
Rule-17

<SymmetricObjectProperty>
<ObjectProperty IRI="#R"/>         

</SymmetricObjectProperty>

Person
⁰sym

(R: siblingOf) 

Asy ( R)
Rule-18

<AsymmetricObjectProperty>
<ObjectProperty IRI="#R"/>

</AsymmetricObjectProperty>

Person

⁰as

parentOf/
Father Son

(R: parentOf)  
(a) (b) (c) 

   
(d) (e) (f) 

                                                     Figure 3.13: Ring Constraints 

 
3.15 Objectified Relation 
 
An objectified relation in ORM is a relation that is regarded as an object type, receives a new 

object-type name, and is depicted as a rectangle around the relation. In the example in Fig. 

3.14.a, each (Student, Vehicle) enrollment is treated as an object-type that scores a Grade. In 

addition to this axiom, it is assumed that there must be a uniqueness constraint spanning all 

roles of the objectified relation, although it is not explicitly stated in the diagram. Objectified 

relations cannot be represented in SROIQ/OWL 2 as the additional uniqueness axiom cannot 

be represented in SROIQ/OWL 2. Refer to [J07a] for the representation of objectified relations 

in DLR description logic. 

 

3.16 Syntatic Sugar for ORM/OWL 2 
 
ORM and OWL 2 provide syntactic sugar formalization to ease the modeling of some 

constraints, such as identity, total and exclusive constraints which are illustrated below. 

 

3.16.1 Identity Constraint: 
 
This constraint determines the unique identifier of an object-type, and is usually specified 

inside the ellipse of the object-type (see Fig. 3.14.b). This constraint implies two constraints: 

role mandatory (section 4.5.1) and role uniqueness (section 4.6.1). This means that the object-

type, specified as ‘key’ in Fig. 3.14.b, uniquely identifies the object-type A: i.e., it is 

Case-8

<TransitiveObjectProperty>
<ObjectProperty IRI="#r1"/>

</TransitiveObjectProperty>

⁰ans

GreaterOrEqual/
TotalAmount FirstPayment

Amount

𝑅𝑅 ⊑ (∃𝑅𝑅. 𝑆𝑆𝑒𝑒𝐹𝐹𝑆𝑆)⨆(¬𝑅𝑅‾) 

(R: GreaterOrEqual) 
Cannot be represented in OWL2.

Irr ( R )
Rule-19

<IrreflexiveObjectProperty>
<ObjectProperty IRI="#R"/>  

</IrreflexiveObjectProperty>

Woman
⁰ir

sisterOf/

(R: sisterOf)

Case- 9 Person

⁰ac

parentOf/

Not Supported in SROIQ/OWL2.

Case-10
Person

⁰it

fatherOf/

(R: fatherOf)

𝑅𝑅 ∘ 𝑅𝑅 ⊑ ¬𝑅𝑅  
Cannot be represented in OWL2.
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mandatorily related to the object-type A and each instance of ‘key’ is related with at most one 

instance of A and each instance of A is related to at most one instance of ‘key’ . Although this 

constraint is not supported by SROIQ, it is mapped to OWL2 using the ‘HasKey’ construct.  

 
3.16.2 Total and Exclusive Constraints: 
 
The Total and Exclusive constraints (section 3.5 and 3.6) often appear together in ORM. 

Instead of using two separate OWL2 constructs for their mappings (ObjectUnionOf  and 

DisjointClasses), OWL2 provides one construct, namely, DisjointUnion, which fulfills both 

Total and Exclusive Constraints (Fig. 3.14.c). 

Student
enrollsIn/enrolledBy

Course

scores/scoredBy
Grade

Case- 9

Cannot be represented in SROIQ/OWL2.

“Enrollment”

 

A ⊑ (≤1 identifiedBy.Key)
(∃identifiedBy.Key)

Key ⊑ (≤1 identifies.A)

Rule-22

A

<HasKey>
<Class IRI="#A"/>
<DataProperty IRI="#key"/>

</HasKey>

(key)
⊓ 

 

<DisjointUnion>
<Class IRI="#A"/>
<Class IRI="#A1"/>
…
<Class IRI="#An"/>

</DisjointUnion>

Rule-23 A

A1 A2 An…
⨂.

(𝐴𝐴 ⊑  𝐴𝐴1⨆  𝐴𝐴2 ⨆  … ⨆ 𝐴𝐴𝐻𝐻)                       
                       (𝐴𝐴1 ⨅ 𝐴𝐴2⨅  … ⨅ 𝐴𝐴𝐻𝐻  ≡ ⊥) 

 

(a) (b) (c) 

Figure 3.14:  (a) Objectified Relations, (b) Identity Constraint, (c) Total and Exclusive 
Constraints 
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Chapter Four 
 
Extending ORM for Complete representation of OWL 2 
 
 
4.1 Introduction 
 
In chapter 3 of this thesis, we mapped all ORM constructs to SROIQ/OWL2. This allows one 

to build his/her ontology graphically using ORM and then map it automatically into OWL2. 

However, the current graphical notations of ORM are not sufficient to represent all OWL2 

constructs (i.e., some OWL2 constructs cannot be represented graphically using ORM). In this 

section, we extend the ORM graphical notation to represent the eleven OWL2 

constructs/expressions not covered currently by ORM. These OWL2 constructs are: (i) 

Equivalent Classes, (ii) Disjoint Classes, (iii) Intersection of Class Expressions, (iv) Class 

Complement,  (v) Class Assertions, (vi) Individual Equality, (vii) Individual Inequality, (viii) 

Positive Object/Data Property Assertions, (ix) Negative Object/Data Property Assertions, (x) 

Reflexive, (xi) and Transitive. In addition we use already existing notations to represent Thing 

and Nothing Classes , and also Top and Bottom Object/Data Properties. Some of the OWL 2 

expressions cannot be logically represented in a graphical format, so we use non-graphical 

notations for representing these OWL 2 expressions to completely cover OWL 2. The OWL 2 

expressions that are not represented graphically and represented in non-notational expressions 

include (i) Datatypes, Facets, and Data Range Expressions, and (ii) Annotations. The graphical 

notations that we developed for representing the above mentioned  eleven constructs in ORM 

were evaluated by means of a survey that included 31  practitioners in the field of ORM and 

OWL. After the evaluation process, final notations were chosen based on the results of the 

http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
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survey. In this way of complete representation of OWL 2 using ORM we can build an 

ontology graphically using ORM under the semantic of OWL 2.  Using this mechanism we 

can combine both the simplicity of representing an ontology and the full functionality needed 

to check the correctness of the built ontology. The resulting OWL 2 ontology is supported by 

many sound and complete reasoners that can verify its correctness. Section 4.2 – 4.8 briefly 

discusses those eleven OWL2 constructs and our proposed graphical notations for their 

representation in ORM.  
 
4.2 Equivalent Classes 
 
An Equivalent Class constraint in SROIQ/OWL 2 states that all classes constrained by this 

rule are semantically equivalent to each other. This rule is expressed in OWL2 using the 

EquivalentClasses construct and in SROIQ description logic using the notation of ‘ ’. 

However, no notation is available in ORM for representing this construct, because ORM 

proposes that there is no need for equivalent objects within the same modeling case. However, 

because of the rapidly increasing usage of ontologies in data integration, the Equivalent 

Classes constraint is highly needed. The proposed notation for representing this constraint 

using ORM is shown in Fig. 4.1 along with a clarifying example. It’s worth mentioning that 

this graphical notation was preferred by a (50%) of  practitioners who participated in the 

evaluation survey.  

A1

<EquivalentClasses>
<Class IRI="#A1"/>
<Class IRI="#A2"/>
...

<Class IRI="#An"/>
</EquivalentClasses>

A2 An…

A1 ≡ A2 ≡… ≡ An

ORM

SROIQ

OWL2

Proposed ORM Notation: 

 

Human

<EquivalentClasses>
<Class IRI="#Human"/>
<Class IRI="#Being"/>
<Class IRI="#Person"/>

</EquivalentClasses>

Being Person

Human ≡ Being ≡ Person

ORM

SROIQ

OWL2

 

(a) (b) 
Figure 4.1: Equivalent Classes Constraint 

 
4.3 Disjoint Classes 
 
The population of all classes constrained by the Disjoint Classes constraint is pairwise distinct, 

i.e., the intersection of the population of each pair of the constrained classes must be empty. 

This rule exists in ORM. However, it is restricted to be used between subtypes that belong to 
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the same supertype. As, in ORM, all objects within a modeling case are assumed to be disjoint 

with each other. This rule is expressed in OWL2 using the DisjointClasses construct. For 

representing this constraint in ORM, we propose to use the notation of (⨂), as shown in Fig. 

4.2. It’s worth mentioning that, from the three suggested graphical notations in the survey, this 

graphical notation was chosen by (64%) of practitioners who participated in the evaluation 

survey.  

A1

<DisjointClasses>
<Class IRI="#A1"/>
<Class IRI="#A2"/>
...

<Class IRI="#An"/>
</DisjointClasses >

A2 An. .

A1 ⊓ A2 ⊓… ⊓ An ≡⊥

ORM

SROIQ

OWL2

Proposed ORM Notation: ⨂

⨂

 

<DisjointClasses>
<Class IRI="#Kid"/>
<Class IRI="#Old"/>
<Class IRI="#Young"/>

</DisjointClasses >

Kid
Young

Kid ⊓Old ⊓ Young ≡⊥

ORM

SROIQ

OWL2

Old

⨂

 

(a) (b) 
Figure 4.2: Disjoint Classes Constraint 

 
4.4 Intersection of Class Expressions 
 
The intersection of classes A and B is all the individuals (instances) of A that are also 

instances of B but no other instances. This expression cannot be expressed currently in ORM. 

In OWL2, ObjectIntersectionOf expression is used to represent the intersection of classes, 

whereas the notation of ‘⨅’ is used for the SROIQ representation, as shown in Fig. 19. In 

ORM, we propose to use the notation of ‘⨅’ inside a bubble located on the edge of an ellipse 

(see Fig. 4.3). This bubble connects directly via lines to the classes to be intersected.  Inside 

the ellipse, the name of the class equivalent to the intersection expression is assigned. Note 

that the intersection bubble can be connected directly to many classes: the classes which are 

being intersected. No other relations are allowed to be connected through the bubble. 

However, the ellipse (which represents the equivalent class of the intersection expression) can 

be connected via any relation to any other class. 
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<EquivalentClasses>
<Class IRI=“A_Intersection”/>
<ObjectIntersectionOf>

<Class IRI="#A1"/>
<Class IRI="#A2"/>
...

<Class IRI="#An"/>
</ObjectIntersectionOf>

</EquivalentClasses>

A1 A2 . . .

A_Intersection ≡ A1 ⊓ A2 ⊓… ⊓ An

ORM

SROIQ

OWL2

Proposed ORM Notation: 

An

⊓

A_Intersection
⊓

 

<EquivalentClasses>
<Class IRI=“PersonStudentYoung_Intersection”/>
<ObjectIntersectionOf>

<Class IRI="#Person"/>
<Class IRI="#Student"/>
<Class IRI="#Young"/>

</ObjectIntersectionOf >
</EquivalentClasses>

PersonStudentYoung_Intersection ≡ Person ⊓ Student ⊓ Young

ORM

SROIQ

OWL2

PersonStudentYoung_Intersection

Person Student Young

⊓

 

(a) (b) 
Figure 4.3: Intersection of Class Expressions 

 
4.5 Class Complement 
 
The complement of class A refers to the population of the Universe of Discourse (UoD) that is 

not of A (i.e., the instances outside of A). This expression cannot be expressed currently in 

ORM. In OWL2, ObjectComplementOf expression is used to represent class complement, 

whereas the notation of ‘¬’ is used for the SROIQ representation, as shown in Fig. 4.4. In 

ORM, similar to the Intersection of Class Expressions discussed above, we propose to use the 

notation of ‘¬’ inside a bubble located at the edge of an ellipse (see Fig. 4.4). This bubble 

connects directly via a line to the class to be complemented.  Inside the ellipse, the name of the 

class equivalent to the complement expression is assigned. Note that the complement bubble 

can only be connected directly to one class: the class which is being complemented. No other 

relations are allowed to be connected through the bubble. However, the ellipse (which 

represents the equivalent class of the complement expression) can be connected via any 

relation to any other class. 
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<EquivalentClasses>
<Class IRI=“NotA”/>
<ObjectComplementOf>

<Class IRI="#A"/>
</ObjectComplementOf>

</EquivalentClasses>

A

NotA ≡ ¬ A
ORM

SROIQ

OWL2

Proposed ORM Notation: 
¬

¬
NotA

 

 

(a) (b) 
Figure 4.4: Class Complement 

 
4.6 Universal and Empty Classes 
Two classes in OWL 2 are predefined, namely, the classes “owl:Thing” and ”owl:Nothing”. 

“owl:Thing”  is referred to as the Universal Class while “owl:Nothing” is called the Empty 

Class. The extension of class “owl:Thing” (i.e., its instances) is the set of all instances in the 

Universe of Discourse (UoD). Thus, all classes are subclasses (i.e., subtypes) of this universal 

class. On the other hand, the extension of class ”owl:Nothing“ is the empty set. Consequently, 

the empty class is a subclass of all classes. In SROIQ, the universal and empty classes 

correspond to the Top (⊺) and Bottom (⊥) concepts, respectively. These two predefined OWL 

2 classes are not currently defined in the ORM notation. We propose to express these two 

classes using the regular ORM object-type notation as show in Fig. 4.5. Note that this 

proposed graphical representation was not evaluated in the survey because of its intuitiveness. 

