

Modularization and automatic composition of Object-
Role Modeling (ORM) schemes

Mustafa Jarrar

Vrije Universiteit Brussel, Brussels, Belgium
mjarrar@vub.ac.be

Abstract. In this paper we present a framework and algorithm for
modularization and composition of ORM schemes. The main goals of
modularity are to enable and increase reusability, maintainability, distributed
development of ORM schemes. Further, we enable effective browsing and
management of such schemes through libraries of ORM schema modules. For
automatic composition of modules, we present and implement a composition
operator: all atomic concepts and their relationships (i.e. fact-types) and all
constraints, across the composed modules, are combined together to form one
schema (called modular schema).

Keywords: Object Role Modeling, ORM, NIAM, Conceptual Modeling, Ontology,
Formal ontology engineering, DOGMA, DogmaModeler, Modularization,
Composition, Reusability, Distributed Development, Maintainability.

1 Introduction and motivation

ORM (Object-Role Modeling) [H01] is a conceptual modeling approach that was
developed in the early 70's. It is a successor of the NIAM (Natural-language
Information Analysis Method) [VB82]. The ORM conceptual schema methodology is
fairly comprehensive in its treatment of many "practical" or "standard" business rules
and constraint types (e.g. identity, mandatory, uniqueness, subsumption, subset,
equality, exclusion, value, frequency, symmetric, intransitive, acyclic, etc.).
Furthermore, ORM has an expressive and stable graphical notation since it captures
many rules graphically and it minimizes the impact of change on the models.

Although ORM was originally developed as a database modeling approach, it has
been also successfully reused in other conceptual modeling scenarios, such as XML-
Schema conceptual design [BGH99], business rule modeling language
[H04][N99][DJM02a], ontology modeling [JDM03][J05], etc. Hence, we shall regard
an ORM schema, in this paper, as a general conceptual model independently of a
certain application or modeling scenario; and we sometimes interchange the term
“ORM schema” with the term “axiomatization” to refer to the same thing.

The main idea of ORM modularization in this paper is to decompose an ORM schema
into a set of smaller related modules, which: 1) are easier to reuse in other kinds of
applications; 2) are easier to build, maintain, and replace; 3) enable distributed
development of modules over different locations and expertise; 4) enable the effective

[J05a] Jarrar, M.: Modularization and automatic composition of Object-Role Modeling
(ORM) schemes. In Halpin, T., Meersman, R.: Proceeding of the International Workshop
on Object-Role Modeling (ORM'05), OTM 2005 Workshops. LNCS, Vol., Springer. 2005.

management and browsing of modules, e.g. enabling the construction of libraries of
ORM modules [JM02b]1.

To compose modules automatically, we propose a composition operator: all atomic
concepts and their relationships (i.e. fact-types) and all constraints, across the
composed modules, are combined together to form one schema (called modular
schema).

1.1 A simple example

In what follows, we give an example to illustrate the (de)composition of ORM
schemes. Fig. 1 shows two ORM schemas of Book-Shopping and Car-Rental
applications. Notice that both schemes share the same axioms about payment.

Fig. 1. Book-shopping and Car-Rental schemes.

1 Notice that reusability, maintainability, and distributed development of ORM schemes might

not be challenges in database modeling (the original usage of ORM), but they are urgent
demands when using ORM e.g. in ontology Engineering [J05][SMS+05].

Instead of repeating the same effort to construct the axioms of the “payment” part, we
suggest decomposing these schemes into three modules, which can be shared and
reused among other applications (see fig. 2). Each application-type (viz. Book-
Shopping and Car-Rental) selects appropriate modules (from a library) and composes
them through a composition operator. The result of the composition is seen as one
schema2.

Fig. 2. Modularized schemes.

Engineering schemes in this way will not only increase their reusability, but also the
maintainability and management of these axiomatizations3. As the software
engineering literature teaches us, small modules are easier to understand, change, and
replace [P72] [SWCH01]. An experiment by [BBDD97] proves that the modularity of
object-oriented design indeed enables better maintainability and extensibility than
structured design. Decomposing schemes into modules also enables the distributed
development of these modules over different location, expertise, and/or stakeholders.

