
ORM Markup Language, version 3

Mustafa Jarrar
STAR Lab, Vrije Universiteit Brussel, Belgium,

 mjarrar@vub.ac.be

Published as: Mustafa Jarrar: ORM Markup Language, version 3 (Technical
Report). Vrije Universiteit Brussel, Belgium. 2007

Abstract. In this technical report, we define a conceptual markup language
(ORM-ML) for the ORM graphical notation. It is an extension of the ORM-ML
version 2 that has been published in [J05]. The first version ORM-ML appeared in
[JDM03] and [DJM03]. This version provides an improved version of the
previous versions, allows representing modular schemes, and introduces a decent
a set of metadata elements. Section 1 provides a brief introduction and discuss our
motives for constructing the ORM markup language, the ORM markup language
itself is presented in section 2. To end, section 3 draws some conclusions and
summarizes the main advantages and usage of ORM-ML in a general sense.

Contents

1 Introduction and motivation..2
1.1 Why ORM...2

2 ORM-Markup Language ...3
2.1 ORM-ML metadata...4
2.2 ORM-ML Body...5

Object Types ..5
Subtypes ...6
Predicates ...6
Predicate Objects..6
Constraints..7
Modular schemes..10

3 Discussion and conclusions...11

Appendix A: ORM Markup Language..13
Appendix A1 (tree view of the ORM-ML XML-Schema)..13
Appendix A2 (ORM-ML XML-Schema) ...14
Appendix A3: Complete Example ..21
Appendix A4: ORM-ML Metadata...24

References: ...27

1 Introduction and motivation
Indeed, successful conceptual data modeling approaches, such as ORM or
EER, became well known because of their methodological guidance in
building conceptual models of information systems. They are semantically
rich disciplines and support quality checks at a high level of abstraction
[V82] and they provide modeling constructs like integrity, taxonomy, and
derivation rules [H01] [F02]. Merely, conceptual data schemes -also
called semantic data models - were developed to capture the meaning of
an application domain as perceived by its developers [WSW99] [M99a].
This meaning is being represented in diagram formats (which are
proprietary and therefore are limited to use inside specific CASE tools),
and typically used in an off-time mode, i.e. used during the design phases.
Nowadays, the Internet and the open connectivity environments create a
strong demand for sharing and exchanging not only data but also data
semantics. By defining a conceptual markup language (ORM-ML) that
allows for the representation of ORM conceptual diagrams in an open,
textual syntax, we enable ORM schemes to be shared, exchanged, and
processed at run-time.

1.1 Why ORM

ORM (Object-Role Modeling) [H01] is a conceptual modeling approach
that was developed in the early 70's. It is a successor of the NIAM
(Natural-language Information Analysis Method) [VB82]. Based on
ORM, several conceptual modeling tools exist, such as Microsoft's
VisioModeler™ and the older InfoModeler. This has the functionality of
modeling a certain Universe of Discourse (UoD) in ORM while
supporting the automatic generation of a consistent and normalized
relational database schema.

ORM schemas can be translated into pseudo natural language statements.
The graphical representation and the translation into pseudo natural
language make it a lot easier, also for non-computer scientists, to create,
check and adapt the knowledge about the UoD needed in an information
system.

The ORM conceptual schema methodology is fairly comprehensive in its
treatment of many "practical" or "standard" business rules and constraint
types. Its detailed formal description, (we shall take ours from
[H01][H89]) makes it an interesting candidate to non-trivially illustrate
our XML based ORM-markup language as an exchange protocol for
representing ORM conceptual models.

Of course, similar to ORM-ML, a markup language could be defined for
any other conceptual modeling method.

ORM is fairly comprehensive in its treatment of many “practical” and
“standard” rules, (e.g. identity, mandatory, uniqueness, subtyping, subset,
equality, exclusion, frequency, transitive, acyclic, etc.). Furthermore,

ORM has an expressive and stable graphical notation since it captures
many rules graphically and it minimizes the impact of change on the
models1. ORM has well-defined formal semantics (see e.g. [H89]
[BHW91] [HPW93] [T96] [TM95] [HP95]). In addition, it is perhaps
worthwhile to note that ORM derives from NIAM (Natural Language
Information Analysis Method), which was explicitly designed to play the
role of a stepwise methodology, to arrive at the "semantics" of a business
application's data based on natural language communication.

2 ORM-Markup Language
This section presents the ORM markup language (ORM-ML). ORM-ML
is based on the XML syntax, and is defined in an XML-Schema (provided
in Appendix A) that acts as its complete and formal grammar. Hence, any
ORM-ML document should be valid according to this XML-Schema.

ORM-ML is not meant to be written by hand or interpreted by humans. It
is meant to be implemented for example, as a “save as” or “export to”
functionality in ORM tools.