That is, the representation of these two predefined OWL2 classes is no different than the 

representation of any other OWL2 class; all OWL2 classes are mapped in ORM as object-

types. 

  
(a) (b) 

Figure 4.5: Thing and Nothing Classes 

 
 

ORM

SROIQ

OWL2

NotAnimal

Animal

¬

NotAnimal ≡ ¬ Animal
<EquivalentClasses>
<Class IRI=“NotAnimal”/>
<ObjectComplementOf>

<Class IRI="#Animal"/>
</ObjectComplementOf>

</EquivalentClasses>

SROIQ

OWL2

Proposed ORM 
Notation: 

Owl:Thing

Thing

⊺ SROIQ

OWL2

Proposed ORM 
Notation: 

Owl:Nothing

Nothing

⊥ 
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4.7 Universal and Empty Object/Data Properties 
OWL 2 provides two built-in object/data properties with predefined semantics: (i) 

owl:topObjectProperty/  owl:topDataProperty (Universal Property), (ii) 

owl:bottomObjectProperty/ owl:bottomDataProperty (Empty Property). The 

universal object property connects all possible pairs of object-type instances (individuals) 

while the universal data property connects all possible object-type instances (individuals) with 

all values (literals). On the contrary, the empty property neither connects any pair of object-

type instances (individuals) nor connects any object-type instance (individual) with a value 

(literal). Unlike other variants of Description Logic, SROIQ does support Universal and 

Empty roles. These predefined OWL 2 properties are not currently defined in ORM. We 

propose to express these notations using the regular ORM role notation as show in Fig. 4.6. 

Note that this proposed graphical representation was not evaluated in the survey because of its 

intuitiveness. That is, the representation of these predefined OWL2 properties is no different 

than the representation of any other OWL2 property; all OWL2 properties are mapped as 

ORM roles. 

 

  

(a) (b) 

Figure 4.6: Top and Bottom Object/Data Properties 
 
4.8 Class Assertions 
 
The ClassAssertion axiom of OWL2 allows one to state that an individual is an instance of a 

particular class [MPP09]. In SROIQ, this is done in the assertion component, i.e., the ABox 

which contains instantiations of the axioms specified in the TBox. In ORM, we propose to use 

the notation depicted in Fig. 4.7. This notation provides the user the flexibility to show/hide 

the instances of a particular class. In our implementation of this notation in DogmaModeler 

(discussed in chapter 6), clicking on the ( ) symbol at the bottom of the ellipse 

expands/collapses the set of instances. The user specifies how many instances he/she prefers to 

be shown. 

SROIQ

OWL2

Proposed ORM 
Notation: 

owl:topObjectProperty,
owl:topDataProperty

TopData     

Universal Role U

TopObject   

OWL2

Proposed ORM 
Notation: 

Empty Role
owl:bottomObjectProperty, 
owl:bottomDataProperty

BottomData     

BottomObject   
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<ClassAssertion>
<Class IRI="#A"/>
<NamedIndividual IRI="#a1"/>

</ClassAssertion>
...   
<ClassAssertion>

<Class IRI="#A"/>
<NamedIndividual IRI="#a2"/>

</ClassAssertion>

{a1, a2, …, an}
ORM

SROIQ

OWL2

Proposed ORM Notation: 

a1
a2..
an

…

A A

 

<ClassAssertion>
<Class IRI="#Student"/>
<NamedIndividual IRI="#Dima"/>

</ClassAssertion>
<ClassAssertion>

<Class IRI="#Student"/>
<NamedIndividual IRI="#Tony"/>

</ClassAssertion>

{a1, a2, …, an}
ORM

SROIQ

OWL2

Tony 

Student Student
Dima 

 

(a) (b) 
Figure 4.7: Class Assertions 

 
4.9 Individual Equality 
 
The OWL2 individual equality axiom SameIndividual states that all of the individuals 

constrained by this rule are equal to each other. In SROIQ, this axiom is expressed in the 

assertion component, i.e., the ABox, using the notation of ‘=’ between individuals. In ORM, 

we propose to use the notation of (  ) to express individual equality. This notation is used 

between class instances as shown in Fig. 4.8. 

 

<SameIndividual>
<NamedIndividual IRI="#a1"/>
<NamedIndividual IRI="#a3"/>

</SameIndividual>

{a1} = {a3}
ORM

SROIQ

OWL2

Proposed ORM Notation: 

a1
a2
a3

an

A

=

=
..

 
Figure 4.8: Individual Equality 

 
4.10 Individual Inequality 
 
The OWL 2 individual inequality axiom DifferentIndividuals states that all of the individuals 

constrained by this rule are different from each other. In SROIQ, this axiom is expressed in the 

assertion component, i.e., the ABox, using the notation of ‘≠’ between individuals. In ORM, 
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we propose to use the notation of (  )  to express individual inequality. This notation is used 

between class instances as shown in Fig. 4.9. 

 

<DifferentIndividuals>
<NamedIndividual IRI="#a1"/>
<NamedIndividual IRI="#a3"/>

</DifferentIndividuals>

{a1} ≠ {a3}
ORM

SROIQ

OWL2

Proposed ORM Notation: 

a1
a2
a3

an

A

≠

≠
..

 
Figure 4.9: Individual Inequality 

4.11 Property Assertions 
 
4.11.1 Positive Object/Data Property Assertion 
 
The OWL2 Object/DataPropertyAssertion states that the individuals or individuals and 

values constrained by this rule are related to each other by the specified object or data 

property. In SROIQ, this axiom is expressed in the assertion component, i.e., the RBox, using 

the notation of ‘+’ between individuals or individuals and values. In ORM, we propose to use 

the notation of (+) to express the relation between individuals. This notation is used between 

class instances that are related with each others as shown in Fig. 4.10. 

 

 
(a) (b) 
Figure 4.10: Positive Object Property Assertion 

 
4.11.2 Negative Object/Data Property Assertion 
 
The OWL2 NegativeObject/DataPropertyAssertion states that the individuals or individuals 

and values constrained by this rule are not related to each other by the specified object or data 

< ObjectPropertyAssertion>
<ObjectProperty IRI="#rA "/>
<NamedIndividual IRI="#a"/>
<NamedIndividual IRI="#b"/>

< /ObjectPropertyAssertion>
< ObjectHsValue>

<ObjectProperty IRI="#rA "/>
<NamedIndividual IRI="#b"/>

< /ObjectHasValue>

rA(a,b)

ORM

SROIQ

OWL2
Owns(Mira,HY02)

ORM

SROIQ

OWL2

A BrA

a  + b
Person CarOwns

Mira + HY02 

< ObjectPropertyAssertion>
<ObjectProperty IRI="#Owns "/>
<NamedIndividual IRI="#Mira"/>
<NamedIndividual IRI="#HY02"/>

< /ObjectPropertyAssertion>
< ObjectHsValue>

<ObjectProperty IRI="#Owns "/>
<NamedIndividual IRI="#HY02"/>

< /ObjectHasValue>

http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
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property. In SROIQ, this axiom is expressed in the assertion component, i.e., the RBox, using 

the notation of ‘-’ between individuals or individuals and values. In ORM, we propose to use 

the notation of (-) to express the relation between individuals. This notation is used between 

class instances that are not related with each others as shown in Fig. 4.11. 

 

 
(a) (b) 

Figure 4.11: Negative Object Property Assertion 
 
4.12 Reflexive (ref) 
  
This constraint states that an object can participate in a relation with himself. For example, a 

‘person’ can love himself (he can play the role of ‘loves’ with himself). Reflexive is not used 

in ORM, Where it can be an extension to ORM notations as we want to reflect the semantic of 

OWL 2 into ORM. Fig. 4.12.a depicts the general case extension of this constraint using 

ORM, where this notation is selected according to similar notations of ring constraints shown 

in Fig. 3.16.  

 
4.13 Transitive (tra) 

A relation R is transitive over its population 𝑖𝑖𝑆𝑆𝑆𝑆 ∀𝑥𝑥,𝑇𝑇, 𝑧𝑧 [𝑅𝑅(𝑥𝑥,𝑇𝑇) ⋀ 𝑅𝑅(𝑇𝑇, 𝑧𝑧) →  𝑅𝑅(𝑥𝑥, 𝑧𝑧)]. For 

example, if a Person X is FrindOf Person Y and Y is FriendOf Z, then X is FriendOf Z. 

Transitive does not exist in ORM, Where it can be an extension to ORM notations as we want 

to reflect the semantic of OWL 2 into ORM. Fig. 4.12.b depicts the general case extension of 

this constraint using ORM, where this notation is selected according to similar notations of 

ring constraints shown in Fig. 3.16. 

r1

R⊑ ∃R.Self 
Or: Ref( R )

<ReflexiveObjectProperty>
<ObjectProperty IRI="#r1"/>  

</ReflexiveObjectProperty>

A

⁰ref
r2 r1

Tra ( r1)

<TransitiveObjectProperty>
<ObjectProperty IRI="#r1"/>

</TransitiveObjectProperty>

A

⁰tra

r2

 
                                  (a)                            (b) 

Figure 4.12: Extended Ring Constraints 

< NegativeObjectPropertyAssertion>
<ObjectProperty IRI="#rA "/>
<NamedIndividual IRI="#a"/>
<NamedIndividual IRI="#b"/>

< /NegativeObjectPropertyAssertion>

¬rA(a,b)

ORM

SROIQ

OWL2
¬Owns(Mira,HY02)

ORM

SROIQ

OWL2

A BrA

a  - b
Person CarOwns

Mira - HY02 

< NegativeObjectPropertyAssertion>
<ObjectProperty IRI="#Owns "/>
<NamedIndividual IRI="#Mira"/>
<NamedIndividual IRI="#HY02"/>

< /NegativeObjectPropertyAssertion>

http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
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4.14 Non Notational Expressions 

In the previous subsections, we have introduced our proposed graphical extension of ORM. 

However, this extension does not cover all OWL 2 expressions graphically. The OWL 2 

expressions not expressed graphically can be put into two categories; (i) Datatypes, Facets, 

and Data Range Expressions, and (ii) Annotations.  

 

OWL 2 introduces many built in datatypes in addition to the “Number” and “String” datatypes 

defined in ORM, such as Real, Rational, Double, Float, Boolean, Binary, etc. In addition, it 

introduces the so-called “Facets”, borrowed from XML Schema Datatypes, which are simply a 

group of restrictions used to specify new user-defined datatypes. For example, one can define 

a new datatype for a person’s age, called personage, by constraining the datatype Integer to 

values between 0 and 150 (inclusive) using the minInclusive facet. Furthermore, OWL 2 

supports advanced uses of datatypes, called Data Range Expressions, which include 

expressions similar to those used with OWL 2 Classes such as complement, union and 

intersection. For example, assuming we have already defined a datatype called minorAge, we 

can define the datatype majorAge by complementing the datatype minorAge and then 

intersecting it with the datatype personAge. All OWL 2 Datatypes, Facets, and Data Range 

Expressions are not expressed graphically. Instead, we introduce the “Datatypes Guided 

Editor” which aids the user in specifying datatypes and defining new datatypes and data range 

expressions. Fig. 4.13.a depicts a simplified Datatypes Guided Editor as implemented in our 

DogmaModeler tool.  

 
The last category of our non-notational expressions is OWL2’s “Annotations”. In OWL 2, 

annotations are used to describe parts of the OWL 2 ontology or the ontology itself. For 

example, an annotation can be simply a human-readable comment on an axiom of an ontology. 

E.g., one can add the following comment on the subtype relation between Man and Person: 

“This subtype relation states that every man is a person”. Other annotation properties include: 

Label, SeeAlso, VersionInfo, etc. Annotations can be specified using the “Annotations Guided 

Editor”. Fig. 4.13.b depicts a snapshot of our implemented annotations editor part of 

DogmaModeler.  