2 The illustrated composition in this example is very simplistic, as each pair of modules overlap

only in one object-type, i.e. the “Payment Method”. In farther sections, we discuss more
complicated compositions, in which rules in different modules may contradict or imply each
other.

3 In this way, one can imagine axiomatizations (/schemes) as large sets of business rules
modularized and organized as sets of compose-able modules.

As an analogy, compare the capability of distributing the development of a program
built in Pascal with a program built in JAVA, i.e. structured verses modular
distributed software development.

The modularity criteria could typically be subject-oriented and/or purpose/task-
oriented. Subject-oriented parts should be released into separate modules, e.g.
separate between the financial axioms (e.g. salary, contract, etc.) and the academic
axioms (e.g. course, exams, etc.). The general purpose/task-oriented parts of an
axiomatization could be released into separate modules, e.g. the axiomatization of
“payment”, “shipping”, “invoicing”, which are often repeated in many e-commerce
applications.

2 Composition Framework
To compose modules we define a composition operator. All concepts and their
relationships (i.e. fact-types) and all constraints, across the composed modules, are
combined together to form one axiomatization. In other words, the resultant
composition is the union of all axioms in the composed modules. As shall be
discussed later, a resultant composition might be incompatible in case this
composition is not satisfiable, e.g. some of the composed constraints might contradict
each other.

Our approach to composition is constrained by the following argument. A developer,
when including a module into another, must expect that all rules in the included
module are inherited by the including module, i.e. all axioms in the composed
modules must be implied in the resultant composition. Formally speaking, the set of
possible models for a composition is the intersection of all sets of possible models for
all composed modules. In other words, we shall be interested in the set of models that
satisfy all of the composed modules.

In fig. 3, we illustrate the set of possible instances (i.e. possible models) for a concept
constrained differently in two modules composed together. Fig. 3(a) shows a
compatible composition where the set of possible instances for M.c is the intersection
of the possible instances of M1.c and M2.c. Fig. 3(b) shows a case of incompatible
composition where the intersection is empty.

Fig. 3. (a) Compatible composition, (b) Incompatible composition.

Notice that our approach to module composition is not intended to integrate or unite
the extensions (i.e. ABoxes) of a given set of modules, as several approaches to
schema integration aim to do [SP94] [SK03][BS03]. Our concern is to facilitate
developers (at the development phases) with a tool to inherit (or reuse)
axiomatizations without “weakening” them. In other words, when including a module
into another module (using our composition operator, which we shall formalize in the
next sections) all axioms defined in the included module should be inherited by (or
applied in) the including module.

It is also worth to mention that Vermeir [V83] has proposed an approach for
modularizing large ORM diagrams based on heuristic procedures. However, this
approach is not related to ours, as it is only concerned with how to “view” a one large
ORM diagram in different degrees of abstraction or viewpoints. Another similar
approach is proposed by Shoval [S85].

2.1 Definition (Module) A module is an axiomatization (i.e. a typical ORM Schema)
of the form Μ = <Ρ, Ω>, where Ρ is a non empty set of fact-types, i.e. the set of
object-types and their relationships; Ω is a set of constraints which declares what
should necessarily hold in any possible world of M. In other words Ω specifies the
legal models of M.

2.2 Definition (Model, Module satisfiability) Using the standard notion of an
interpretation of a first order theory, an interpretation I of a module M, is a model
(also called “legal model”) of M iff each sentence of M (i.e. each ρ ∈ Ρ and each ω
∈ Ω) is true for I.

Each module is assumed to be self-consistent, i.e. satisfiable. Module satisfiability
demands that each role in the module can be satisfied [BHW91]. For each ρ in a
given module Μ, ρ is satisfiable w.r.t. to M if there exists a model I of M such that ρI
≠ ∅.

Notice that we adopt a strong requirement for satisfiability, as we require each role in
the schema to be satisfiable. A weak satisfiability requires only the module itself (as a
whole) to be satisfiable [H89][BHW91].