In what follows, we describe the main elements of the ORM-ML grammar
and demonstrate it using a few elementary examples. A more complete
example is provided in Appendix A3. We chose to respect the ORM
structure as much as possible by not “collapsing” it through the usual
relational transformer that comes with most ORM-based tools. ORM-ML
allows the representation of any ORM schema without a loss of
information or a change in semantics, except for the geometry and
topology (graphical layout) of the schema (e.g. location and shapes of the
symbols) We include this in a separate graphical style sheet from that of
the ORM Schema (see Appendix B2).

We represent the ORM document as a one node element called the
ORMSchema, which consists itself of two nodes: ORMMeta and
ORMBody. Fig. 1 shows an “empty” instance of this schema.

Fig. 1. An empty instance of the ORMSchema, as an example of ORM-ML document.

1 In comparison with other approaches (e.g. ER, UML), ORM models are attribute-free;
so they are immune from changes that cause attributes to be remodeled as entity types or
relationships.

2.1 ORM-ML metadata

As a header to an ORM-ML document, an ORMMeta node includes
metadata elements about the ORM document, such as ‘Title’, ‘URI’,
‘Creator’, ‘Version’, etc. A ORMMeta node consists of a set of Meta
elements. Each Meta element has two attributes: name and content. The
main idea of this elementary structure is to enable the flexibility of
adopting existing metadata standards. For example, one may use the 15
well-known Dublin Core Meta elements2 - an example of their use
appears in fig. 2.

Fig. 2. An example of an ORMMeta node, using Dublin Core metadata elements.

To enable the foundation of libraries of ORM models, we have developed
a decent set of 25 metadata elements that better suit the description of a
conceptual model, in a general sense, such as ontologies. These elements
are a specialization and extension of the Dublin Core elements. An
example of this metadata appears in fig. 3. Appendix A4 presents a
definition of these metadata elements3.

2 The Dublin Core Metadata Initiative (http://www.dublincore.org , June 2004) is a
cross-disciplinary international effort to develop mechanisms for the discovery-oriented
description of diverse resources in an electronic environment. The Dublin Core Element
Set comprises 15-elements which together capture a representation of essential aspects
related to the description of resources. These 15-elements are namely: title, creator,
subject, description, publisher, contributor, date, type, format, identifier, source,
language, relation, coverage and rights.
3 It is perhaps worthwhile to note that our metadata elements (and their definitions) are
adopted in the KnowledgeWeb Network of excellence project (KWEB EU-IST-2004-
507482), and will be proposed as a standard for Ontology Metadata (or also called
Ontology Registries). For more details, see [SGG+05].

Fig. 3. An example of an ORMMeta Node, using DogmaModeler metadata elements.

2.2 ORM-ML Body

The ORMBody node consists of these five different (meta-ORM)
elements: Object, Subtype, Predicate, Predicate_Object and Constraint.

Object Types

Object elements are abstract XML elements that are used to represent
Object Types. They are identified by an attribute ‘Name’, which is the
name of the Object Type in the ORM Schema, see fig. 4. Objects are
implemented by two XML elements: LOT (Lexical Object Type, called
Value Types in [H01]) and NOLOT (Non-Lexical Object Type, called
Entity Types in [H01])4. LOT elements may have a numeric attribute,
which is a boolean and indicates whether we deal with a numeric Lexical
Object Type. NOLOT elements have a boolean attribute called
independent, which indicates whether the Non Lexical Object Type is
independent. NOLOT elements may also have a reference element. A
reference element would indicate how this NOLOT is identified by LOTs
and other NOLOTs in a given application environment. A reference
element has two attributes: ref_name (the name of the reference and
numeric) and a boolean (to indicate whether it is a numeric reference).

Fig. 4. ORM-ML representation of an Object Type.

4 Informally speaking, the idea of LOT and NOLOT in ORM, is similar the idea of
ValueProperty and ObjectProperty in OWL. LOT represents ValueProperty, and NOLOT
represents ObjectProperty.

Subtypes

Subtype elements are used to represent subtype relationships between
(non-lexical) object types. A subset element is required to have two
elements: parent and child, where both refer to predefined object type
elements. See fig. 5.

Fig. 5. ORM-ML representation of subtypes.

Predicates

Predicates consist of at least one Object_Role element. Such an element
contains a reference to an object and may contain a role. They actually
represent the rectangles in an ORM schema. Every Object_Role element
needs a generated attribute 'ID' which identifies the Object_Role (see fig.
6). By using this ID attribute, we can refer to a particular Object_Role
element in the rest of the XML document, which for example, we will
need to do when we define constraints.

Predicates can have one or more rule elements. These elements can
contain extra rules that are defined for the predicate.