47 
 

 

  

(a) (b) 

Figure 4.13: The Datatypes and Annotations Guided Editors of DogmaModeler 
 
An illustration of full representation for mapping OWL 2 into ORM is shown in Appendix B. 
 
4.15 Use Case  
 
One of the most important use cases of the extended ORM notation introduced above is the 

case of integration. Consider, for example, the case of ontology integration in Fig. 4.14. The 

figure depicts two sample ontologies expressed in ORM; the first ontology (Ontology-1) 

represents a part of the organization (non-natural person) ontology  specifying, in particular, 

the Company and the Local Government Unit entities. The second ontology represents another 

part of the organization ontology, namely, the Association entity.  Note that these two sample 

ontologies are based on the Palestinian Legal Person Ontology [DJF11] and thus are in 

harmony with the Palestinian law. However, what is depicted in Figure 4.14 is not a complete 

ontology and is only meant to be a sample demonstration of the usefulness of the newly 

proposed ORM notations. 
 

 
Figure 4.14: Use Case of the extended ORM notations. 

Association

LocalNGOShareholdingCompany

Company

Organization NonNaturalPersonNaturalPerson

isAdvocateOf/hasAdvocate
TargetGroup

focusesOn/

P74857R
L37563H

¬

NM8976
JC9394=

NonProfit 
Company

⊓

LocalGovUnit ⨂

⨂

Address
locatedIn/

Ontology-1 Ontology-2≠



48 
 

 

 
Let us look at the usage of the new ORM notations in Ontology-1. In this ontology, the new 

notation is used in two places; (i) to express the class ‘Natural Person’ as the complement of 

the ‘Organization’ entity and (ii) to express two assertions of the ‘Shareholding Company’ 

entity. In Ontology-2, we also use class assertions to represent two ‘LocalNGO’ instances. For 

the purpose of integrating the two ontologies the following newly introduced notations are 

used: 

i) Equivalent Classes, expressed as a double-headed arrow between ‘Organization’ and 

‘Non-Natural Person’ entities, to express the fact that both entities are equivalent.  

    
ii) Disjoint Classes, expressed using the notation of “⊗” between ‘LocalGovUnit’ and 

‘Association’ to express the fact that both entities are disjoint. 

 
iii) Intersection of Class Expressions, used to introduce a new entity, namely, the ‘Non 

Profit Company’ which includes all shareholding companies that are also registered as 

local NGOs. Note that, this type of companies does exist in Palestine; it includes 

private limited-liability companies that provide services to the society but whose profit 

is not allowed to be distributed among the partners. 

 
iv) Individual Equality, expressed using the notation of (  ) between the shareholding 

company (P74857R) and the Local NGO (JC9394). This means that the two identifiers 

refer to the same real-world entity. Notice the usage of the Individual Equality here for 

Entity Resolution/ Disambiguation: a much-used process to match different identifiers 

from different heterogeneous information systems that refer to the same entity. 

 
v) Individual Inequality, expressed using the notation of (  )  and is used to state that the 

two instances constrained by this rule are not the same. In our example, this expression 

is also used for entity disambiguation by stating that that shareholding company 

(L37563H) and the local NGO (NM8976) refer to different real-world organizations. 

 
The complete mapping of the ORM diagram in Fig. 4.14 into OWL2 is provided in Appendix 

A-2. 
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Chapter Five 
 
 Evaluation 
 

 

5.1 Introduction 
 
Evaluation is divided into two parts. For the first part of evaluation we discuss the evaluation 

of our work of mapping/formalizing ORM into OWL 2/SROIQ. In particular, we briefly 

discuss the means by which we evaluated our work and give some clarifying examples. For 

this evaluation, the last version (version 2) of RacerPro 214 was used as a description logic 

reasoning tool, especially because of its support of OWL 2. RacerPro provides an interface to 

query and reason about knowledge bases. A knowledge base in RacerPro consists of a T-Box 

and an A-Box. For each of the formalized ORM notations, its OWL 2 mapping was inserted 

into the RacerPro system in the T-Box of a Knowledge Base. After that, the knowledge base 

was populated with several A-Box assertions in ordered to perform various kinds of tests and 

queries over it.  

 
For the second part, we evaluate our proposed ORM extension via a survey that was made to 

choose the most appropriate graphical notations. This survey involved practitioners in the 

fields of ORM and OWL 2. 

 
5.2 Evaluation Process for mapping ORM into OWL 2 
 

For each mapping work, tests were done to be sure of the correctness of the mapped OWL 2 

construct. These tests include consistency, coherency, and instance checks in addition to 
                                                           
14 http://www.racersystems.com/products/racerpro/users-guide-1-9-2-beta.pdf 
 

http://www.racersystems.com/products/racerpro/users-guide-1-9-2-beta.pdf
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several other checks depending on the individual construct to be tested. The consistency test 

checks whether the given Assertion Box is consistent with respect to the Terminology Box. An 

A-Box A is consistent with a T-Box T iff A-Box has a model w.r.t. T-Box. Otherwise, the A-

Box is called inconsistent. Coherency (also called Satisfiability) can be divided into three 

tests: Concept Coherency, T-Box Coherency, and Ontology Coherency. Checking the 

satisfiability (coherency) of a concept C in a T-Box T means to check whether there exists a 

model I of T such that CI ≠ φ. This is usually done by checking this concept for any possible 

contradictions in the T-Box. If the concept C is involved in a contradiction, this means that it 

cannot be satisfied. For the T-Box coherency; a T-Box T is said to be incoherent iff there exists 

an unsatisfiable concept in T. Similarly, an ontology O is incoherent iff its T-Box is 

incoherent. The Instance Retrieval test simply finds all individuals (instances) mentioned in an 

A-Box that are instances of a certain concept C. Different kinds of queries supported by the 

new query language (nRQL) of RacerPro 2.0 were used to retrieve the instances of classes 

within the needed ontology (instance checking) to check the correctness of the ontology and 

consequently the mapping itself. It is worth noting here that all A-Box tests and queries are 

written in nRQL (The New RacerPro Query Language), a query language for the RacerPro 

system that is capable of querying description logics, RDF(s), and OWL.  

 
All possible cases of instance checking are taken into consideration to evaluate mapping 

correctness. In what follows, we illustrate the evaluation of mapping ORM into OWL 2 for 

each mapped construct. 

 
5.2.1 Binary Relation (Rule 1):  
 
A general case of Binary Relation is plotted and mapped into OWL 2 functional syntax (Fig. 

5.1) consisting of two classes (objects) Person and Vehicle, and two relations Drives and 

DrivenBy. The instances that are inserted for classes Person and Vehicle are shown in Fig. 5.1. 

As an evaluation process, all possible cases of tests are taken into consideration to prove the 

correctness of the mapping as follows: 

  
i) The domain of relation Drives which is expected to be class Person is checked and the 

right expected answer (Person) is obtained. 
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ii) The range of Drives which is expected to be class Vehicle is checked and the right 

expected answer (Vehicle) is obtained. 

 
iii) Using the same way, the domain and range for relation DrivenBy which are expected 

to be Vehicle and Person respectively are checked and the right expected answers 

(Vehicle and Person) are obtained.  

 
iv) The inverse of role Drives which is expected to be DrivenBy is checked and the right 

expected answer (DrivenBy) is obtained. 

 
v) Instances of classes Person and Vehicle are retrieved and the right expected instances 

are obtained. 

 
vi) Each instance of class Person which is related to the other instance of class Vehicle by 

the role Drives is retrieved and the right expected answer is obtained. The same is done 

for the role DrivenBy and the right expected answer is obtained. That was done to 

make sure that Drives is the inverse role of DrivenBy and vice versa.  

 
All the preceding mentioned cases are shown in Figure 5.1. 
 

OWL 2 Functional Syntax 
Declaration(NamedIndividual(:p11)) 
ClassAssertion(:Person :p11) 
Declaration(NamedIndividual(:p12)) 
ClassAssertion(:Person :p12) 
Declaration(NamedIndividual(:p13)) 
ClassAssertion(:Person :p13) 
Declaration(NamedIndividual(:v11)) 
ClassAssertion(:Vehicle :v11) 
Declaration(NamedIndividual(:v12)) 
ClassAssertion(:Vehicle :v12) 
Declaration(NamedIndividual(:v13)) 
ClassAssertion(:Vehicle :v13) 
 

Checked 
Example 

 
Type of Test nRQL query Result 
Domain 
 

(role-domain |#Drives|) :Person 
(role-domain |#DrivenBy|) :Vehicle 

Range (role-range |#Drives|) :Vehicle 
(role-range |#DrivenBy|) :Person 

Inverse (role-inverse |#Drives|)  :DrivenBy 
Retrieve Person 
and  Vehicle 
Instances   

(retrieve(?x)(?x #Person)) :p13, :p12, :p11 
(retrieve(?x)(?x #Vehicle)) :v13, :v12,:v11 

Retrieve related 
Instances 

(retrieve (?x ?y) (?x ?y 
#Drives)) 

(:p11, :v11),(:p12, :v12),(:p13, 
:v13) 

(retrieve(?x?y)(?x?y 
#DrivenBy)) 

(:v11, :p11),(:v12, :p12), 
(:v13, :p13) 

Figure 5.1: Tests performed on OWL 2 mapping of ORM binary role notation (Rule 1) 
 
5.2.2 Unary Relation (Rule 2):  
 
An example (Figure 5.2) in OWL 2 is created to formalize the Unary Relation of ORM. The 

example contains a class named Person and a data property named smokes with Boolean 

Drives DrivenByPerson Vehicle
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range, then we asserted two instances for class Person related by data property smokes where 

one of these instances set to be true by assigning "1" to it and the other set to false by 

assigning "0" to it . When we retrieve the instances (Table 5.1) of property smokes, it gives us 

the population of class person which plays data property range of type Boolean. 

 
OWL 2 Functional Syntax 
Declaration(Class(:Person)) 
Declaration(DataProperty(:smokes)) 
SubDataPropertyOf(:smokes owl:topDataProperty) 
DataPropertyRange(:smokes xsd:boolean) 
Declaration(NamedIndividual(:ahmad)) 
ClassAssertion(:Person :ahmad) 
DataPropertyAssertion(:smokes :ahmad "1"^^xsd:boolean) 
Declaration(NamedIndividual(:sahar)) 
ClassAssertion(:Person :sahar) 
DataPropertyAssertion(:smokes :sahar "0"^^xsd:boolean) 
DifferentIndividuals(:sahar :ahmad) 
DataPropertyAssertion(:smokes :ahmad "1"^^xsd:boolean) 
DataPropertyAssertion(:smokes :sahar "0"^^xsd:boolean) 

Checked 
Example  

 
Type of Test nRQL query Result 
Retrieve 
Instances  

(retrieve(?x(datatype-
fillers(|#smokes|?x)))(?x 
(some |#smokes|))) 

(((:ahmad) 
((:datatype-fillers 
(:smokes)) 
(#T)))(((:sahar) 
((:datatype-fillers 
(:smokes))(#T)))) 

Consistency 
Check 

(abox-consistent? 
file://unaryrelation.owl) 

True 

Figure 5.2: Tests performed on OWL 2 mapping of ORM unary role notation (Rule 2) 
 
5.2.3 Subtype (Rule 3):  
 
The OWL 2 file which is mapped from ORM is loaded into RacerPro 2.0. The file includes 

two classes Man and Person (where Man is a SubClass of Person) is created (Figure 5.3). 

Instances for both classes are inserted. Two types of tests were performed, namely, concept 

subsumption and instance retrieval. In short, the tests we have done on the subtype relation can 

be summarized as follows. After inserting the OWL 2 mapping of the ORM in Fig. 5.3 as a T-

Box in a knowledge base, we entered a set of assertions into the A-Box. These assertions 

were: one assertion of the object-type Person (i.e., Mira) and two assertions of the object-type 

Male (Issa and Abbas). Two concept consumption tests were performed; the first to check 

whether the object-type Male subsumes Person, resulting in ‘True’, as expected. The second 

verified whether Person subsumes Male, resulting in Nil (False), also as expected. When we 

retrieved the instances of Person, all instances of Male (Issa and Ahmad) appeared in the 

result set in addition to the instance of Person (Mira); a result which we expected because of 

the subtype relation. 

     
All possible cases for ontology checking are taken into consideration to evaluate mapping 

correctness as follows: 

  

Person
Smokes
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i) Concept subsumption is checked where class Person subsumes class Man and the 

expected result (which is true) is obtained. The inverse is done where does class Male 

subsumes class Person and the expected result (which is false) is obtained. 

  
ii) The instances of class Person are retrieved and the expected results are the instances 

already asserted for class Person (super class) in addition to the instances of class Male 

(subclass). These results are obtained. 

 
iii) The instances of class Male are retrieved and those are expected to be only the 

instances assigned to class Male and this result is obtained.  