2.3 Definition (Composition operator) Modules are composed by a composition
operator, denoted by the symbol ‘⊕’. Let Μ = Μ1 ⊕ Μ2, we say that M is the
composition of Μ1 and Μ2. Μ typically is the union of all fact-types and constraints
in both modules. Let Μ1 = <Ρ1, Ω1> and Μ2 = <Ρ2, Ω2>, the composition of (Μ1 ⊕
Μ2) is formalized as Μ = < Ρ1 ⊕ Ρ2, Ω1 ⊕ Ω2>. A composition (Μ1 ⊕ Μ2) should
imply both Μ1 and Μ2. In other words, for each model that satisfies (Μ1 ⊕ Μ2), it
should also satisfy each of Μ1 and Μ2. Let (Μ1)I and (Μ2)I be the set of all possible
models of Μ1 and Μ2 respectively. The set of possible models of (Μ1 ⊕ Μ2)I = (Μ1)I
∩ (Μ2)I. A composition is called incompatible iff this composition cannot be
satisfied, i.e. there is no model that can satisfy the composition, or each of the
composed modules.

2.4 Definition (Modular schema) A modular schema M = {Μ1 … Μn, ⊕ } is a set of
modules with a composition operator between them, such that P = (Ρ2 ⊕ … ⊕ Ρn)
and Ω = (Ω1 ⊕ … ⊕ Ωn).

3 Composition of ORM conceptual schemes
In this section we present an algorithm for automatic composition of modules
specified in ORM. We adopt the ORM formalization and syntax as found in
[H89][H01], excluding three things. First, although ORM supports n-ary predicates,
only binary predicates are considered in our approach. Second, our approach does not
support objectification, or the so-called nested fact types in ORM. Finally, our
approach does not support the derivation constraints that are not part of the ORM
graphical notation.
A composition of two modules (M = M1 ⊕ M2) is performed in the following steps:
1) Combine the two sets of fact types (Ρ = Ρ1 ⊕ Ρ2). 2) Combine the two sets of
constraints, Ω = Ω1 ⊕ Ω2. 3) Reason to find out whether the composition is
satisfiable. Optionally, 4) reason to eliminate all implied constraints from the
composition. The last two steps are not presented in this paper because of the limited
space. See our approach in [JH05] for reasoning about the satisfiability of ORM
Schemes. For step 4 we refer to [H89] for a comprehensive specification of constraint
implication in ORM.
The composition is considered an incompatible operation (and thus terminated) iff the
result cannot be satisfied.
Step 1: combining fact types
When composing two sets of fact-types (Ρ = Ρ1 ⊕ Ρ2), an object-type M1(Τ) in
module M1 and a object-type M2(Τ) in module M2 are considered exactly the same
concept iff they are referred to by the same term T, and/or URI. Formally, (Μ1(Τ) =
Μ2.(Τ)). Likewise, two fact-types are considered exactly the same (M1.<T1, r, r’, T2>
= M2.<T1, r, r’, T2>) iff M1(Τ1) = M2(Τ1), M1.(r) = M2.(r), M1.(r’) = M2.(r’), and
M1.(Τ2)= M2.(Τ2)4. See fig. 4.
In case that M1 and M2 do not share any object-type between them (i.e. two disjoint
sets of fact-types), the composition (M1 ⊕ M2) is considered an incompatible
operation5, as there is no model that can satisfy both M1 and M2. Notice that in case
an object-type is specified as “lexical” in one module and as “non-lexical” in another
(e.g. ‘Account’), then in the composition, this object-type is considered “non-lexical”.

4 T refers to a Term (concept label), r refers to a role, r’ refers to an inverse role.
5 In practice, we weaken this requirement to allow the composition of disjoint modules. For

example, in case one wishes to compose two disjoint modules and later compose them within
a third module that results in a joint composition.

Fig. 4. Combining ORM fact types.

Step 2: combining constraints
When composing two modules, the combination of all constraints (Ω1 ⊕ Ω2) should
be syntactically valid according to the ORM syntax. For example, some constraints
need to be syntactically combined into one constraint. The combination of a set of
constraints should imply all of them. Furthermore, some logical (i.e. satisfiability and
implication) validations are also performed in this step, e.g. in case of combining two
constraints that contradict or imply each other. In the following, we show how all
ORM constraints can be combined.
Step 2.1: Combining value constraints
Given two value constraints T.v1 and T.v2 on the same object-type T, (notice that v1
and v2 are two sets of values), their combination is the intersection T.v = T.v1 ∩ T.v2,
see fig. 5(a). If T.v1 ∩ T.v2 is empty, then the composition (M1 ⊕ M2) is considered as
incompatible operation, because the value constraints contradict each other and thus
the object type cannot be satisfied, see fig. 5(b).

