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Abstract. This paper tackles two main disparities between conceptual data 
schemes and ontologies, which should be taken into account when (re)using 
conceptual data modeling techniques for building ontologies. Firstly, concep-
tual schemes are intended to be used during design phases and not at the run-
time of applications, while ontologies are typically used and accessed at run-
time. To handle this first difference, we define a conceptual markup language 
(ORM-ML) that allows to represent ORM conceptual diagrams in an open, tex-
tual syntax, so that ORM schemes can be shared, exchanged, and processed at 
the run-time of autonomous applications. Secondly, unlike ontologies that are 
supposed to hold application-independent domain knowledge, conceptual 
schemes were developed only for the use of an enterprise application(s), i.e. 
“in-house” usage. Hence, we present an ontology engineering-framework that 
enables reusing conceptual modeling approaches in modeling and representing 
ontologies.  In this approach we prevent application-specific knowledge to enter 
or to be mixed with domain knowledge. To end, we present DogmaModeler: an 
ontology-engineering tool that implements the ideas presented in the paper. 

Keywords: Ontology, Conceptual data modeling, Context, Ontology 
tools, Reusability, DOGMA, DogmaModeler, ORM, ORM-ML.  

1   Introduction and motivation 

Successful conceptual data modeling approaches, such as ORM or EER, became well 
known because of their methodological guidance in building conceptual models of 
information systems. They are semantically rich disciplines and support quality checks 
at a high level of abstraction [V82]; they provide conceptual constructs like integrity, 
taxonomy, and derivation rules [H01] [F02]. Merely, conceptual data schemes -also 
called semantic data models- were developed to capture the meaning of an application 
domain as perceived by its developers [WSW99] [M99]. Nevertheless, this meaning is 
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being represented in diagram formats, and typically used in an off-time mode, i.e. used 
during the design phases and not at the run-time of applications. 

 
Nowadays, the Internet and the open connectivity environments create a strong de-
mand for sharing and exchanging not only data but also data semantics. Therefore, 
emerging ontologies are intended to represent agreed and shared domain semantics. 
So that, based on such ontologies, computer systems can meaningfully communicate 
to exchange data and make transactions interoperate independently of their internal 
technologies. For example, by sharing an ontology, heterogeneous information re-
sources can be integrated and searched through mediators [TSC01] [SOVZJSSM02], 
e-commerce applications can meaningfully communicate, etc.  

Conceptual data schemes and ontologies are quite similar, as both consist of concep-
tual relations1 and rules2. Thus, several researchers have proposed to (re) use those 
conceptual methodologies and tools for ontology modeling, e.g. [F02] [CHP01] 
[BKKHSHLA01] [M01]. Reusing conceptual modeling techniques for ontology engi-
neering is ultimately beneficial: the large set of existing conceptual modeling methods, 
graphical notations, and tools can make ontologies better understandable, and easier to 
adopt, construct, visualize, etc. Furthermore, legacy conceptual schemes can be mined 
and/or “ontologized”.  

For such purposes, some extensions have been made to the foundation of the concep-
tual modeling constructs. For example, to effectively capture knowledge about appli-
cation domains, [WSW99] redefined several conceptual modeling constructs of the 
ER approach, by defining some rules –based on ontological analyses- to resolve ambi-
guities that exist in current practice of modeling relationships. [GHW02] suggested 
ontological semantics for UML class diagrams, by rooting the UML constructs to the 
GOL upper level ontology. [BCD01][BB03][MC02] have shown how to reason about 
conceptual schemes.  

However, complementary to these efforts, there are two main disparities between 
ontologies and conceptual data schemes that we aim to tackle in this paper: 

1) Conceptual data schemes are being preserved in off-time mode diagrams; while, 
ontologies typically are shareable and exchangeable at run-time, i.e. machine-
processable semantics.  