Figure 5.3: Tests performed on OWL 2 mapping of ORM subtype role notation (Rule 3) 
 
5.2.4 Total Constraint (Rule 4):  
 
An example (Fig. 5.4) that contains class Person which is equivalent to class Man or Female is 

created. Instances for the three classes are asserted.  

For Total Constraint, all possible cases (Fig. 5.4) are taken into consideration as follows:  

 
i) Checking if class Person (super class) is equivalent to the union of classes Male and 

Female, and the expected result which is true is obtained. 

 

ii) The instances of class Person are retrieved and those are expected to be the already 

assigned instances for Person in addition to instances of class Male or Female. The 

expected result is obtained.  

 
iii) The instances of subclasses Male and Female are expected to be just the instances 

assigned to each class and the result is as expected. 

 

OWL 2 Functional Syntax 

 
SubClassOf(:Male :Person) 
Declaration(NamedIndividual(:Issa)) 
Declaration(NamedIndividual(:ahmad)) 
Declaration(NamedIndividual(:Mira)) 
ClassAssertion(:Male :Issa) 
ClassAssertion(:Male :Ahmad) 
ClassAssertion(:Person :Mira) 
 
 

Checked Example 

 
Type of Test nRQL query Result 

Concept Subsumption  ?(concept-subsumes? |#Person| | #Male|) 
 

True 
?(concept-subsumes?|#Male| | #Person|) 
 

 Nil (i.e., False) 
Retrieve Instances ?(retrieve(?x) (?x #Person)) Mira, Issa, Ahmad  

?(retrieve(?x) (?x #Male)) Issa, Ahmad 

Person

Male
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OWL 2 Functional Syntax 
Declaration(Class(:Male)) 
Declaration(Class(:Person)) 
EquivalentClasses(:Person 
ObjectUnionOf(:Female :Male)) 
Declaration(Class(:Female)) 
Declaration(NamedIndividual(:ahmad)) 
ClassAssertion(:Male :ahmad) 
Declaration(NamedIndividual(:issa)) 
ClassAssertion(:Person :issa) 
Declaration(NamedIndividual(:wafa)) 
ClassAssertion(:Female :wafa) 
 

Checked 
Example 

 
Type of Test nRQL query Result 

Concept-
Equivalence 

(concept-equivalent? 
|#Person|(or |#Male| |#Female|)) 

True 

Retrieve 
Instances 

(retrieve(?x)(?x #Male)) (((:ahmad))) 
(retrieve(?x)(?x #Female)) (((:wafa))) 
(retrieve(?x)(?x #Person)) (((:issa))((:ahmad))((:wafa))) 

Figure 5.4: Tests performed on OWL 2 mapping of ORM total constraint (Rule 4) 
 
5.2.5 Exclusive Constraint (Rule 5):  
 
An example (Figure 5.5) that contains classes Male and Female which are disjointed is 

created. The same instance is created for both classes. For Exclusive Constraint, the cases 

(Fig. 5.5) are : 

 
i) Disjoint is checked between classes Male and Female and the result is true  as expected 

true. 

 
ii) The equivalence of class Person to the union of classes Male and Female is checked 

and the result is false as expected.  

 
iii) The instance ahmad (as an example) is assigned to both classes Male and Female, 

where in this assignment the Abox consistency is violated to ensure that classes Male 

and Female are disjoint. The result is as expected inconsistent Abox. 
OWL 2 Functional Syntax 
Declaration(Class(:Male)) 
Declaration(Class(:Female)) 
Declaration(Class(:Person)) 
SubClassOf(:Male :Person) 
SubClassOf(:Female :Person) 
DisjointClasses(:Male :Female) 
Declaration(NamedIndividual(:ahmad)) 
ClassAssertion(:Male :ahmad) 
ClassAssertion(:Female :ahmad) 
Declaration(NamedIndividual(:wafa)) 
ClassAssertion(:Female :wafa) 

Checked 
Example 

 
Type of Test nRQL query Result 

Concept-Disjoint ?(concept-disjoint? |#Male| |#Female|) True 
Concept-
Equivalence 

?(concept-equivalent? |#Person|(or |#Male| 
|#Female|)) 

Nil 

Consistency 
Check 

? (abox-consistent? file:// /disjointclasses.owl) 
(with assertions that do not violate the constraint) 

True 

? (abox-consistent? file://disjointclasses.owl) 
(with assertions that do violate the constraint) 

Nil 

Figure 5.5: Tests performed on OWL 2 mapping of ORM exclusive constraint (Rule 5) 
 
 
 
 
 

Person

Male ⨀ Female

⨂

Person

Male Female

file:///Users/mustafajarrar/Dropbox%20(SI-U)/Documents/Students/Rami//disjointclasses.owl
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5.2.6 Role Mandatory (Rule 6):  
 
To represent the ORM Role Mandatory constraint in OWL 2, we use the construct 

“ObjectSomeValuesFrom” that represents the extensional quantifier in SROIQ. Example of 

section 5.2.8 (Figure 5.7) includes the representation of Role Mandatory constraint. The 

relation “OwnedBy” is populated by relating the instances of class “Company” to that of class 

“Vehicle”. When checking the consistency of ABox, the result was that the ABox is consistent 

as the constraint Mandatory (represented by “ObjectSomeValuesFrom”) is achieved. 

 
5.2.7 Disjunctive Mandatory (Rule 7):  
 
An example (Figure 5.6) that contains the classes and relations of Rule 7. Instances (created to 

prove the correctness of formalization) are asserted and related by OwnedByC and OwnedByP 

roles. When we check the coherency of TBox and consistency of ABox using RacerPro 2.0, it 

gives us true for both checks. The result is as expected since the inserted instances comply 

with the restriction " Disjunctive Mandatory " resulted that each instance of object-type “A” 

must play at least one of the constrained roles. 
OWL 2 Functional Syntax 
Declaration(Class(:OwnedBy.Company)) 
EquivalentClasses(:OwnedBy.Company 
ObjectSomeValuesFrom(:OwnedByC :Company)) 
Declaration(Class(:OwnedBy.Person)) 
EquivalentClasses(:OwnedBy.Person 
ObjectSomeValuesFrom(:OwnedByP :Person)) 
EquivalentClasses(:Vehicle 
ObjectUnionOf(:OwnedBy.Company :OwnedBy.Person)) 
ObjectPropertyDomain(:OwnedByC :Vehicle) 
ClassAssertion(:Company :jts.com) 
ClassAssertion(:Person :mira) 
ClassAssertion(:Vehicle :HYI30) 
ObjectPropertyAssertion(:OwnedByP :HYI30 :mira) 
ObjectPropertyAssertion(:OwnedByC :HYI30 :jts.com) 

Checked 
Example 

 

 

Type of Test nRQL query Result 
Coherency 
Check 

? (tbox-coherence?      
file://disjunctivemandatory.owl) 

True 

Consistency 
Check 

? (abox-consistent?      
file://disjunctivemandatory.owl) 

True 

Figure 5.6: Tests performed on OWL 2 mapping of ORM disjunctive mandatory constraint 
(Rule 7) 
 
5.2.8 Role Uniqueness (Rule 8):  

 
An example (Figure 5.7) contains classes Company and Vehicle which are related by the 

relation OwnedBy is created. The role OwnedBy is constrained Role Uniqueness. An Instance 

to prove the correctness of formalization is asserted and related by the relation OwnedBy. 

When we check the coherency of TBox and consistency of ABox using RacerPro 2.0, it gives 

us true for both checks. The result is as expected since the inserted instances comply with the 

OwnedBy

OwnedByPerson

Vehicle

Company
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restriction "max cardinality of 1" that constraints the role OwnedBy related to the class 

Vehicle to relate a one instance in the domain to maximum one instance in the range. But 

when we make an instance like “jts.com” in our example to be related to two instances  

“MAZ230” and “eng” by the object type property OwnedBy (restricted for the domain 

“Company” and the range “Vehicle” in our example). The restriction is achieved by using max 

cardinality of one. Relating one instance of the domain to two instances of the range by object 

type property “OwnedBy” violates the constraint max cardinality of one. The result is 

inconsistency of ABox. In the example mentioned above, we use the construct 

DifferentIndividuals to differentiate between the instances used semantically, where OWL 2 

does not support Unique Name Assumption (UNA) [SWM04], which means that using 

different names for individuals does not mean that these individuals are different. 

 
OWL 2 Functional Syntax 
Declaration(Class(:Vehicle)) 
Declaration(Class(:Vehicle)) 
EquivalentClasses(:Vehicle ObjectMaxCardinality(1 
:OwnedBy :Company)) 
EquivalentClasses(:Company 
ObjectSomeValuesFrom(:Owns :Vehicle)) 
Declaration(ObjectProperty(:OwnedBy)) 
ObjectPropertyDomain(:OwnedBy :Vehicle) 
ObjectPropertyRange(:OwnedBy :Company) 
Declaration(NamedIndividual(:HYI30)) 
ClassAssertion(:Vehicle :HYI30) 
Declaration(NamedIndividual(:MAZ230)) 
ClassAssertion(:Vehicle :MAZ230) 
Declaration(NamedIndividual(:jts.com)) 
ClassAssertion(:Company :jts.com) 
ObjectPropertyAssertion(:OwnedBy :HYI30 :bis.com) 
DifferentIndividuals(:MAZ230 :HYI30) 
DifferentIndividuals(:bis.com :HYI30) 
DifferentIndividuals(:jts.com :MAZ230) 
ObjectPropertyAssertion(:OwnedBy :HYI30 :jts.com) 
ObjectPropertyAssertion(:OwnedBy :MAZ230 :jts.com) 
 

Checked 
Example 

  

Type of Test nRQL query Result 

Consistency 
Check 

? (abox-consistent? file:// 
uniqueness.owl) 
(with assertions that do not violate 
the constraint) 

True 

? (abox-consistent? 
file://disjointclasses.owl) 
(with assertions that do violate the 
constraint) 

Nill 

Figure 5.7: Tests performed on OWL 2 mapping of ORM role uniqueness and mandatory 
constraints (Rule 5) 
 
 
5.2.9 Role Frequency Constraints (Rule 9):  
 
The same methodology is used as in (5.2.8) to evaluate the correctness of Role Frequency 

Constraints’ mapping. The example in the previous section is modified to represent this rule 

(Role Frequency Constraints), where this example contains classes “Company” and “Vehicle” 

related by the relation “Owns”. The role “Owns” is played by the object-type “Company” for a 

Owns OwnedByCompany Vehicle

file:///Users/mustafajarrar/Dropbox%20(SI-U)/Documents/Students/Rami//disjointclasses.owl
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number of occurrences between 2 and 3. This is achieved by restricting “Owns” to play 

“Vehicle” between 2 and 3 occurrences using the qualified number restrictions of OWL 2 

ObjectMinCardinality and ObjectMaxCardinality constructs. We instantiate “Company” with 

“ccs.com” and “Vehicle” with four different instances. Relating “ccs.com” with the four 

instances of “Vehicle” violating the restriction on object property “Owns”. When checking the 

consistency of ABox using Racer reasoned, the reasoned gives inconsistent ABox. This 

violating of used constraint and the result of inconsistency proves the correctness of using 

owl:maxQualifiedCardinality to map the max occurrence “m” of Role Frequency Constraints 

(ORM notation). 

   
5.2.10 Value Constraint (Rule 10):  
 
The same general format is used as in Fig. 3.9 to create a complete example which is loaded 

into RacerPro 2.0. The inserted values for data property range rB are X1, X2 and X3. The cases 

(Fig 5.8) which are used to prove the correctness of Value Constraint formalizing are as 

follows: 

 
i) The values of data property range are retrieved and the result is as expected.  

 
ii) One of the assigned values for data type property range is retrieved and the result is 

true as expected. 

 
iii) A value which is not one of the assigned values for data type range is retrieved and the 

result is as expected. The result of retrieving this value is an error with a message 

"Undefined value" that assures that the values of data property range are only those 

values specified by DataOneOf construct.   