Predicates also have two boolean attributes that are optional: ‘Derived’
and ‘Derived_Stored’ which indicate whether a predicate respectively is
derived, or derived and stored, or not.

Fig. 6. A simple binary predicate and its representation in ORM-ML.

Predicate Objects

Predicate_Objects are actually objectified predicates, which are used in
nested fact types. They contain a predicate element and have an attribute
called ‘Predicate_Name’. So in fact, they are merely predicates that have
received new object type names. In building Object_Roles, the
Predicate_Name can be referenced. In this way we build predicates that
contain objectified predicates instead of object types. See fig. 7.

Fig. 7. ORM-ML representation of nested fact types (Objectified predicates).

Constraints

Constraint elements represent the ORM constraints. The Constraint
element itself is abstract, but it is implemented by different types of
constraints, viz. Mandatory, Uniqueness, Subset, Equality, Exclusion,
Value, Frequency, and Ring constraints. As mentioned above, we use the
IDs of the Object_Role elements to define constraints.

Uniqueness and mandatory constraint elements possess only Object_Role
elements. These elements are the object_roles in the ORM diagram on
which the constraint is placed. In this way, there is no need to make a
distinction between the ORM-ML syntax of "external" and "internal"
uniqueness constraints (see [H01]), or between mandatory and disjunctive
mandatory constraints, see fig. 8.

Fig. 8. ORM-ML representation of Uniqueness and Mandatory constraints.

The representation for subset, equality, and exclusion constraints is
analogous, so we will only discuss them in general terms. Each of these
constraints has references to (combinations of) object_role elements. For
instance, to represent a subset constraint between two roles, we create a
Subset element, containing two elements, Parent and Child. In the Parent
element, we put references to the subsumed object_role, and in the Child
element, we put references to the subsuming object_role. For equality and
exclusion, we use First and Second elements instead of Parent and Child
elements. Fig. 9., fig. 10, and fig. 11 show the ORM-ML representation of
subset, equality, and exclusion constraints respectively.

Fig. 9. ORM-ML representation of the Subset constraint.

Fig. 10. ORM-ML representation of the Equality constraint.

Fig. 11. ORM-ML representation of the Exclusion constraint.

The representation for Exclusive and Totality constraints is analogous, and
very simple. Each constrain has one supertype elements and (at least two)
subtypes elements. See fig. 12.

Fig. 12. ORM-ML representation of the Exclusive and Totality constraint.

The Value constraint is represented in ORM-ML using the Value and
ValueRange elements. The ValueRange element has two attributes: begin
and end, with obvious meanings. Each of the Value and ValueRange
elements have an additional attribute called “datatype” to indicate the
datatype of the value. See fig. 13.

Fig. 13. ORM-ML representation of the value constraint.

The Frequency constraint is represented in ORM-ML by two attributes:
Minimum and Maximum, which can defined on Object_Roles. See fig.
14.

Fig. 14. ORM-ML representation of the Frequency constraint.

Finally, ring constraint elements are: antisymmetric (ans), asymmetric
(as), acyclic (ac), irreflexive (ir), intransitive (it), symmetric (sym),
acyclic+intransitive (ac+it), asymmetric+intransitive (as+it),
intransitive+symmetric (it+sym), and irreflexive+symmetric (ir+sym).
Ring constraint elements contain references to the object_roles they are
put on. See Fig 15.

Fig. 15. ORM-ML representation of the Ring constraints.

Modular schemes

ORM-ML also supports modular ORM schemes, which allows the
representation of sub ORM schemes (seen as composed modules), see e.g.
[J05a].

We allow representing modular ORM schemes by either 1) referring to
the composed schemes by their URIs, or 2) including the content of these
composed schemes inside the ORM-ML document. Fig. 16 illustrates the
ORM-ML representation of a modular schema using RUIs as references to
the composed modules. In this way, each of the composed modules will
be fetched when opining (or using) the modular schema. Notice that the
main disadvantage of using this method is that any changes to the modules
may influence the composition.

Fig. 16. An example of the ORM-ML representation of a modular schema, using URIs.

In the second choice, users can choose to include “a copy” of each module
as a subpart of the ORM-ML document (see fig. 17.). In this way, several
problematical issues are prevented, such as the influence of module
changes and broken links. However, the main disadvantage of this method
is that some useful changes, to the original modules, will not be captured.

We allow users to decide on the most appropriate method, given their
application scenario, the steadiness of their module evolution and whether
their usage is on or off-line etc.

Fig. 17. An example of an ORM-ML representation of a modular schemes, where the

content of a module is included as a sub-schema.

3 Discussion and conclusions
In this document, we have presented the ORM markup language that
represents ORM conceptual diagrams in an XML-based syntax. Our main
goals of doing this are:

Enable the ORM conceptual diagrams to be shared, exchanged, and
processed at run-time. ORM-ML as a standardized syntax for ORM
models may assist interoperation tools to exchange, parse or understand
the ORM schemas. Like ORM-ML, any conceptual modeling approach
(e.g. EER, UML, etc.) could have a markup language.