2) Unlike conceptual data schemes that capture semantics for a given application 
domain, ontologies are supposed to capture semantics about real-world domains, in-
dependent from specific application needs, i.e. “relatively” generic knowledge. 
Therefore, the genericity (/application-independency) of knowledge is a fundamental 

                                                           
1 Conceptual relations can be unary relations (usually called “concepts” or object types as 

called in ORM), or n-ary relations, which also are called fact types in ORM. 
2  Rules, formally, are well-formed formulae; defined in an ontology (or a conceptual schema) 

in order to specify and constrain the intended models that can hold. In conceptual data mod-
eling they are commonly called “constraints”. Notice that rules can be used for e.g. enforce 
integrity, derivation and inference, taxonomy, etc. 
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asset in ontology modeling, and that mostly distinguishes ontologies from conceptual 
data schemes.  

The first goal of this paper is to provide a way for conceptual diagrams to be ex-
changed and shared at run-time. Therefore, we define a conceptual markup language 
in which one can textually represent ORM conceptual diagrams in an open (nonpro-
prietary) way. The second goal is to present an ontology engineering framework (and 
tool) that enables ORM conceptual schemes to be used for modeling and representing 
ontological commitments3. Please notice that our approach is not restricted to ORM. 
The same techniques can be applied to other conceptual modeling methods. 

Remark: Let us now clarify some terminology that we frequently use in the paper. 
The intended use of the term 'task', is related and limited to the inferential knowledge 
that is required to describe a task to be performed, e.g. it does not describe temporal 
aspects. An application may convey one or more kinds of tasks. However the term task 
is often interchanged with the ‘application’ that conveys one kind of task. Notice that 
the ‘reusability’ of knowledge implies the maximization of using this knowledge 
among different kinds of applications; while increasing the usability implies maximiz-
ing the number of applications among the same kind of task [JM02b]. Moreover, we 
use the term ‘generic task’ to refer to a reusable kind of task. 

 
Structure of this paper: In section 2, we give a bird's eye introduction to ORM. The 
ORM markup language (ORM-ML) will be presented in Section 3. In section 4, we 
discuss the knowledge independency and genericity issues, then we present our 
framework that uses ORM in ontology modeling. In section 5, we briefly present our 
DogmaModeler Tool for ontology engineering. Finally, in section 6, we conclude and 
present some future work. 

2 ORM background 

Conceptual modeling methodologies are well developed and have proven to be quite 
successful for building information systems in a graphical way at the conceptual level. 
By representing the data on a higher level of abstraction conceptual models quality 
checks can be performed easily. ORM (Object-Role Modeling) [H01] is such a con-
ceptual modeling approach that was developed in the early 70's. Originally it is a suc-
cessor of NIAM (Natural-language Information Analysis Method) [VB82]. 

In ORM, the world is represented under the form of objects playing roles. There are 
two kinds of object types: lexical object types (LOTs) and non-lexical object types 
(NOLOTs). The distinction between LOTs and NOLOTs is a linguistic distinction. 
Lexical object types correspond to "utterable" entities (for instance: ‘ISBN’, ‘Title’, 
‘FistName’), while Non-lexical object types (for instance: Book, Person) refer to 
"non-utterable" entities [VB82]. The design process of information systems is simpli-

                                                           
3 See section 4 for the definition. 



 

 4 

fied by using ORM, because ORM has an easy to understand graphical notation which 
includes most frequently used constraints. 

Based on ORM, several conceptual modeling tools exist, such as Microsoft's Visio-
Modeler™ and the older InfoModeler, which have the functionality of modeling a 
certain Universe of Discourse (UoD) in ORM, and support the automatic generation 
of a consistent and normalized relational database schema for a  modeled UoD. 

Also, ORM schema's can be translated into pseudo natural language statements. The 
graphical representation and the translation into pseudo natural language make it a lot 
easier, also for non-computer scientists, to create, check and adapt the knowledge 
about the UoD needed in an information system. 

 
Fig. 1: An example of ORM schema 

 
In Fig. 1, object types are shown as named ellipses. Logical predicates (fact types) 
appear as named sequences of roles, where each role appears as a box. Roles are con-
nected by line segments to the object types that 'play' them. 