 
Type of check nRQL query Result 
Retrieve values (retrieve(?x)(?x #rB)) (((:X3))((:X2)) ((:X1))) 
Retrieve Check 
 

(retrieve() (:X1 #rB)) True 
(retrieve() (:X4 #rB)) (:ERROR"Undefined value |#X4| in ABox |file://Value.owl|") 

Figure 5.8: Cases of queries for checking value constraint correctness (Rule 10) 
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5.2.11 Subset Role (Rule 11):  
 
An example (Figure 5.9) in OWL 2 that contains classes Person, Vehicle, DrivingLicense, 

AuthorizedWith.DrivingLicense and Drives.Vehicle, in addition to roles AuthorizedWith and 

Drives is created. Instances are inserted for classes Person, Vehicle, DrivingLicense. Also 

instances are inserted for object properties AuthorizedWith and Drives. All these insertions are 

made to apply instance checking to this ontology to prove the correctness of this ontology that 

represents the formalizing (formalizing subset role constraint of ORM using OWL 2).  

 
OWL 2 Functional Syntax 
Declaration(Class(:Drives.Vehicle)) 
EquivalentClasses(:Drives.Vehicle 
ObjectSomeValuesFrom(:Drives :Vehicle)) 
SubClassOf(:drives.Person :owns.Person) 
Declaration(Class(:AuthorizedWith.DrivingLicense)) 
EquivalentClasses(:AuthorizedWith.DrivingLicense 
ObjectSomeValuesFrom(:AuthorizedWith 
:DrivingLicense)) 
ObjectPropertyDomain(:Drives :Person) 
ObjectPropertyRange(:Drives :Vehicle) 
ObjectPropertyDomain(:AuthorizedWith :Person) 
ObjectPropertyRange(:AuthorizedWith :DrivingLicense) 
ClassAssertion(:Person :jawad) 
ClassAssertion(:.Person :sahar) 
ClassAssertion(:DrivingLicense :LC2011) 
ClassAssertion(:Vehicle :HYI30) 
ObjectPropertyAssertion(:AuthorizedWith :jawad :LC2011) 
ObjectPropertyAssertion(:Drives :sahar :HYI30) 
 
 

Checked 
Example 

 

 Type of 
Test 

nRQL query Result 

Retrieve 
Instances 

(retrieve(?x)(?x#Drives.
Vehicle)) 

(:sahar) 

(retrieve(?x)(?x 
#AuthorizedWith.Drivi
ngLicense)) 

((:jawad) 
(:sahar)) 

Figure 5.9: Tests performed on OWL 2 mapping of ORM role subset constraint (Rule 11) 
 
The cases for checking the correctness of formalizing as illustrated in Fig. 5.9 are: 

 
i) The equivalent class Drives.Vehicle is checked to be a subset of equivalent class 

AuthorizedWith.DrivingLicense and the result is true as expected.  

 
ii) The inserted instance sahar (as an example) to class Person is set to play  role ‘Drives’ 

and it is checked if it also plays role ‘AuthorizedWith’ and the result is true as 

expected. 

 
5.2.12 Subset Binary Role (Rule 12):  
 
An example is created and loaded into RacerPro 2.0 by using its RacerPorter interface. The 

example includes classes Person and Car, in addition to object properties owns and drives 

Drives

DrivingLicense
AuthorizedWith/

Person

Vehicle
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where the role drives is a subset of the role owns. An instance named ahmad is asserted to 

class Person and plays the role drives for the instance honda200 of class Car and it is checked 

if it is at the same time plays the role owns and the result is true as expected (Fig. 5.10).  
OWL 2 Functional Syntax 
SubObjectPropertyOf(:AffiliatedWith :WorksFor) 
SubObjectPropertyOf(:AffiliatedBy :Employes) 
InverseObjectProperties(:WorksFor :Employes) 
ObjectPropertyDomain(:WorksFor :Person) 
ObjectPropertyRange(:ownedBy :Person) 
InverseObjectProperties(:AffiliatedWith :AffiliatedBy) 
ObjectPropertyDomain(:AffiliatedWith :Person) 
ObjectPropertyRange(:WorksFor :Company) 
ClassAssertion(:Person :ahmad) 
ObjectPropertyAssertion(:WorksFor :ahmad :jts.com) 
ClassAssertion(:Person :bassam) 
ClassAssertion(:Company :jts.com) 
ClassAssertion(:Company :bsi.com) 
ObjectPropertyAssertion(:AffiliatedWith :bassam :bis.com) 
 
 

Checked 
Example 

 

 
Type of 
Test 

nRQL query Result 

 
Retrieve 
Instances 

(retrieve (?x ?y) (?x 
?y #AffiliatedWith)) 

 ((:bassam) (:bis.com)) 

(retrieve (?x ?y) (?x 
?y #WorksFor)) 

(((:ahmad) (:jts.com)) 
  ((:bassam) 
(:bis.com))) 

Figure 5.10: Tests performed on OWL 2 mapping of ORM binary role constraint (Rule 12) 
 
5.2.13 Equality Role (Rule 13):  
 
An example (Figure 5.11) is created which demonstrates an equality between the equivalent 

classes expressions HasOfficeWith.Room and HasOfficeIn.Building and one instances are 

inserted for each equivalent class expression. After testing the instances of the two class 

expressions, each class expression contains both instances as a result of role equality.    

 
OWL 2 Functional Syntax 
Declaration(Class(:HasOfficeWith.Room)) 
EquivalentClasses(:HasOfficeWith.Room 
ObjectSomeValuesFrom(:HasOfficeWith :Room)) 
Declaration(Class(:HasOfficeIn.Building)) 
EquivalentClasses(:HasOfficeIn.Building 
ObjectSomeValuesFrom(:HasOfficeIn :Building)) 
ObjectPropertyDomain(:HasOfficeWith :Person) 
ObjectPropertyRange(:HasOfficeWith :Room) 
ObjectPropertyDomain(:HasOfficeIn :Person) 
ObjectPropertyRange(:HasOfficeIn :Building) 
EquivalentClasses(:HasOfficeWith.Room 
:HasOfficeIn.Building) 
ClassAssertion(:HasOfficeWith.Room :rajee) 
ClassAssertion(:Person :rajee) 
ClassAssertion(:Person :zaher) 
ObjectPropertyAssertion(:HasOfficeWith :rajee :R101) 
ObjectPropertyAssertion(:HasOfficeIn :zaher :IT) 
ClassAssertion(:HasOfficeIn.Building :zaher) 
 

Checked 
Example 

 
Type of  
Test 

nRQL query Result 

 
Retrieve 
Instances 
 

(retrieve(?x)(?x 
#HasOfficeWith.Room)) 

((:rajee) (:zaher)) 

(retrieve(?x)(?x 
#HasOfficeIn.Building)) 

((:rajee) (:zaher)) 

Figure 5.11: Tests performed on OWL 2 mapping of ORM equality role constraint (Rule 13) 
 
 
 

AffiliatedWith/

WorksFor

Person Company

HasOfficeIn

Person

Building

Room
HasOfficeWith/
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5.2.14 Equality Binary Role (Rule 14):  
 
An example (Fig. 5.12) is used for the purpose of mapping correctness. This example is 

written in OWL 2 functional syntax. The example includes classes Vehicle and Person, in 

addition to object properties Owns (inverse of OwnedBy) and Drives (inverse of DrivenBy) 

and these roles are set to be equivalent to each other. Instances for classes Person and Vehicle, 

which are related by drives relation, are inserted.  

For this rule (Equality Binary Role), all possible cases (Fig. 5.12) are taken into consideration 

as follows:  

 
i) The instances of class Person and their consequences of instances of class Vehicle, 

which are related by the role Owns, are retrieved and, as expected, they are the same as 

the instances of class Person and their consequences of class Vehicle playing the role 

Drives. 

 
ii) The inverse case is done where the instances of class Vehicle and their consequences 

of instances for class Person related by the role drives and owns are retrieved and the 

result is as expected. 

 
OWL 2 Functional Syntax 
InverseObjectProperties(:drivenBy :drives) 
ObjectPropertyDomain(:drivenBy :Vehicle) 
ObjectPropertyRange(:drivenBy :Person) 
EquivalentObjectProperties(:drives :owns) 
ObjectPropertyDomain(:drives :Person) 
ObjectPropertyRange(:drives :Vehicle) 
InverseObjectProperties(:owns :ownedBy) 
ObjectPropertyDomain(:ownedBy :Vehicle) 
ObjectPropertyRange(:ownedBy :Person) 
ObjectPropertyDomain(:owns :Person) 
ObjectPropertyRange(:owns :Vehicle) 
ClassAssertion(:Person :ahmad) 
ClassAssertion(:Vehicle :honda200) 
ClassAssertion(:Vehicle :volvo100) 
ClassAssertion(:Person :sahar) 
ObjectPropertyAssertion(:drives :ahmad 
:honda200) 
ObjectPropertyAssertion(:drives :sahar :volvo100) 
 

Checked 
Example 

 

 
Type of Test nRQL query Result 
Retrieve 
Instances  

(retrieve (?x ?y) (?x ?y 
#drives)) 

 (((:ahmad) (:honda200)) 
   ((:sahar) (:volvo100))) 

(retrieve (?x ?y) (?x ?y 
#owns)) 

(((:ahmad) (:honda200)) 
   ((:sahar) (:volvo100))) 

(retrieve (?x ?y) (?x ?y 
#drivenBy)) 

 (((:ahmad) (:honda200)) 
   ((:sahar) (:volvo100))) 

(retrieve (?x ?y) (?x ?y 
#ownedBy)) 

 (((:honda200) (:ahmad)) 
  ((:volvo100) (:sahar))) 

Figure 5.12: Tests performed on OWL 2 mapping of ORM equality binary role constraint 
(Rule 14) 
 
 
 

Drives

Owns

Person Vehicle
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5.2.15 Exclusion Role (Rule 15):  
 
An example in OWL 2 that contains classes Vehicle, Company, Person, OwnedBy.Company 

and OwnedBy.Person, in addition to roles OwnedByC and OwnedByP. Instances are inserted 

for classes Vehicle, Company and Person. Also, instances are inserted for object properties 

OwnedByC and OwnedByP. All these insertions are made to apply instance checking to this 

ontology to prove the correctness of this ontology that represents the mapping (mapping 

Exclusive Role from ORM into OWL 2). For Exclusive Role the cases are: 

 
i) The equivalent class OwnedBy.Company is checked to be equivalent to the 

complement of equivalent class OwnedBy.Person and the result is true as expected. 

 

ii) Consistency check is performed without violating exclusion constraint and the result is 

as expected consistent Abox with Tbox. 

 
iii) The inserted instance jts.com to class Company is set to play both roles OwnedByC 

and OwnedByp to vaiolate the exclusion constraint and the result Abox is expected to 

be inconsistent as a result of role exclusion and the result is as expected (inconsistent 

Abox). 

 
OWL 2 Functional Syntax 
Declaration(Class(:OwnedBy.Company)) 
EquivalentClasses(:OwnedBy.Company 
ObjectComplementOf(:OwnedBy.Person)) 
EquivalentClasses(:OwnedBy.Company 
ObjectSomeValuesFrom(:OwnedByC 
:Company)) 
Declaration(Class(:OwnedBy.Person)) 
EquivalentClasses(:OwnedBy.Person 
ObjectSomeValuesFrom(:OwnedByP :Person)) 
ObjectPropertyDomain(:OwnedByC :Vehicle) 
ObjectPropertyDomain(:OwnedByP :Vehicle) 
ClassAssertion(:Person :mira) 
ClassAssertion(:Company :jts.com) 
ClassAssertion(:Vehicle :HYI30) 
ObjectPropertyAssertion(:OwnedByC :HYI30 
:jts.com) 
ObjectPropertyAssertion(:OwnedByP :HYI30 
:mira) 
 
 
 
 

Checked 
Example 

 
Type of 
Test 

nRQL query Result 

Concept-
Equivalence 

(concept-equivalent? |#OwnedBy.Company| 
(not |#OwnedBy.Person|)) 

True 

Consistency 
Check 
 

? (abox-consistent? file:// 
exclusionrole.owl) 
(with assertions that do not violate the 

 

True 

? (abox-consistent? file://exclusionrole.owl) 
(with assertions that do violate the 
constraint) 

Nill 

Figure 5.13: Tests performed on OWL 2 mapping of ORM exclusion role constraint (Rule 15) 
 
 
 

OwnedBy

Owns OwnedByPerson

Vehicle

Company Owns

file:///Users/mustafajarrar/Dropbox%20(SI-U)/Documents/Students/Rami//exclusionrole.owl
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5.2.16 Exclusion Binary Role (Rule 16):  
 
An example is created and loaded into RacerPro 2.0 by using its RacerPorter interface. The 

example includes classes Person and Car, in addition to object properties owns and drives. An 

instance named ahmad is asserted to class Person and plays the role drives for the instance 

honda200 of class Car and at the same time this instance ( ahmad) plays the role owns for the 

same instance honda200 of class Car. This assertion is expected to give inconsistency for 

Abox and this result is obtained as expected (inconsistent Abox). The result of inconsistency 

of ABox with TBox proves the mapping of Exclusion Binary Relation using OWL 2 construct 

(DisjointObjectProperties).  