Enable conceptual data modeling methods to be (re)used for ontology
engineering purposes. Indeed, as have been discussed in [J05][JDM03]
conceptual data modeling methods suit many (or maybe most) application
scenarios and usability perspectives. In addition, the large set of existing
conceptual modeling methods, graphical notations, and tools can make
ontologies better understandable, and easier to adopt, construct, visualize

and verbalize. Legacy conceptual schemes can be mined and/or
“ontologized”.

Interoperability for exchanging and sharing conceptual data models over
the Internet. Facilities are needed to share and exchange ORM conceptual
models in terms of a networked, distributed computing-driven, and
collaborative environment, and to allow users to browse and edit shared
knowledge over the Internet, intranets and other channels. A conceptual
schema markup language provides a standardizable method to achieve
interoperability among CASE tools that use the conceptual modeling
technique.

Implementing a conceptual query language over the Web. In open and
distributed environments, the building of queries should be possible
regardless of the internal representation of the data. Query languages
based on ontologies (seen as shared conceptual models) help users not
only to build queries, but also make them easier, more expressive, and
more understandable than corresponding queries in a language like SQL.
Exchanging, reusing, or sharing such queries efficiently between agents
over the web is substantially facilitated by a standardized markup
language. Consequently, ORM-based query languages (e.g. RIDL [VB82]
[M81], ConQuer [BH96]) would gain from ORM-ML by representing
queries in such an exchangeable representation.

Building transformation style sheets. Building transformation style sheets
for a given usage or need, for example, to transform the XML-based
representation into another XML-based representation languages, such as
DLR[], DIG[], etc, Another important and strategic issue is that one could
write a style sheet to generate the given ORM model instance into a given
business rule-engine’s syntax, to allow for run-time interpretation by that
rule engine. It could for instance, perform instance validation and integrity
checks, etc.

Generating Verbalizations. The verbalization of a conceptual model is the
process of writing its facts and constraints in pseudo natural language
sentences. This assumedly allows non-experts to check, validate, or even
build conceptual schemas. [] shows how to generate the verbalization of
ORM models by building a verbalization template (built as separate
XML-based style sheets) parameterized over ORM-ML documents.

Appendix A: ORM Markup Language
This appendix presents the XML-Schema for the ORM Markup Language,
as the grammar reference of ORM-ML documents. This schema (Ver. 3)
is an improved version of the ORM-ML XML-schema (Ver.2) that have
been published in [J05]. Ver.1 is the earlier version of ORM-ML which
appears in [DJM02a][DJM02b] and [JDM03]. In appendix A1 we present
a tree view of the ORM-ML XML-schema, and in appendix A2 we
present the ORM-ML XML-schema. Appendix A3 presents a complete
example, as an instance of this schema. Appendix A4 presents the
metadata elements.

Appendix A1 (tree view of the ORM-ML XML-Schema)

A tree view of the elements in the XML Schema is given in Appendix A2.
Please note the attributes of the elements are omitted here for clarity of
presentation.

Fig. A.1. A tree view of the elements in the ORM-ML XML Schema.

Appendix A2 (ORM-ML XML-Schema)

The XML-schema below can also found at :
http://www.starlab.vub.ac.be/staff/mustafa/ormml.v1.3.xsd