In the Figure, the object types are Committee, Person, Reviewer, Author, Paper and 
PaperTitle. The dotted ellipse indicates that PaperTitle is a lexical object type while 
the others are non-lexical. The predicates in the figure can be verbalized as follows: 
‘A Paper Has a PaperTitle and a PaperTitle IsOf a Paper’, ‘An Author Reviews a 
Paper and a Paper is Reviewed by a Reviewer’, ‘An Author Writes a Paper and A 
Paper is Written By an Author’, etc. The arrows connecting the object types Author 
and Reviewer to Person denote an is-a (predefined subtype) relationship.  

In what follows, we briefly name and explain the constraints appearing in the diagram, 
in fact by giving an (approximate) verbalization of the example in Fig. 1.  For other 
types of ORM constraints we refer to [VB82] or [W90]; the notation and definitions 
used here are taken from [H01]. 

Black dots indicate a mandatory role constraint. Example verbalization of Fig. 1: 
‘Each Paper must be WrittenBy at least one Author’’. The arrow-tipped bars above the 
roles are uniqueness constraints. For example: ‘Each Committee is ChairedBy at most 
one Person. Uniqueness constraints can span more than one role, indicating that ‘any 
combination that instantiates these roles should be unique’. E.g. for the predicate (Au-
thor writes paper, Paper is WrittenBy author), there holds that every combination of 
author and paper is unique, so an author can only once be the author of the same pa-
per. In ORM, one can also define constraints between different predicates or fact 
types. For instance, the circled ‘X’ (which stands for eXclusion constraint) between 
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‘Reviewer Reviews/ReviewedBy Paper’ and ‘Author Writes/WrittenBy Paper’ means 
that an Author (Person) who has written a certain Paper is not allowed to be a re-
viewer of the same paper. An arrow between two predicates indicates a subset con-
straint between the roles involved: ‘Each Author who presents a Paper must have 
written that Paper’. 

 

3 ORM Markup Language 
 
As we noted in the introduction, conceptual modeling approaches were developed to 
assist system developers during the design phases. They were not meant to be ac-
cessed and processed at the run-time of applications. Besides, conceptual diagrams are 
typically saved in graphical formats, which are proprietary and therefore are limited to 
use inside specific CASE tools. 

In this section we show how conceptual diagrams can be marked up and thus accessed 
and processed at run-time of applications. We illustrated this by defining a new open 
syntax markup language to represent ORM conceptual diagrams textually. ORM 
Markup Language is based on the XML syntax, and is defined in an XML-Schema 
[ORMML-XMLS] that acts as its complete and formal grammar, thus any ORM-ML 
file should be valid according to this XML-Schema.  

ORM-ML is not meant to be written by hand or interpreted by humans. It is meant to 
be implemented as a “save as” or “export to” functionality in ORM tools.  In section 6 
we will present an ontology engineering tool that makes use of ORM-ML.  

In what follows, we describe the main elements of the ORM-ML grammar and demon-
strate it using a few elementary examples. A more complete example is provided in 
Appendix A. We chose to respect the ORM structure as much as possible by not “col-
lapsing” it through the usual relational transformer that comes with most ORM-based 
tools. ORM-ML allows the representation of any ORM schema without loss of infor-
mation or change in semantics, except for the geometry and topology (graphical lay-
out) of the schema (e.g. location, shapes of the symbols), which we provide as a sepa-
rate graphical style sheet to the ORM Schema.  

We represent the ORM document as a one node element called ORMSchema, which 
consists itself of two nodes: ORMMeta and ORMBody. As a header to an ORM 
document, and to illustrate the "ORM Schema Document" (instance) nature of the 
described schema, ORMMeta node includes meta data about the ORM document 
using the 16 Dublin Core4 Meta Tags [RFC2413]; an example of their use appears in 
Table 1 below. 