 
OWL 2 Functional Syntax 
InverseObjectProperties(:Owns :OwnedBy) 
ObjectPropertyDomain(:Owns :Person) 
ObjectPropertyRange(:Owns :Vehicle) 
InverseObjectProperties(:WantsToBuy :BoughtBy) 
ObjectPropertyDomain(:OwnedBy :Vehicle) 
ObjectPropertyRange(:OwnedBy :Person) 
ObjectPropertyDomain(:WantsToBuy :Person) 
ObjectPropertyRange(:WantsToBuy :Vehicle) 
ObjectPropertyDomain(:BoughtBy :Vehicle) 
ObjectPropertyRange(:BoughtBy :Person) 
DisjointObjectProperties(:Owns :WantsToBuy) 
ClassAssertion(:Person :ahmad) 
ClassAssertion(:Vehicle :honda200) 
ObjectPropertyAssertion(:Owns :ahmad :honda200) 
ObjectPropertyAssertion(:WantsToBuy :ahmad 
:honda200) 
 
 

Checked 
Example 

 
Type of 
Test 

nRQL query Result 

Retrieve 
Instances 

(retrieve (?x ?y) (?x ?y #Owns)) ((:ahmad)(:
honda200)) 

(retrieve (?x ?y) (?x ?y 
#WantsToBuy)) 

 ((:ahmad) 
(:honda200

 Consistency 
Check 

? (abox-consistent? file:// 
exclusionbinary.owl) 
(with assertions that do not violate 
the constraint) 

True 

? (abox-consistent? 
file://exclusionbinary.owl) 
(with assertions that do violate the 
constraint) 

Nill 

Figure 5.14: Tests performed on OWL 2 mapping of ORM exclusion binary role constraint 
(Rule 16) 
  
5.2.17 Symmetric Ring Constraint (Rule 17):  
 
For Symmetric Ring Constraint, we assign an instance ahmad (Fig. 5.15) for the class Person 

that plays the role Likes for the instance issa, which is also assigned to class Person. We 

retrieve the instances related by the role likes and the result is as expected ahmad likes issa and 

issa likes ahmad and this achieves the symmetric constraint. 

 

WantsToBuy/

Owns

Person Vehicle

file:///Users/mustafajarrar/Dropbox%20(SI-U)/Documents/Students/Rami//exclusionbinary.owl
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OWL 2 Functional Syntax 
Declaration(Class(:Person)) 
Declaration(ObjectProperty(:isLikedBy)) 
InverseObjectProperties(:isLikedBy :likes) 
Declaration(ObjectProperty(:likes)) 
InverseObjectProperties(:isLikedBy :likes) 
SymmetricObjectProperty(:likes) 
ObjectPropertyDomain(:likes :Person) 
ObjectPropertyRange(:likes :Person) 
Declaration(NamedIndividual(:ahmad)) 
ClassAssertion(:Person :ahmad) 
ObjectPropertyAssertion(:likes :ahmad :issa) 
Declaration(NamedIndividual(:issa)) 
ClassAssertion(:Person :issa) 

Checked 
Example 

 
Type of 
Test 

nRQL query Result 

Retrieve 
Instances 

 

?(retrieve(?x?y)(?x?y 
#likes)) 

(((:ahmad) (:issa)) 
((:issa) (:ahmad))) 

Figure 5.15: Tests performed on OWL 2 mapping of ORM symmetric ring constraint (Rule 
17) 
 
5.2.18 Asymmetric Ring Constraint (Rule 18):  
 
For Asymmetric Constraint, an instance ahmad is asserted for the class Person and plays the 

role ParentOf for an instance issa, and at the same time the symmetric relation is created 

where issa is made to play the role ParentOf for the instance ahmad (Fig. 5.16). When 

checking the consistency for the Abox, it is as expected inconsistent and this is true where the 

role ParentOf is defined as Asymmetric and as in the example ahmad is parent of issa, then 

issa cannot be parent of ahmad. 

 
OWL 2 Functional Syntax 
Declaration(Class(:Person)) 
Declaration(ObjectProperty(:SonOf)) 
InverseObjectProperties(:Son :ParentOf) 
Declaration(ObjectProperty(:ParentOf)) 
AsymmetricObjectProperty(:ParentOf) 
ObjectPropertyDomain(:ParentOf :Person) 
ObjectPropertyRange(:ParentOf :Person) 
Declaration(NamedIndividual(:ahmad)) 
ClassAssertion(:Person :ahmad) 
ObjectPropertyAssertion(:ParentOf :ahmad 
:issa) 
Declaration(NamedIndividual(:issa)) 
ClassAssertion(:Person :issa) 
ObjectPropertyAssertion(:ParentOf :issa 
:ahmad) 
 

Checked 
Example 

 
Type of 
Test 

nRQL query Result 

Retrieve 
Instances 

?(retrieve(?x?y)(?x?y #ParentOf)) (((:ahmad) 
(:issa)) 
((:issa) 
(:ahmad))) 

Consistency 
Check 

? (abox-consistent? file:// asymmetric.owl) 
(with assertions that do not violate the 
constraint) 

True 

? (abox-consistent? file://asymmetric.owl) 
(with assertions that do violate the 
constraint) 

Nill 

Figure 5.16: Tests performed on OWL 2 mapping of ORM asymmetric ring constraint (Rule 
18) 
 
 
 
 

Person
⁰sym

Likes/

Person
⁰as

ParentOf/

file:///Users/mustafajarrar/Dropbox%20(SI-U)/Documents/Students/Rami//asymmetric.owl
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5.2.19 Irreflexive Ring Constraint (Rule 19): 
  
For Irreflexive Constraint, an instance mira of class Person is made to play the role SisterOf  

for instance maya which does not violate the irreflexive constraint and Abox is consistent. 

Also instance mira is set to play the role SisterOf  for itself (Fig. 5.17). When checking the 

consistency for Abox, it gives us inconsistent Abox as expected, which is true since the role 

SisterOf is defined as irreflexive. 

 
OWL 2 Functional Syntax 
Declaration(Class(:Person)) 
Declaration(ObjectProperty(:SisterOf)) 
InverseObjectProperties(:SisterOf : SisterOf) 
Declaration(ObjectProperty(:SisterOf)) 
IrreflexiveObjectProperty(:SisterOf) 
ObjectPropertyDomain(:likes :Person) 
ObjectPropertyRange(:likes :Person) 
Declaration(NamedIndividual(:mira)) 
ClassAssertion(:Person :maya) 
Declaration(NamedIndividual(:maya)) 
ClassAssertion(:Person :maya) 
ObjectPropertyAssertion(:SisterOf :mira 
:maya) 
ObjectPropertyAssertion(:SisterOf :mira 
:mira) 
 

Checked 
Example 

 
Type of 
Test 

nRQL query Result 

Retrieve 
Instances 

?(retrieve(?x?y)(?x?y #SisterOf)) (((:mira) 
(:maya)) 
((:mira) 
(:mira))) 

Consistency 
Check 

? (abox-consistent? file:// irreflexive.owl) 
(with assertions that do not violate the 
constraint) 

True 

? (abox-consistent? file://irreflexive.owl) 
(with assertions that do violate the constraint) 

Nill 

Figure 5.17: Tests performed on OWL 2 mapping of ORM irreflexive ring constraint (Rule 
18) 
 
5.2.20 Syntatic Sugar for ORM/OWL 2   
 
5.2.20.1 Identity Constraint   
 
An example in OWL 2 that contains a class named Person with a defined construct HasKey 

named issn is created (Fig. 5.18). Different instances ahmad and ayser are asserted for the 

class Person and populated by the data type property issn to the same instance 12345 of type 

integer. This population of the relation (issn) makes the ABox inconsistent with TBox. The 

inconsistency of ABox proves that the Haskey construct works as intended from the 

perspective of machine logic. Here we use Pellet 2.2.214F14F

15 reasoner which supports OWL 2 and 

HasKey construct.   

 

                                                           
15 http://clarkparsia.com/pellet/ 

Person
⁰ir

SisterOf/

file:///Users/mustafajarrar/Dropbox%20(SI-U)/Documents/Students/Rami//irreflexive.owl
http://clarkparsia.com/pellet/
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OWL 2 Functional Syntax 
Declaration(Class(:Person)) 
Declaration(DataProperty(:issn)) 
Declaration(NamedIndividual(:ahmad)) 
ClassAssertion(:Person :ahmad) 
DataPropertyAssertion(:issn :ahmad "12345"^^xsd:integer) 
Declaration(NamedIndividual(:aysar)) 
ClassAssertion(:Person :aysar) 
DataPropertyAssertion(:issn :aysar "12345"^^xsd:integer) 
DifferentIndividuals(:aysar :ahmad) 
DataPropertyAssertion(:issn :ahmad "12345"^^xsd:integer) 
DataPropertyAssertion(:issn :aysar "12345"^^xsd:integer) 
HasKey(:Person () (:issn)) 
 
 

Checked 
Example 

 
Type of 

 

nRQL query Result 

Consistensy 
Check 

Pellet Consistency 
 c:/ hasKey.owl) 
(with assertions that do not 
violate the constraint) 

Yes 

Pellet Consistency 
 c:/ hasKey.owl) 
 (with assertions that do violate 
the constraint) 

No 

Figure 5.18: Tests performed on OWL 2 mapping of ORM identity constraint  
 
5.2.20.2 Total and Exclusive Constraints  
 
An example as shown in Figure 5.18, in OWL 2 is created. That contains a class named 

Vehicle as a super type and other two classes named PrivateCar and VanCar as a subtypes for 

the class Vehicle. This example is created to prove the correctness of disjoint union 

formalizing. When retrieving the instances of class Vehicle, it gives us the union of instances 

of subclasses PrivateCar and VanCar, and this achieves unionOf between subclasses. The 

instances are made different from each other where OWL 2 does not support unique name 

assumption. After asserting the same individual mercedes100 to class VanCar, where this 

instance is already asserted to class Private Car, this assertion violates the disjoitness between 

classes VanCar and PrivateCar. The result of checking the consistency of ABox is nil (ABox 

is inconsistent) and this result is as expected. 

 
OWL 2 Functional Syntax 
DisjointUnion(:Vehicle :VanCar :PrivateCar) 
Declaration(NamedIndividual(:bora100)) 
ClassAssertion(:Vehicle :bora100) 
ClassAssertion(:VanCar :honda100) 
ClassAssertion(:VanCar :mazda200) 
ClassAssertion(:PrivateCar :mercedes100) 
ClassAssertion(:PrivateCar :toyota200) 
ClassAssertion(:VanCar : mercedes100) 
DifferentIndividuals(:honda100 :bora100) 
DifferentIndividuals(:mazda200 :bora100) 
DifferentIndividuals(:mercedes100 :bora100) 
DifferentIndividuals(:toyota200 :bora100) 
DifferentIndividuals(:mazda200 :honda100) 
DifferentIndividuals(:mercedes100 :honda100) 
DifferentIndividuals(:toyota200 :honda100) 
DifferentIndividuals(:mercedes100 :mazda200) 
DifferentIndividuals(:toyota200 :mazda200) 

Checked 
Example 

 
Type of Test nRQL query Result 
Retrieve 
Instances 

(retrieve(?x) (?x 
#Vehicle)) 

(((:bora100)) ((:honda100)) 
 ((:mazda200)) 
((:mercedes100)) 
  ((:toyota200))) 

Consistency 
Check 

? (abox-consistent? 
file:// asymmetric.owl) 
(with assertions that do 
not violate the 
constraint) 

True 

Person
(issn)

Vehicle

VanCarPrivateCar
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DifferentIndividuals(:toyota200 :mercedes100) 
 
 
 
 
 

? (abox-consistent? 
file://asymmetric.owl) 
(with assertions that do 
violate the constraint) 

Nill 

Figure 5.19: Tests performed on OWL 2 mapping of ORM total and exclusive constraints 
 
Although the tests performed on the OWL 2 mappings of the ORM constructs cannot be 

theoretically complete, they cover most of the ground (i.e., they are comprehensive). In fact, in 

our tests we focused on using the boundary analysis techniques of software testing, where we 

tested boundary or limit conditions of the constraints. An example of such tests is the 

consistency check performed on the exclusive constraint as discussed in section 5.2.5. Note 

that the exclusive constraint means that the population of the subtypes constrained by this rule 

is pairwise distinct (i.e., no assertion can be the instance of two classes). The limit of this 

constraint can be simply checked by trying to violate the constraint and then checking the 

consistency of the A-Box. Consider, as another example, the role frequency constraint.  