 <?xml version="1.0" encoding="UTF-8" ?>
- <!-- edited with XMLSPY v5 rel. 3 U (http://www.xmlspy.com) by rth77 (rth77)
 -->
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:dc="http://purl.org/dc/elements/1.1/"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:import namespace="http://purl.org/dc/elements/1.1/"
schemaLocation="http://www.ukoln.ac.uk/metadata/dcmi/dcxml/xmls/dc.xsd" />
- <xs:element name="ORMSchema">
- <xs:annotation>
 <xs:documentation>Root</xs:documentation>
 </xs:annotation>
- <xs:complexType>
- <xs:complexContent>
- <xs:extension base="ORMType">
- <xs:sequence>
- <xs:element name="ORMMeta" minOccurs="0">
- <xs:complexType>
- <xs:sequence>
- <xs:element name="Meta">
- <xs:complexType>
 <xs:attribute name="Name" type="xs:string" use="required" />
 <xs:attribute name="Content" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="ORMBody">
- <xs:complexType>
- <xs:sequence>
- <xs:element name="Object" type="Object" maxOccurs="unbounded">
- <xs:annotation>
 <xs:documentation>Object: LOT or NOLOT</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Subtype" type="Subtype" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="Predicate" type="Predicate" minOccurs="0" maxOccurs="unbounded" />
- <xs:element name="Predicate_Object" type="Predicate_Object" minOccurs="0"
maxOccurs="unbounded">
- <xs:annotation>
 <xs:documentation>Objectified Predicate</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Constraint" type="Constraint" minOccurs="0" maxOccurs="unbounded" />
- <xs:element name="Subcommitment" minOccurs="0">
- <xs:complexType>
- <xs:sequence>
 <xs:element ref="ORMSchema" />
 </xs:sequence>
 <xs:attribute name="order" type="xs:integer" use="optional" />
 <xs:attribute name="URI" type="xs:string" use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 </xs:sequence>
 <xs:attribute name="OntologyBase" type="xs:string" use="required" />
 <xs:attribute name="Context" type="xs:string" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
- <xs:complexType name="Object" abstract="true">
- <xs:annotation>
 <xs:documentation>Object: LOT or NOLOT</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Translation" minOccurs="0" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="Language" type="xs:string" use="required" />
 <xs:attribute name="Name" type="xs:string" use="required" />
 <xs:attribute name="Description" type="xs:string" use="required" />
 <xs:attribute name="Reference" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:ID" use="required" />
 <xs:attribute name="Gloss" type="xs:string" use="optional" />
 <xs:attribute name="Datatype" type="xs:string" use="optional" />
 <xs:attribute name="TermUpperForm" type="xs:string" use="optional" />
 <xs:attribute name="NameSpace" type="xs:string" use="optional" />
 </xs:complexType>
- <xs:complexType name="LOT">
- <xs:annotation>
 <xs:documentation>Lexical Object Type</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Object">
 <xs:attribute name="numeric" type="xs:boolean" use="optional" default="false" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="NOLOT">
- <xs:annotation>
 <xs:documentation>Non Lexical Object Type</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Object">
- <xs:sequence>
- <xs:element name="Reference" minOccurs="0">
- <xs:complexType>
 <xs:attribute name="Ref_Name" use="required" />
 <xs:attribute name="numeric" type="xs:boolean" use="optional" default="false" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Independent" type="xs:boolean" use="optional" default="false" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Object_Role">
- <xs:annotation>
 <xs:documentation>Object + Role</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="Object" type="xs:IDREF" use="required" />
 <xs:attribute name="Role" type="xs:string" use="optional" />

 </xs:complexType>
 <xs:complexType name="ORMType" />
- <xs:complexType name="Predicate">
- <xs:sequence>
 <xs:element name="Object_Role" type="Object_Role" maxOccurs="unbounded" />
 <xs:element name="Rule" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Derived" type="xs:boolean" default="false" />
 <xs:attribute name="Derived_Stored" type="xs:boolean" default="false" />
 </xs:complexType>
- <xs:complexType name="Constraint" abstract="true">
- <xs:annotation>
 <xs:documentation>Abstract element for constraints</xs:documentation>
 </xs:annotation>
 </xs:complexType>
- <xs:complexType name="Predicate_Object">
- <xs:annotation>
 <xs:documentation>Objectified Predicate</xs:documentation>
 </xs:annotation>
- <xs:sequence>
 <xs:element name="Predicate" type="Predicate" />
 </xs:sequence>
 <xs:attribute name="Predicate_Name" type="xs:ID" use="required" />
 </xs:complexType>
- <xs:complexType name="Subtype">
- <xs:annotation>
 <xs:documentation>SubType</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Parent">
- <xs:complexType>
 <xs:attribute name="Object" type="xs:IDREF" />
 <xs:attribute name="Role" type="xs:string" />
 </xs:complexType>
 </xs:element>
- <xs:element name="Child">
- <xs:complexType>
 <xs:attribute name="Object" type="xs:IDREF" />
 <xs:attribute name="Role" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
- <xs:complexType name="Mandatory">
- <xs:annotation>
 <xs:documentation>Mandatory Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Uniqueness">
- <xs:annotation>
 <xs:documentation>Uniqueness Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>

 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Subset">
- <xs:annotation>
 <xs:documentation>SubSet Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="Parent">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Child">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Equality">
- <xs:annotation>
 <xs:documentation>Equality Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="First">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Second">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Exclusion">
- <xs:annotation>
 <xs:documentation>Exclusion Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>

- <xs:element name="First">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Second">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Frequency">
- <xs:annotation>
 <xs:documentation>Frequency Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Minimum" type="xs:integer" />
 <xs:attribute name="Maximum" type="xs:integer" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Irreflexive">
- <xs:annotation>
 <xs:documentation>Irreflexive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Intransitive">
- <xs:annotation>
 <xs:documentation>Intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Transitive">
- <xs:annotation>
 <xs:documentation>Transitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">

- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Acyclic">
- <xs:annotation>
 <xs:documentation>Acyclic Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Type" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Asymmetric">
- <xs:annotation>
 <xs:documentation>Assymetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Antisymmetric">
- <xs:annotation>
 <xs:documentation>Antisymmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Symmetric">
- <xs:annotation>
 <xs:documentation>Symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Reflexive">
- <xs:annotation>
 <xs:documentation>Reflexive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
 <xs:extension base="Constraint" />
 </xs:complexContent>
 </xs:complexType>

- <xs:complexType name="Total">
- <xs:annotation>
 <xs:documentation>Total constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Supertype" />
 <xs:element name="Subtype" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Exclusive">
- <xs:annotation>
 <xs:documentation>Exclusive constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Supertype" />
 <xs:element name="Subtype" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Value">
- <xs:annotation>
 <xs:documentation>Exclusive constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="Value" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="datatype" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
- <xs:element name="ValueRange" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="datatype" type="xs:string" use="required" />
 <xs:attribute name="begin" type="xs:string" use="required" />
 <xs:attribute name="end" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Partition">
- <xs:annotation>
 <xs:documentation>Partition constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Subtype" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Supertype" type="xs:IDREF" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

- <xs:complexType name="Intransitive_symmetric">
- <xs:annotation>
 <xs:documentation>Intransitive + symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Acyclic_intransitive">
- <xs:annotation>
 <xs:documentation>Acyclic+intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Asymmetric_intransitive">
- <xs:annotation>
 <xs:documentation>Asymmetric+intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Irreflexive_symmetric">
- <xs:annotation>
 <xs:documentation>Irreflexive + symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:schema>

Appendix A3: Complete Example

A complete example of an ORM schema diagram with the associated ORM-ML
document generated by the DogmaModeler.

ORM Schema diagram

Fig. A.2. ORM schema diagram example

Corresponding ORM-ML

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation=' http://www.starlab.vub.ac.be/staff/mustafa/ormml.v1.3.xsd'
xmlns:dc='http://purl.org/dc/elements/1.1/' OntologyBase="Publishing" Context="Scientific Conference">

<ORMMeta>
 <Meta name="DC.title" content="ORM ML example"/>
 <Meta name="DC.creator" content="Mustafa Jarrar"/>
 <Meta name="DC.description" content="A complete example of an ORM ML file"/>
</ORMMeta>
<ORMBody>
<Object xsi:type='NOLOT' Name='Committee'/>

<Object xsi:type='NOLOT' Name='Person'/>
<Object xsi:type='NOLOT' Name='Author'/>
<Object xsi:type='NOLOT' Name='Reviewer'/>
<Object xsi:type='NOLOT' Name='Paper'/>
<Object xsi:type='NOLOT' Name='PaperTitle' />
<Subtype>
 <Parent Object="Person" Role="Types"/>
 <Child Object="Author" Role="IsA"/>
</Subtype>
<Subtype>
 <Parent Object="Person" Role="Types"/>
 <Child Object="Reviewer" Role="IsA"/>
</Subtype>
<Predicate>
 <Object_Role ID='ORM ML example:42' Object='Committee' Role='Includes'/>
 <Object_Role ID='ORM ML example:43' Object='Person' Role='IsMemberOf'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:44' Object='Committee' Role='ChairedBy'/>
 <Object_Role ID='ORM ML example:45' Object='Person' Role='Chairs'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:46' Object='Reviewer' Role='Reviewes'/>
 <Object_Role ID='ORM ML example:47' Object='Paper' Role='ReviewedBy'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:48' Object='Author' Role='Writes'/>
 <Object_Role ID='ORM ML example:49' Object='Paper' Role='WrittenBy'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:50' Object='Author' Role='Presents'/>
 <Object_Role ID='ORM ML example:51' Object='Paper' Role='PresentedBy'/>

</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:52' Object='PaperTitle' Role='isOf'/>
 <Object_Role ID='ORM ML example:53' Object='Paper' Role='Has'/>
</Predicate>

<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:42</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:44</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:46</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:49</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:48</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:42</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:44</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:43</Object_Role>
</Constraint>
<Constraint xsi:type='Subset'>
 <Parent>
 <Object_Role>ORM ML example:42</Object_Role>
 <Object_Role>ORM ML example:43</Object_Role>
 </Parent>
 <Child>
 <Object_Role>ORM ML example:44</Object_Role>
 <Object_Role>ORM ML example:45</Object_Role>
 </Child>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:50</Object_Role>
 <Object_Role>ORM ML example:51</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:46</Object_Role>
 <Object_Role>ORM ML example:47</Object_Role>
</Constraint>
<Constraint xsi:type='Exclusion'>
 <First>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
 </First>
 <Second>
 <Object_Role>ORM ML example:46</Object_Role>
 <Object_Role>ORM ML example:47</Object_Role>
 </Second>
</Constraint>