…<ORMMeta> 
<dc:Title>Bookstore</dc:title> 
<dc:Creator>Mustafa Jarrar</dc:creator> 
<dc:contributor>Jan Demey</dc:contributor> 
<dc:contributor>Robert Meersman</dc:contributor> 

                                                           
4 Dublin Core is a standard of 16 metadata tags that can be used for “annotating” any informa-

tion object. 
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<dc:Description>An example of ORM-ML </dc:description> 
<dc:Language>English</dc:language>. 
….. 

</ORMMeta>…. 
Table 1. Example of an ORMMeta Node in an ORM-ML File 

The ORMBody node consists of at most these five different kinds of (meta-ORM) 
elements: Object, Subtype, Predicate, Predicate_Object and Constraint. 

We adopt in the sequel the ORM modeling technique as defined in [H01]. Object 
elements are abstract XML elements and are used to represent Object Types. They are 
identified by an attribute ‘Name’ which is the name of the Object Type in the ORM 
Schema (see fig. 2 in Example 2). Objects might have some Value or ValueRange 
elements, which are used for value constraints on the Object Type (not present in Fig. 
2). A ValueRange element has 2 attributes: begin and end, with obvious meanings. 
Object Types are implemented by two XML elements: LOT (Lexical Object Type, 
called Value Types in [H01]) and NOLOT (Non-Lexical Object Type, called Entity 
Types in [H01]). LOT elements may have a numeric attribute, which is a boolean and 
indicates whether we deal with a numeric Lexical Object Type. NOLOT elements 
have a boolean attribute called independent, which indicates whether the Non Lexical 
Object Type is independent. NOLOT elements may also have a reference element. A 
reference element would indicate how this NOLOT is identified by LOTs and other 
NOLOTs in a given application environment. A reference element has 2 attributes: 
ref_name, the name of the reference and numeric, a boolean to indicate whether it is a 
numeric reference. 

Example 2 

 

… 
<Object xsi:type="NOLOT" Name="Person"/> 
… 

Fig. 2 Table 2. ORM-ML representation of Fig. 2 

Subtype elements are used to represent subtype relationships between non-lexical 
object types. A subtype element is required to have two attributes: parent and child, 
which are references to object elements (see Example 3). 

Example 3 

 

… 
<Object xsi:type="NOLOT" Name="Person"/> 
<Object xsi:type="NOLOT" Name="Author"/> 
<Subtype Parent="Person" Child="Author"> 
… 

Fig. 3. Table 3. ORM-ML representation of Fig. 3 

 

Predicates consist of at least one Object_Role element. Such an element contains a 
reference to an object and may contain a role. They actually represent the rectangles in 
an ORM schema. Every Object_Role element needs a generated attribute 'ID' which 
identifies the Object_Role. Note that we did not put the ‘ID’ attribute to refer to predi-
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cates rather than to object_role elements. The reason therefore is that we need to be 
able to refer to specific object-roles when we define constraints. 

Predicates can have one or more rule elements. These elements can contain extra rules 
that are defined for the predicate. Predicates also have two boolean attributes that are 
optional: ‘Derived’ and ‘Derived_Stored’ which indicate whether a predicate respec-
tively is derived, or derived and stored, or not. 

Example 4. This example shows a simple binary predicate as in fig 4, and how it is 
represented in ORM-ML in Table 4. 

 

… 
<Object xsi:type="NOLOT" Name="Book"/> 
<Object xsi:type="NOLOT" Name="Author"/> 
<Predicate> 
     <Object_Role ID="ID1" Object=”Book”    Role=”WrittenBy”/> 
     <Object_Role ID="ID2" Object=”Author”  Role=”Writes”/> 
</Predicate> 

Fig. 4 Table 4. ORM-ML representation of Fig. 4 

Constraint elements represent the ORM constraints. The Constraint element itself is 
abstract, but it is implemented by different types of constraints, viz. mandatory, 
uniqueness, subset, equality, exclusion, frequency, and ring constraints: irreflexive, 
anti-symmetric, asymmetric, symmetric, intransitive, and acyclic constraints. As men-
tioned above, we use the ID-s of the Object_Role elements to define constraints (ex-
cept for value constraints on an object type, since these are defined in the correspond-
ing object element). 