Fig. 5. Combining value constraints.

Step 2.2: Combining mandatory constraints
When composing two modules, all mandatory constraints are included in the
composition without any specific combining operation.

Step 2.3: Combining disjunctive mandatory
When composing two modules, all disjunctive mandatory constraints are included in
the composition without any specific combining operation.
Step 2.4: Combining uniqueness and frequency constraints
When composing modules, uniqueness and frequency constraints are combined as
follows:
• As internal uniqueness implies predicate uniqueness [H89], the combination of

these two constraints is internal uniqueness (see fig. 6. (a) and (b)).
• In case of internal uniqueness and frequency constraints on the same role (see

fig. 6(c)), the composition of (M1 ⊕ M2) is considered an incompatible
operation, because the two constraints contradict each other [H89], and thus the
role cannot be satisfied. Recall that a frequency of maximum 1 is considered
internally uniqueness (see fig. 6(d)).

• In case of two frequency constraints on the same role, FC1(min-max) and
FC2(min-max), the combination FC(min-max) is calculated as FC.min =
MaxOf(FC1.min, FC2.min) and FC.max = MinOf(FC1.max, FC2.max), see fig.
6(e). In case the FC.min > FC.max, see fig. 6(f), then the composition of (Μ1 ⊕
Μ2) is considered an incompatible operation, because the two constraints are
in conflict each other, and the role cannot be satisfied.

• In other cases, all constraints are included in the composition without any
specific combining operation.

Fig. 6. An example of combining uniqueness and frequency constraints.

Step 2.5: Combining set-comparison constraints
Combining set-comparison constraints across two modules is performed in the
following steps:

• Each exclusion constraint that spans more than two singles or sequences of roles
(called “multiple” exclusion) is converted into pairs of exclusions6, such in Fig. 7.

Fig. 4.7. Converting multiple exclusions into pairs of exclusions.

• When combining a subset (or equality) in one module and an exclusion in
another, the composition of (Μ1 ⊕ Μ2) is considered an incompatible operation,
because the two constraints contradict each other, and so both roles cannot be
satisfied. See fig. 8.

• As equality implies subset (but not vice versa) [H89], when combining a subset in
one module and equality in another module, or when combining two subset
constraints that are opposite to each other, the combination is always equality. See
Fig. 9.

Fig. 8. Combining subset (or equality) with exclusion.

 Fig. 9. Combining subset and equality constraints.

6 This conversion is temporary for reasoning purposes, so it will not appear in the final result of

the composition. Notice that “a single exclusion constraint a cross n roles replaces n(n-1)/2
separate exclusion constraints between two roles” [H01].

Step 2.6: Combining subtype constraints (total, exclusive)

When composing two modules, all subtype constraints are included in the
composition without any specific combining operation.

Step 2.7: Combining ring constraints

ORM allows ring constraints to be applied to a pair of roles that are connected
directly to the same object-type in a fact-type, or indirectly via supertypes. Six types
of ring constraints are supported by ORM: antisymmetric (ans), asymmetric (as),
acyclic (ac), irreflexive (ir), intransitive (it), and symmetric (sym) [H01][H99]. The
relationships between the six ring constraints are formalized by [H01] using the Eular
diagram as in fig. 10. This formalization helps one to visualize the implication and
incompatibility between the constraints. For example, one can see that acyclic implies
reflexivity, intransitivity implies reflexivity, the combination between antiasymmetric
and reflexivity is exactly asymmetric, and acyclic and symmetric are incompatible.

Fig. 10. Relationships between ring constraints [H01].