<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:52</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:53</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:52</Object_Role>
</Constraint>
<Constraint xsi:type='Subset'>
 <Parent>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
 </Parent>
 <Child>
 <Object_Role>ORM ML example:50</Object_Role>
 <Object_Role>ORM ML example:51</Object_Role>
 </Child>
</Constraint>
</ORMBody>
</ORMSchema>

Appendix A4: ORM-ML Metadata

The following diagram presents the metadata elements and the relationships between
them as an ORM schema. The idea of these element is be the foundation for ORM
schema library. As ORM schemes are being made not for only database modeling, but
also for other purposes such as ontologies, business rules, etc. we call an ORM schema
as an axiomatization. each of the element in this diagram is described by a gloss in the
following table.

Element Name Gloss

Axiomatization A specification of a knowledge (i.e. a conceptual model) about a
certain subject-matter written as a set of axioms.

Acronym An abbreviation formed from the initial letter or letters of words in
the axiomatization title. E.g. ‘CCOntology’, or ‘DOLCE’.

Title The full and official heading or name of the model. It gives a brief
summary of the matters it deals with. E.g. ‘Customer Complaint
Ontology’, or ‘Descriptive Ontology for Linguistic and Cognitive
Engineering’.

Version

Information about the edition of this model. Typically, it includes
the version number, label, and date. Whenever the model is
enhanced, updated or improved, it is often assigned a new version.
Although versions represent the different states of an model during
its life cycle, different versions are seen as different models.

Number A unique code assigned to the model for identification. This number
is usually assigned by a registration entity.

URI Uniform Resource Identifier, the W3C's codification of the address
syntax of an ontology. In its most basic form, a URI consists of a
scheme name (such as file, http, ftp) followed by a colon, followed
by a path whose nature is determined by the scheme that precedes it
(see RFC 1630). URI is the umbrella term for URNs, URLs, and all
other Uniform Resource Identifiers.

Genericity The level of generalization of an the model. The genericity level of a
model is typically one of the {‘Application’, ‘task’, ‘Domain’,
‘Core’, ‘Foundational’, ‘Linguistic’, ‘Metamodel’}. Examples: The
CCOntology is a ‘core’ ontology; DOLCE is a ‘foundational’
ontology; Dublin Core is ‘metamodel’ etc.

Language The human language in which the model terms (i.e. labels of
concepts, roles, etc) is expressed. In case this terminology is
expressed in more than one language, the value of this attribute is
‘Multilingual’. The best practice recommended is the use of RFC
3066 [RFC3066] which, in conjunction with ISO639 [ISO639]),
defines two- and three-letter primary language tags with optional
subtags. Examples include "en" or "eng" for English, "akk" for
Akkadian", and "en-GB" for English as it is used in the United
Kingdom.

DevelopmentSt
atus

The completion status or condition of this ontology, typically one of
{Draft, Final, Revised, Unavailable}.

DomainSubject A heading descriptor indicating the subject matter and the domain of
the model. For example, e-business, sport, book-shopping and car-
rental. Typically, domain subjects are expressed as keywords, key
phrases, or classification codes. The recommended best practice is to
select a value from a controlled vocabulary or formal classification
scheme.

Context Information about of the scope of the model, in which the

interpretation (i.e. the intended meaning) of the terminology is
bounded. For example: the context of the WordNet ontology could
be the English language, the context of the “CCOntology” is the EU
complaint regulations, The context of the data models of Microsoft
is Microsoft enterprise, etc.

Description

Further information about the model. It may include but is not
limited to: an abstract, reference to a graphical representation, a free-
text account of the content, the methodology used to build this
ontology, documentation, etc.

Creator An entity primarily responsible for creating the model. Examples of
creators include persons, organizations and services. Typically, the
name of a creator should be used to indicate the entity.

Contributor An entity responsible for making contributions to the ontology
content. Examples of a Contributor include a person, an
organization, and a service. Typically, the name of a contributor
should be used to indicate the entity.

CreationDate The date that is associated with the creation of the model. In other
words, the first date in the model lifecycle. Recommended best
practice for encoding the date value is defined in a profile of ISO
8601 [W3CDTF] and includes (among others) dates of the form
YYYY-MM-DD.

Rights Information about rights held in and over the model. Typically,
rights will contain a copyrights statement and other restriction for
the model, and the cost description in case the use of this model
requires payment. If the Rights element is absent, no assumptions
may be made about any rights held in or over the resource.

SpecificationLa
nguage

The formal language in which the model is being specified; for
example, OWL, DAML-OIL, ORM-ML, UML, KIF, etc. For ORM
models, this can be ORM or ORM2.

Validation An evidence about the testing activities of the model. Such tests
might be conceptual or ontological quality, syntax validation, etc.
Typically, one should indicate the validation methodology and
comments about the results.