Uniqueness and mandatory constraint elements possess only Object_Role elements (at 
least one). These elements are the object_roles in the ORM diagram on which the 
constraint is placed. In this way, there is no need to make a distinction between the 
ORM-ML syntax of "external" and "internal" uniqueness constraints (see [H01]), or 
between mandatory and disjunctive mandatory constraints (see Example 6 below). 

The representation for subset, equality and exclusion constraints is analogous, so we 
will only discuss them in general terms. Each of these latter constraints has exactly 
two elements that contain references to (combinations of) object_role elements. For 
example, to represent an equality constraint between two predicates, we create a sub-
set element, containing 2 elements ‘First’ and ‘Second’. In the first element we put 
references to the object_roles from the first predicate, and in the second we put refer-
ences to the object_roles from the second predicate (see Example 6). 

Example 6. This example shows the representation of the constraints from Fig. 6. 

 
 
 

 
 
 

…<Predicate> 
   <Object_Role ID="2" Object="Committee" Role="Includes"/> 
   <Object_Role ID="3" Object="Person"  Role="IsMemberOf"/> 
</Predicate> 
<Predicate> 
   <Object_Role ID="4" Object="Committee" Role="ChairedBy"/> 
   <Object_Role ID="5" Object="Person" Role="Chairs"/> 
</Predicate> 
<Constraint xsi:type="Mandatory"> 
    <Object_Role>2</Object_Role></Constraint> 
<Constraint xsi:type="Mandatory"> 
    <Object_Role>4</Object_Role></Constraint> 
<Constraint xsi:type="Uniqueness"> 
   <Object_Role>4</Object_Role></Constraint> 
<Constraint xsi:type="Uniqueness"> 
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     <Object_Role>2</Object_Role> <Object_Role>3</Object_Role> </Constraint> 
<Constraint xsi:type="Subset"> 
   <Parent> 
         <Object_Role>2</Object_Role> 
         <Object_Role>3</Object_Role> </Parent> 
   <Child> 
        <Object_Role>4</Object_Role> 
        <Object_Role>5</Object_Role>   </Child> 
 </Constraint>  … 

Fig. 6. Table 6. ORM-ML representation of Fig. 6 

Finally, ring constraint elements simply contain references to the object_roles they are 
put on, and frequency constraints have two attributes: a reference to the object_role 
the constraint is placed on and an attribute called ‘Frequency’ which contains the 
declared frequency number.  

A markup language such as ORM-ML has more advantages than just enabling the use 
of conceptual schemas at the runtime of applications. We name some of them: 
 
  Building Style-sheets. As ORM-ML is very easy to parse and interpret, we can eas-

ily build style-sheets to translate ORM-ML files into other languages. For instance, 
we have already built a style-sheet to translate ORM-ML files into pseudo natural 
language sentences, which is used in DogmaModeler (see fig. 13 and fig. 16 in sec-
tion 5). Moreover, it would be very useful to write style-sheets that translate ORM-
ML into rule engine's languages. Experiments with Haley's Authorete™ [Haley] 
are being planned in the near future. Of course, such a style-sheet would open 
doors for ORM as a very powerful business rule modeling language. Other style-
sheets can be built to translate ORM-ML into other types of conceptual schemes, 
ontology languages e.g. DAML, or into first order/description logic formalisms, 
etc.  

  Easier schema integration and transformation. For integrating information systems, 
it is in general easier to integrate or align the conceptual models of these systems 
than integrate their logical or the physical internal representation  as demonstrated 
by the literature on view- and schema integration (e.g. [SP94]). Therefore, ORM-
ML as a standardized syntax for ORM models may assist interoperation tools to 
exchange, parse or understand the ORM schemes. 