When composing two modules, ring constraints are combined based on the
formalization in fig. 10. Any combination of ring constraints should be compatible,
i.e. there is an intersection between their zones in the Eular diagram, e.g. see fig. 11
(a). Otherwise, the composition of (Μ1 ⊕ Μ2) is considered an incompatible
operation, because the combined rings constraints conflict each other, and thus the
role cannot be satisfied. See fig. 11 (b).

Fig. 11. Examples of compositions ring constraints.

4 Discussion, conclusions and future work
This paper has presented an approach to modularize and automatically compose
ORM schemes. This approach is fully implemented in DogmaModeler [J05], which is
a software tool for modeling ontologies and business rules using the ORM graphical
notation. DogmaModeler enables users to create, compose, add, delete, manage, and
browse ORM (modular) schemes. DogmaModeler also implements a library of ORM

modular schemes, allowing different metadata standards (e.g. Dublin-Core, LOM,
etc.) to be used for describing modules. This approach has been also used in a real-
life case study (CCFORM EU project, IST-2001-34908, 5th framework.) for
developing modular axiomatizations of costumer complaints knowledge, see
[J05][JVM03] for the experience and lessons learned.

Although we assume in our formal framework (in section 2) that the composition is
terminated in case of unsatisfiability, it is not necessary for the resultant composition,
in our algorithm of composing ORM schemes (in section 3) to be satisfiable, thus our
algorithm is called incomplete. This is because the general problem of determining
consistency for all possible constraint patterns in ORM is undecidable [H97]. A
complete semantic tableaux algorithm for deciding the satisfiability of ORM schemes
(a research topic by itself) is not a goal of this paper. See our pattern-based approach
in [JH05] for reasoning about the satisfiability of ORM schemes.

As an upcoming effort, we plan to map ORM into the DLR Description Logic
[CDLNR98], which is a powerful and decidable fragment of first order logic. In this
way, the satisfiability of ORM schemes can be completely verified, and so our
algorithm can be called complete. Furthermore, this will allow us to reuse our
approach to modularize and compose DLR knowledge bases.

 Acknowledgement. We are in debt to Robert Meersman, Stijn Heymans, Olga De
Troyer and Andriy Lisovoy for their comments, discussion, and suggestions on the
earlier version of this work.

References
[BBDD97] Briand, L.C., Bunse, C., Daly, J.W. and Differding, C.: An Experimental

Comparison of the Maintainability of Object-Oriented and Structured Design Documents.
In: Empirical Software Engineering, Vol. 2, No. 3. (1997) pp. 291–312.

[BGH99] Bird, L., Goodchild, A., Halpin, T.A.: Object Role Modelling and XML-Schema. In:
Laender, A., Liddle, S., Storey, V. (eds.): Proceedings of the 19th International Conference
on Conceptual Modeling (ER’00). LNCS, Springer Verlag (1999)

[BHW91] van Bommel, P., ter Hofstede, A.H.M. , van der Weide, Th.P. : Semantics and
verification of object role models. Information Systems, 16(5). October (1991) 471–495

[BS03] Borgida A., Serafini L.: Distributed Description Logics: Assimilating Information from
Peer Sources. In: Aberer K., March S., and Spaccapietra S., (eds.): Journal on Data
Semantics, Vol. 2800. LNCS, Springer, ISBN: 3-540-20407-5. October (2003) pp. 153–184

[CDLNR98] Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Information
integration: Conceptual modeling and reasoning support. In Proceedings Of the 6th
International Conference on Cooperative Information Systems (CoopIS'98). (1998) pp. 280-
291

[DJM02a] Demey, J., Jarrar, M., Meersman, R.: A Conceptual Markup Language that supports
interoperability between Business Rule modeling systems. Proceedings of the Tenth
International Conference on Cooperative Information Systems (CoopIS 02). Springer
Verlag LNCS 2519. (2002) pp. 19–35

[H01] Halpin, T.: Information Modeling and Relational Databases. 3rd edn. Morgan-
Kaufmann. (2001)

[H04] Halpin, T.: Business Rule Verbalization. In Doroshenko, A., Halpin, T., Liddle, S., Mayr
H. (eds): Information Systems Technology and its Applications, 3rd International
Conference (ISTA'2004), LNI 48 GI ISBN 3-88579-377-6, (2004) pp:39-52.