Tool
The name of the tool by which the ontology has been developed, e.g.
NORMA, VisoModeler, DogmaModeler, etc.

Application Citation to the application(s) using/has used this model. Typically,
one should provide the name, URL, and some description about the
application.

NumberOfConc
epts Statistics about the number of concepts in the model.

NumberOfRelat
ions Statistics about the number of relations in the model.

NumberOfAxio
ms

Statistics about the number of constraints/rules in the model - an
axiom is typically a formal definition/expression.

NumberOfInsta
nces Statistics about the number instances in the model.

IncludesOntolo
gy/
IncludedInOnto
logy

A reference to another model, which is supposed to be included as
part of this model. Examples of such relations between models
include “Imports” in OWL, “inclusion” in Ontolingua and
“Compose” in DogmaModeler. The formal semantics of such
relationships are necessarily the same.

StepVersionOf/
PreviousVersio
nOf

A reference to the step/previous version of this model.

References:
[BCMNP03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. The Description Logic

Handbook. Cambridge University Press, 2003.
[BGH99] Bird, L., Goodchild, A., Halpin, T.A.: Object Role Modelling and XML-Schema. In: Laender, A., Liddle, S.,

Storey, V. (eds.): Proc. of the 19th International Conference on Conceptual Modeling (ER’00). LNCS, Springer,
1999.

[BHW91] P. van Bommel, A.H.M. ter Hofstede, and Th.P. van der Weide. Semantics and verification of object role
models. Information Systems, 16(5), pp. 471-495, 1991.

[BvHHHMP04] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider, and
L. A. Stein. OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/, 2004.

[CDLNR98] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati. Information integration : Conceptual
Modeling and reasoning support. In Proceedings of the 6th International Conference on Cooperative Information
Systems (CoopIS’98), pp. 280-291, 1998.

[DJM02a]: Demey, J., Jarrar, M., Meersman, R.: A Conceptual Markup Language that supports interoperability
between Business Rule modeling systems. Proc. of the Tenth International Conference on Cooperative Information
Systems (CoopIS 02). Springer LNCS 2519, pp. 19-35, 2002.

[DMV] O. De Troyer, R. Meersman, and P. Verlinden. RIDL* on the CRIS case: A Workbench for NIAM. Technical
report. INFOLAB, Tilburg University, The Netherlands.

[H] T. Halpin. Object-Role Modeling: an overview. White paper, http://www.orm.net.
[H01] T. Halpin. Information Modeling and Relational Databases. 3rd edn. Morgan-Kaufmann, 2001.
[H89] T. Halpin. A logical analysis of information systems: static aspects of the data-oriented perspective. PhD thesis,

University of Queensland, Brisbane, Australia, 1989.
[H97] Halpin, T.: An Interview- Modeling for Data and Business Rules. In: Ross, R. (eds.): Database Newsletter. vol.

25, no. 5. (Sep/Oct 1997). -This newsletter has since been renamed Business Rules Journal and is published by
Business Rules Solutions, Inc.

[J06]: Jarrar, M.: Towards the notion of gloss, and the adoption of linguistic resources in formal ontology engineering.
Proceeding of the 15th International World Wide Web Conference, WWW2006. Edinburgh, Scotland. May 2006.
ACM, 2006.

[J05] M. Jarrar. Towards Methodological Principles for Ontology Engineering. PhD thesis, Vrije Universiteit Brussel,
2005.

[JF05] Jarrar, M., Franconi, E.: Mapping ORM into the DLR description logic. Technical Report, August 2005.
[JVM03] Jarrar, M., Verlinden, R., Meersman, R.: Ontology-based Customer Complaint Management. In: Jarrar M.,

Salaun A., (eds.): Proceedings of the workshop on regulatory ontologies and the modeling of complaint regulations,
Catania, Sicily, Italy. Springer Verlag LNCS. Vol. 2889. November (2003) pp. 594–606

[N99] North, K.: Modeling, Data Semantics, and Natural Language. In: New Architect maga-zine, 1999.
[T96] O. De Troyer. A formalization of the binary Object-role Model based on Logic. Data & Knowledge Engineering

19, North-Holland, Elsevier, pp. 1-37, 1996.
[TM95] O. De Troyer and R. Meersman. A Logic Framework for a Semantics of Object-Oriented Data Modelling. In

Proc. Of 14th International Conference Object-Orientation and Entity-Relationship Modelling (OO-ER’95), LNCS
1021, pp. 238-249, Springer, 1995.

[VB82] G. Verheijen and P. van Bekkum. NIAM, aN Information Analysis Method. In Proc. Of the IFIP Conference
on Comparative Review of Information Systems Methodologies, North-Holland, 537-590, 1982