Consider an object-type A that is restricted to play a role with 3-5 occurrences only (e.g., a 

teacher that is restricted to teach between 2-4 courses). Testing the limits of such constraint 

requires testing the minimum occurrence restriction (i.e., 2) in addition to the maximum 

occurrence restriction (i.e., 4). 

 
5.3 Evaluation Process of extending ORM for Complete representation of OWL 2 
 
Our work of extending the ORM notation to cover all OWL 2 constructs was evaluated by 

means of a survey. Each construct of the eleven additional constructs added to the ORM 

notation was represented by three different graphical notations after extensive analysis of the 

graphical notations currently used in ORM and the rationale behind them. The three new 

proposed notations were chosen to comply with the existing ORM graphical notations. The 

available choices for the graphical representation were then put in a form of a survey shown in 

appendix c. The survey was revised by two computer engineers working at the Palestinian e-

government academy and the Ministry of Telecom and IT involved in the development of the 

Palestinian Interoperability Framework “Zinnar” who developed related ontologies in ORM, 

one of the master of computing students who works at the SINA institute at Birzeit university 

who studied object role modeling, description logic and web ontology language through some 

of the master courses and the supervisor of the this thesis who is an expert in ORM, 

description logics and OWL 2.       

file:///Users/mustafajarrar/Dropbox%20(SI-U)/Documents/Students/Rami//asymmetric.owl
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Workshops were held to explain the broader scope of the research, the motivation behind 

extending ORM, and the rationale behind each possible graphical representation. Thirty one 

ORM and OWL practitioners participated in the workshops and survey process, twenty one of 

these practitioners who conducted a workshop where master students of computing at Birzeit 

university who studied the course of knowledge engineering taught by Dr.Mustafa Jarrar. The 

workshop participants were at the end of the knowledge engineering course (the course was at 

fall 2011 semester) after they had studied object role modeling, description logics and web 

ontology language. The students participated in the workshop had developed several modeling 

cases and projects using object role modeling and web ontology language. Through the 

workshop an explanation for students about the objectives and related information of this 

thesis was conducted, also an explanation about the extending of ORM and the new proposed 

graphical notations was introduced, in addition to a clarification about each construct of OWL 

2 and its three new proposed graphical notations. A discussion concerning the ORM extension 

was held by the thesis author, thesis supervisor and workshop students. At the end of 

workshop discussion these practitioners were asked to determine their preferred graphical 

representation for each construct (by filling the survey). Also the practitioners were asked to 

add a new proposed graphical notation other than the already three specified ones if they were 

willing to do so from their own perspective. The results of the survey were then analyzed and 

the final notations were determined with the highest percent of selection. Ten of the 

practitioners were conducted individually. Some of these ten survey fillers were practitioners 

in ORM who developed the stationers ORM modeling cases for the Palestinian e-government 

project, others were students of master of computing at Birzeit university who studied the 

course of knowledge engineering that includes related surveyed subjects.     

 
 
5.3.1 Equivalent Classes: 
  
Equivalent Classes as an OWL 2 construct means that two or more classes constrained with 

the construct Equivalent Classes are semantically equivalent to each other. In ORM there are 

no notations that implement the equivalence between two or more objects. The proposed 

notations to represent Equivalent Classes in ORM are shown in Figure 5.20; also the usage of 

using each proposed notation is shown in the same figure. Of the 31 knowledgeable persons 
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surveyed, ten preferred notation (a), five preferred notation (b) and sixteen preferred notation 

(c). According to the survey result the graphical notation (c) was preferred by 16 of the 31 

experts who participated in the evaluation survey (52%). So this graphical notation was used. 

 
Figure 5.20 Surveyed notations and their percent results for ORM in their symbol and usage 
shapes to represent OWL 2 construct of Equivalent Classes  
 
5.3.2 Disjoint Classes: 
 
To represent Disjoint Classes construct of OWL 2 in ORM, three notations are suggested as 

shown in Figure 5.21 according to usually used symbols that logically indicate the semantic of 

disjoint, also the usage of using each proposed notation is shown in the same figure. Of 31 

experts surveyed 20 preferred the ⨂ symbol to represent the Disjoint Classes construct, three 

preferred the symbol shown in (b) and eight preferred symbol (c). According to the survey 

result the graphical notation (a) was preferred by 20 of the 31 practitioners who participated in 

the evaluation survey (64%). So this graphical notation is used. 

 

 
Figure 5.21 Surveyed notations and their percent results for ORM in their symbol and usage 
shapes to represent OWL 2 construct of Disjoint Classes 
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AnA1
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=
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32% 16% 52%
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5.3.3 Intersection of Class Expressions 
 
Intersection of classes construct of OWL 2 is an expression states that the intersection between 

classes contains the individuals that are members of each class belongs to intersected classes. 

ObjectIntersectionOf construct for classes is not represented in ORM. A symbol of 

intersection (⊓) is proposed to be used for representing the expression of classes' intersection 

in three different ways as shown in Fig. 5.22. As shown in Fig. 5.22, we represent anonymous 

class (class with no name) just to show that we have an expression of intersection of classes, 

which is virtually equivalent to the anonymous class. In implementation we do show the 

anonymous class graphically. The proposed graphic notation of the circle with the symbol ⊓ 

attached in different ways within the ellipse represents intersected equivalent class. This 

proposed graphical notation represents the expression of classes’ intersection. The same thing 

in principle is applied for class complement. Of 31 practitioners surveyed four preferred 

notation (a), 18 preferred notation (b) and nine preferred notation (c). According to the survey 

result the graphical notation (b) was preferred by 18 of the 31 experts who participated in the 

evaluation survey (58%). So this graphical notation is used. 

 

  
Figure 5.22 Surveyed notations and their percent results for ORM in their symbol and usage 
shapes to represent OWL 2 construct of Intersected Classes 
 
5.3.4 Class Complement 
  
The Complement of Class expression is not represented in ORM which states that the 

complement class contains all individuals that are not members of the intended class. The 

three notations that are proposed to represent the expression of class' complement are shown in 

Fig. 5.23. The symbol not (¬) is proposed to be used for representing the complement of class 

(a) (b) (c)

⊓

A1 A2 . . . An

A_Intersection

⊓

⊓
⊓

A1 A2 . . . An

A_Intersection
⊓

A1 A2 . . . An

A_Intersection
⊓

13% 58% 29%
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expression as shown in the Fig. 5.23 of 31 practitioners surveyed six preferred notation (a), 14 

preferred notations (b) and eleven preferred notation (c). According to the survey result the 

graphical notation (b) was preferred by 14 of the 31 experts who participated in the evaluation 

survey (45%). So this graphical notation is used in the implementation.  
 

 
Figure 5.23 Surveyed notations and their percent results for ORM in their symbol and usage 
shapes to represent OWL 2 construct of Class Complement 
 
5.3.5 Class Assertions 
 
Class Assertions is not formally represented in ORM. The three notations that are proposed to 

represent class assertions are shown in Fig. 5.24.a. The symbol (  ) is proposed to be used to 

enable the class assertions as shown in Fig. 5.24. Of 31 practitioners surveyed nine preferred 

notation (a), four preferred notation (b) and fifteen preferred notation (c). According to the 

result of the survey the graphical notation (c) was preferred by 15 of the 31 practitioners who 

participated in the evaluation survey (48%). So this graphical notation is used in the 

implementation. Three proposed notations for the appearance of individuals are shown in Fig. 

5.23.b. The graphical appearance of individuals is planned to be allowed for four of them, if 

there is more than four individuals they will be shown within separate window. Of 31 

practitioners surveyed 17 preferred notation (a), eight preferred notation (b) and six preferred 

notation (c). According to the survey result the graphical notation (a) was preferred by 17 of 

the 31 experts who participated in the evaluation survey (55%). 

 

(a) (b) (c)

19% 45% 36%
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¬
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¬
NotA

A

¬
NotA

A

¬NotA



71 
 

 

 
                                            (a) (b)    

Figure 5.24 Surveyed notations and their percent results for ORM to represent OWL 2 
construct of Class Assertions                  
 
5.3.6 Individual Equality  
 
Individual Equality states that if we have two instances or more that are related by Individual 

Equality (OWL 2 Construct), then these instances are the same. The three notations that are 

proposed to represent Individual Equality are shown in Fig. 5.25.a. Of 31 practitioners 

surveyed 24 preferred notation in (a), six preferred notation (b) and one preferred notations (c). 

According to the survey result the graphical notation (a) was preferred by 24 of the 31 experts 

who participated in the evaluation survey (77.5%). So this graphical notation is used in the 

implementation. 

 

 
                                            (a) (b)    

Figure 5.25 Surveyed notations and their percent results for ORM to represent OWL 2 
construct of (a) Individual Equality and (b) Individual Inequality    
  
5.3.7 Individual Inequality 
 
Individual Inequality states that if we have two instances or more that are related by Individual 

Inequality (OWL 2 Construct), then these instances are different from each other. The three 

notations that are proposed to represent Individual Inequality are shown in Fig. 5.25.b. Of 31 

practitioners surveyed six preferred notation in (a), 22 preferred notations (b) and three 
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preferred notation (c). According to the survey result of the graphical notation (b) was 

preferred by 22 of the 31 experts who participated in the evaluation survey (71%). So this 

graphical notation is used in the implementation. 

 
5.3.8 Positive Object/Data Property Assertion 
 
The three notations that are proposed to represent Positive Object Property Assertion are 

shown in Fig. 5.26. Of 31 practitioners surveyed 19 preferred notation in (a), eight preferred 

notation (b) and four preferred notation (c). According to the survey result the graphical 

notation (a) was preferred by 19 of the 31 practitioners who participated in the evaluation 

survey (61%). So this graphical notation is used in the implementation. 

 
Figure 5.26 Surveyed notations and their percent results for ORM to represent OWL 2 
construct of Positive Object Property Assertion 
 
5.3.9 Negative Object/Data Property Assertion 
 
The three notations that are proposed to represent Negative Object Property Assertion are 

shown in Fig. 5.27. Of 31 experts surveyed 21 preferred notation in (a), seven preferred 

notation (b) and three preferred notation (c). According to the survey result the graphical 

notation (a) was preferred by 19 of the 31 practitioners who participated in the evaluation 

survey (68%). So this graphical notation is used in the implementation. 

 
Figure 5.27 Surveyed notations and their percent results for ORM to represent OWL 2 
construct of Negative Object Property Assertion 
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http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
http://www.w3.org/TR/2009/REC-owl2-primer-20091027/#a_ObjectPropertyAssertion
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5.3.10 Reflexive Ring Constraint:  
 
The notation for reflexive constraint is set as that for ring constraints using the word “ref” to 

indicate the reflexive constraint. This notation was not surveyed because we used exactly the 

same pattern used in ORM for ring constraints and so as for transitive constraint. 

 
5.3.11 Transitive Ring Constraint:  
 
The notation for reflexive constraint is set as that for ring constraints using the word “tra” to 

indicate the reflexive constraint.  

 

Table 5.1 summarizes all the graphical representation choices and the results of the survey. 

 Construct Name Representation (1) Representation (2) Representation (3) 

1 Equivalent Classes =  
32% 

 
16% 

 

 
52% 

2 Disjoint Classes  
 

64% 
 

10% 
 

16% 

3 Intersection of Class 
Expressions 

⊓  
13% 

⊓  
58% 

⊓
 

29% 

4 Class Complement 

¬  
19% 

¬  
45% 

¬
 

36% 

5 Class Assertions (before) A

 
48% 

A
 

13% 

A
 

39% 

Class Assertions (after) 
a1
a2
a3

A

 
55% 

a1
a2
a3

A

 
26% 

a1
a2
a3

A

 
19% 

6 Individual Equality =  
77.5% 

 
19.5% 

 
3% 

≠
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7 Individual Inequality ≠  
71% 

 
10% 

 
19% 

8 Positive Property Assertion 

 
61% 

 
26%  

13% 
9 Negative Property 

Assertion 
 

68% 
 

23%  
9% 
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Chapter Six 
 
 Implementation of Mapping between ORM and OWL 2 
 
 
6.1 Introduction 
 
This chapter provides an overview of the extension of DogmaModeler tool to hold the 

mapping between ORM and OWL 2. DogmaModeler was developed as a modeling tool using 

the programming language Java within the integrated development environment Java Beans. 

DogmaModeler is used as a tool for ontology engineering, where it enables ontology builders 

to build ontologies that are characterized by both usability and reusability, and by easily using 

ORM graphical notations [JDM03]. DogmaModeler and its extension can be downloaded 

from16. Using the extended DogmaModeler, the person can graphically build an ontology 

using graphical representation of objects, relations and constraints on the user-interface for 

both building and editing the required ontology. The DogmaModeler tool will automatically 

create the equivalent OWL 2 file that represents the graphically-built ontology using ORM. 