[H89] Halpin, T.: A logical analysis of information systems: static aspects of the data-oriented
perspective. PhD thesis, University of Queensland, Brisbane. Australia. (1989)

[H97] Halpin, T.: An Interview- Modeling for Data and Business Rules. In: Ross, R. (eds.):
Database Newsletter. vol. 25, no. 5. (Sep/Oct 1997). -This newsletter has since been
renamed Business Rules Journal and is published by Business Rules Solutions, Inc.

[H99] Halpin, T.: UML data models from an ORM perspective: Part 7. Journal of Conceptual
Modeling. InConcept. February (1999)

[J05] M. Jarrar. Towards Methodological Principles for Ontology Engineering. PhD thesis,
Vrije Universiteit Brussel, 2005.

[JDM03] Jarrar M., Demy J., Meersman R.: On Using Conceptual Data Modeling for Ontology
Engineering. In: Aberer K., March S., and Spaccapietra S., (eds.): Journal on Data
Semantics, Special issue on "Best papers from the ER/ODBASE/COOPIS 2002
Conferences", LNCS Vol. 2800, Springer. ISBN: 3-540-20407-5. October (2003) pp. 185–
207

[JH05] Jarrar, M., Heymans, S.: Unsatisfiability Reasoning in ORM Conceptual Schemes.
Technical Report, Vrije Universiteit Brussel, 2005.

[JM02b] Jarrar, M., Meersman, R.: Scalability and Knowledge Reusability in Ontology
Modeling. Proceedings of the International conference on Infrastructure for e-Business, e-
Education, e-Science, and e-Medicine (SSGRR’2002s) (2002)

[JVM03] Jarrar, M., Verlinden, R., Meersman, R.: Ontology-based Customer Complaint
Management. In: Jarrar M., Salaun A., (eds.): Proceedings of the workshop on regulatory
ontologies and the modeling of complaint regulations, Catania, Sicily, Italy. Springer Verlag
LNCS. Vol. 2889. November (2003) pp. 594–606

[N99] North, K.: Modeling, Data Semantics, and Natural Language. In: New Architect maga-
zine (1999)

[P72] Parnas, D. L.: On the criteria to be used in decomposing system into modules.
Communications of the ACM, Vol. 15, No. 12. December (1972) pp. 1053–1058

[S85] Shoval, P.: Essential information structure diagrams and database schema design.
Information Systems, 10(4). (1985) pp. 417-423

[SK03] Stuckenschmidt H., Klein M.: Modularization of Ontologies -WonderWeb: Ontology
Infrastructure for the Semantic Web. Deliverable 21. WonderWeb Project (IST 2001-33052)
(2003)

[SMS+05] Spaccapietra, S., Menken, M., Stuckenschmidt, H., Wache, H., Serafini, L.,
Tamilin, A., Jarrar, M., Porto, F., Parent, C., Rector, A., Pan, J., D’Aquin, M., Lieber, J.,
Napoli, A., Stoilos, G., Tzouvaras, V., Stamou, G.: Report on Modularization of Ontologies.
Deliverable D2.1.3.1 (WP2.1), KnowledgeWeb project. EU-IST Network of Excellence
(NoE) IST-2004-507482 (2005)

[SP94] Spaccapietra, S., Parent, C.: View Integration: A Step Forward in Solving Structural
Conflicts. IEEE Transactions on Data and Knowledge Engineering 6(2). (1994)

[SWCH01] Sullivan, k., William, G., Cai, Y., Hallen, B.: The structure and value of modularity
in software design. Journal SIGSOFT Software Engineering Notes. Vol. 26, number 5.
ACM Press. Issn: 0163-5948. (2001) pp. 99–108

[V83] Vermeir D.: Semantic Hierarchies and Abstraction in Conceptual Schemata. Journal of
Information Systems. Vol. 8, No. 2. (1983) pp. 117–124

[VB82] Verheijen, G., van Bekkum, P.: NIAM, aN Information Analysis Method. In: Olle,
T.W., Sol, H., Verrijn-Stuart, A. (eds.), IFIP Conference on Comparative Review of
Information Systems Methodologies, North-Holland. (1982) pp. 537–590