The mapped OWL 2 file can be checked for correctness (like consistency and coherency 

checking) using the Hermit reasoner, which is integrated into DogmaModeler. 

 
6.2 DogmaModeler 
 
The work presented in this thesis is implemented as an extension to DogmaModeler. 

DogmaModeler is an ontology modeling tool based on ORM. DogmaModeler allows 

modeling, browsing, and managing ontologies. This tool allows one to build his Ontology 

                                                           
16 http://www.jarrar.info/Dogmamodeler/ 

http://www.jarrar.info/Dogmamodeler/
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using the ORM paradigm and then validate his Ontology using integrated Description Logic 

reasoning services. In its original implementation, DogmaModeler supported the mapping of 

built ORM ontologies into three notations: ORM-ML (ORM Markup Language), Pseudo 

Natural Language, and DIG (Description Logic Interface). These mappings allow the ontology 

to be easily exchanged and understood by domain experts, accessed and processed 

automatically by application, and validated using Description Logic reasoning services. 

Originally, ORM diagrams built in DogmaModeler were mapped automatically to DIG; a 

description logic interface (XML-based language). The DIG mappings of the ORM models 

were then validated using a Description Logic reasoning server (such as Racer, Fact++, etc) 

which acted as a background reasoning engine.  

 

In fact, DogmaModeler integrates reasoning services (such as Racer, Fact++, etc) as 

background reasoning engines. This allows one to validate his/her ontology, for any possible 

contradiction or inconsistency. The following is a brief description of the three mappings of 

ORM that DogmaModeler originally support: 

 

(i) ORM Markup Language (ORM-ML) [J05]. It is an XML-based language to markup 

conceptual diagrams, thus allowing the ontology that is built in ORM to be accessed 

and processed at run-time of applications.  

 

(ii) Pseudo Natural Language. Through utilizing ORM’s verbalization capabilities, 

DogmaModeler supports verbalization of ontologies into pseudo natural language, 

allowing for easy exchange and understanding of the ontologies by domain experts. 

 

(iii) Description Logic Interface (DIG). It is an XML-based language supported by several 

description logic reasoners (such as Racer, Fact++, etc), which allows for the 

validation of ontologies built in ORM. 

 
6.3 Extending DogmaModeler 

Our implemented extension of DogmaModeler is twofold: 
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i) We implemented the OWL 2 mapping of ORM presented in this paper, such that the 

ORM diagrams currently built in DogmaModeler are automatically mapped to OWL 2 

and then validated using the Hermit reasoning tool. 

 

ii) We implemented our newly proposed ORM notations with its OWL 2 mapping. 

  

By doing so, one can now build his OWL 2 ontology graphically using ORM and its mapping 

into OWL 2 is automatically generated and then validated using description logic reasoning. 

As we mentioned before the idea behind the implementation of our work is enabling ontology 

building by the intended person using the graphical oriented paradigm. 

 

The DogmaModeler tool is now extended to become an environment for authoring OWL 2 

ontologies graphically using ORM. That is, one now builds his OWL 2 ontology graphically 

using ORM and then DogmaModeler generates the OWL 2 code automatically. This code can 

then be validated easily using description logic reasoning via the integrated “HermIT” 

reasoning tool. 

 

For the first part of implementation, we extend DogmaModeler to automatically map ORM 

into OWL 2 constructs depending on ORM markup language [DJM02, J05] (which is 

automatically generated according to equivalent ORM graphical notations). Figure 6.1.a shows 

a snapshot of DogmaModeler outputs, which illustrates an ORM graphical notation example 

with reasoning results indicating that the built example of ORM is consistent and there is no 

unsatisfiable concepts. Figure 6.1.b, shows the mapping result of OWL 2 for the example 

illustrated in Figure 6.1.a.  

 
Fig. 6.2 depicts a modification for ORM diagram of Fig 6.1.a which is built using 

DogmaModeler. The first window (Fig. 6.2.a) shows the diagram and its validation (by means 

of logical reasoning) using the integrated HermIT reasoning server while the second window 

shows the OWL 2 mapping of the diagram. Note that the results of the reasoning state that the 

class ‘ownedBy.Company’ is unsatisfiable due to the contradiction between the exclusion and 

mandatory constraints. 
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(a) ORM built and validated in DogmaModeler (b) OWL 2 mapping of the ORM in (a) 

Figure 6.1: A Snapshot of an ORM diagram built in DogmaModeler, its mapping to OWL 2, 
and its validation. 
      

  

(a) ORM built and validated in DogmaModeler (b) OWL 2 mapping of the ORM in (a) 
Figure 6.2: A Snapshot represent modified ORM diagram of Figure 6.1, built in 
DogmaModeler, its mapping to OWL 2, and its validation. 
                                 
 For the second part of implementation, that illustrates the extending of ORM notations to 

represent those of OWL 2 not represented by original ORM notations. We extended 

DogmaModeler by adding the new proposed ORM notations which are illustrate in chapter 4. 

These extended notations are integrated with the family of ORM notations holed by 

DogmaModeler with the full functionality of mapping. The mapping of these new proposed 

ORM notations is done to both ORM Markup Language and OWL 2. We proposed the new 

equivalent constructs for ORMML to hold the extended ORM notations, but here our 

significance concern is mapping the extended ORM notations into OWL 2 that is actually 

implemented. 
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As a result of implementation we are mainly concerned with enabling one to graphically build 

his/her ontology using extended ORM that fully represents of OWL 2. OWL 2 (recommended 

web ontology language from W3C) contains the majority of constructs to be used for building 

any needed ontology supported by many reasoners for checking the correctness of built 

ontology. This extension of ORM constructs is included in the extended DogmaModeler tool, 

which will enable one to build his ontology graphically without writing OWL 2 syntax and 

DogmaModeler will automatically convert this ontology to OWL 2 representation file. The 

resulting file of OWL 2 can be used easily for ontology modeling purposes.  One can 

interactively model the needed ontology using DogmaModeler and after every graphical 

modeling step she/he will be fed back about his/her progress.  The incremental ontology 

building can be checked continuously for correctness.   

 
Fig. 6.3 shows the use case of Fig. 4.9 (section 4.15) built in DogmaModeler. The first 

window (Fig. 6.3) contains the ORM diagram. Note that this diagram contains our proposed 

extension of the ORM notation. The results of the validation using logical reasoning show that 

the ORM model is consistent and there are not unsatisfiable concepts. The second window 

(Fig. 6.5.a) shows the OWL mapping of the ORM diagram. Notice the mapping of the newly 

added ORM notations into OWL 2. 

 
Figure 6.3: ORM use case of Figure 4.9 using DogmaModeler with new proposed ORM 

notations. 
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Fig. 6.4 shows another ORM example created using DogmaModeler. The figure depicts three 

sample ontologies for ministry of labor, health ministry and transportation ministry expressed 

in ORM; these sample ontologies are integrated with each other using some of the new 

proposed ORM notations illustrated below. Note that these three sample ontologies are 

proposed for Palestinian ministries. However, what is depicted in Figure 6.4 is not a complete 

ontology and is only meant to be a sample demonstration of the usefulness of the newly 

proposed ORM notations. Fig. 6.5.b shows the equivalent OWL 2 constructs (in OWL/XML 

syntax) of new proposed ORM notations that are illustrated in Fig. 6.4. 

 

 
Figure 6.4: ORM example using DogmaModeler with new proposed ORM notations 
 
Figure 6.4 contains new proposed ORM graphical notations. These notations are illustrated in 

what follows: 

 
• Equivalent Classes is depicted as “↔” between the equivalent classes 

PrivateWorker and Employee.  

 
• Disjoint Classes is depicted as “ ” between the disjoint classes Government and 

Company. 
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• Intersection of Class Expressions is depicted as “ ”  between the intersected 

classes Patient and PublicWorker and the proposed equivalent class PatientWorker. 

  
• Class Complement is depicted as “ ” connected to the intended class 

NaturalPerson and the proposed equivalent class NotNaturalPerson which is 

equivalent the complement of class NaturalPerson.  
 

• Individual Equality is depicted as  “ ”  between the same individuals Mira and 

Maya which are instances asserted as instances into the class Employee.  

 
• Individual Inequality is depicted as “ ”  between the different individuals Sonata 

and Verna. 

 

 
Figure 6.5  OWL 2 constructs (in OWL/XML syntax) of new proposed ORM notations that 
are illustrated in (a) Figure 6.3 and (b) Figure 6.4. 
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Chapter Seven 
 
Conclusion and Recommendations for Future Work 
 
 
7.1 Conclusion 
 
The ever increase of the need to develop various applications that depend on ontology 

pressures the need to build ontology without time and effort consuming. It is more easily for 

people to perform conceptual modeling graphically. OWL 2 which is the recommended Web 

Ontology Language needs proficiency and using it to build the needed ontology is time and 

effort consuming. It is worth to find a way to build ontology graphically and at the same time 

using OWL 2. ORM which is rich of graphical notations and characterized by high 

expressivity is used as a conceptual modeling tool in a graphical context. 

 

The mapping and automation of this mapping between ORM and OWL 2 are the main theme 

of this thesis. We mapped nineteen (out of twenty nine) ORM constructs. The ORM constructs 

that depend on n-arity cannot be mapped into SROIQ/OWL 2 constructs according to the fact 

that OWL 2 supports only binary relations.  Where these nineteen constructs represent the 

most commonly used constructs in ORM. At the same time, those constructs are supported by 

SROIQ Description Logic; which means that OWL 2 output we have mapped is characterized 

by its ability of decidability. Although the mapping from ORM into OWL 2 is done 

theoretically using SROIQ Description Logic, which leads to the verification of mapping 

correctness, we do evaluate this mapping (from ORM into OWL 2). The evaluation here 

which is done practically using RacerPro reasoner is done to assure practically the correctness 
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of mapping. This evaluation of mapping from ORM into OWL 2 is done by examining each 

mapped construct as a complete OWL 2 file (the file is loaded into RacerPro 2.0 reasoner) 

using different reasoning services such as consistency, coherency and instance checking. 

 

In the second part of this research, we extend ORM for complete representation of OWL 2 . 

We do proposed new notations of ORM to completely represent OWL 2 by ORM notations, in 

addition of using non-notational expressions. The proposed notations for extending ORM are 

selected according to an evaluation process. The evaluation process depends in a survey 

fulfilled by practitioners in both ORM and OWL. 

 

DogmaModeler as a modeling tool based on ORM is extended to include the new proposed 

notations of ORM with the already existing notations that are mapped into OWL 2. As a result 

one can use ORM as an interface of OWL 2 to  build him/her ontology graphically, where the 

built ontology is automatically mapped into OWL 2 using the extended DogmaModeler to 

perform this mapping (between ORM and OWL 2). Once the mapped OWL 2 file from 

extended ORM is generated, we can reason about the ontology represented in OWL 2 using 

Hermit reasoner that supports OWL 2 to check the correctness of the built ontology. It is 

important to note here that the extended ORM is not merely a graphical notation for the 

visualization of ontologies. It is a methodology that guides the ontology engineer to design and 

represent an ontology using the different constructs and rules it provides. ORM facilitates the 

process of engineering the ontology through its verbalization capabilities which allow the 

involvement of domain experts in the modeling process. 

 

As a result of this thesis work we have developed an expressive and methodological graphical 

notation for OWL 2, which allows people to author OWL 2 ontologies graphically. To 

summarize, we develop our thesis work through two main phases : (i) mapping the graphical 

notations of ORM to SROIQ/OWL 2 following the semantics of OWL 2 (ii) extending the 

ORM graphical notation to cover all OWL 2 constructs not currently covered by ORM. OWL 

2 is the W3C-recommended ontology language for authoring ontologies. However, it does not 

provide any methodological or graphical means to engineer ontologies. On the other hand, 

ORM is a graphical methodological notation used for conceptual modeling. By mapping 
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between ORM and OWL 2, one can now engineer OWL 2 ontologies graphically using ORM 

and then map them automatically to OWL 2.  

 

7.2 Recommendations for Future Work 

Future directions of our research will involve extending  DogmaModeler to allow user-friendly 

debugging and reasoning that helps the user find the cause of the problem and directions on how to 

solve it. Note that this is not an implementation issue; it rather needs theoretical research on reasoning 

problems. In addition, we plan to perform full mapping of ORM into SROIQ/OWL 2, by 

extending OWL 2 and the underpinning description logic to hold the uncovered notations of 

ORM. This will include investigating an extension of the SROIQ Description Logic and the 

development of a new reasoning engine to support complete reasoning of ORM. 
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