  Conceptual queries over the web. In open and distributed environments, building 
queries should be possible regardless of the internal representation of the data. 
Query languages based on ontologies (seen as shared conceptual models) help us-
ers not only to build queries, but also make them more expressive and understand-
able than corresponding queries in a language like SQL. Exchanging, reusing, or 
sharing such queries efficiently between agents over the web is substantially facili-
tated by a standardized markup language. Consequently, NIAM/ORM-based query 
languages (e.g. RIDL [VB82], [M81], ConQuer [BH96]) would gain from ORM-
ML by representing queries in such an exchangeable representation. 

 
Of course, similar to ORM-ML, a markup language could be defined for any other 
conceptual modeling method. We have chosen ORM to illustrate adopting conceptual 
modeling methods for ontology engineering purposes because ORM has several 
strengths over other methods [H01]: ORM is fairly comprehensive in its treatment of 
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many “practical” and “standard” rules, ( e.g. identity, mandatory, uniqueness, subtyp-
ing, subset, equality, exclusion, frequency, transitive, acyclic, anti/a/symmetric… 
derivation rules, etc.). Furthermore, ORM has an expressive and stable graphical nota-
tion since it captures many rules graphically and it minimizes the impact of change to 
models5. ORM has well-defined formal semantics (see e.g. [H89] [BHW91] [HPW93] 
[T96] [TM95] [HP95]). In addition, it is perhaps worthwhile to note that ORM derives 
from NIAM (Natural Language Information Analysis Method), which was explicitly 
designed to be a stepwise methodology arriving at "semantics" of a business applica-
tion's data based on natural language communication.  

In section 4 and 5, we show how ORM-ML is used as ontological commitment lan-
guage.  

4   DOGMA approach for ontology Engineering 

In this section, we present the second topic of this paper: we first discuss some appli-
cation-independency issues of ontologies and conceptual data schemes, i.e. domain vs. 
application conceptual modeling; then we present our DOGMA6 ontology engineering 
framework that enables the use of conceptual modeling methods, such as ORM and its 
ORM-ML, for modeling and representing ontologies. 

Similar to conceptual data schemes, ontologies consist of interrelated concepts and 
rules (e.g. identity, mandatory, value, cardinality, taxonomy, etc.) that constrain and 
specify the intended meaning of the concepts. However, since conceptual schemes 
were developed only for the use of an enterprise application(s), thus, building such 
schemes depends on the specific needs and tasks that are planned to be performed 
within a certain enterprise. In comparison, building ontologies is a challenging job, 
since ontologies are supposed to hold application-independent domain knowledge. 
The consensus level about ontological content is the main requirement in ontology 
modeling, and mainly distinguishes it from conceptual data modeling. 

An expected question may arise, namely: how can one decide whether knowledge is 
application-independent? Certainly, ontology modelers will not manage to come to an 
agreement for all applications that can possibly exist in a domain. This is why we 
believe, like [CJ93], that there is no strict line between the levels of dependent and 
independent (or generic and specific) knowledge. When building an ontology, there 
will always be intended or expected needs and tasks “at hand”, which will influence 
the independency level of the ontology. In short, there is a clash between building an 
application-independent ontology and encountering the intended goals for building 
this ontology. In the problem solving research community, this issue is called the in-
teraction problem, which influences the independency of the problem-solver’s domain 

                                                           
5 In comparison with other approaches (e.g. ER, UML), ORM models are attribute-free; so they 

are immune from changes that cause attributes to be remodeled as entity types or relation-
ships.  

6 Developing Ontology-Guided Mediation for Agents 
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knowledge [HSW97]. For example, Bylander and Chandrasekaran argued in [BC88] 
that: 

“Representing knowledge for the purpose of solving some problem is 
strongly affected by the nature of the problem and the inference strategy 
to be applied to the problem.” 

Solving such a clash requires a principled methodology to guide ontology modelers 
towards more genericity, as well as meeting requirements at hand. Notice that the 
methodologies that emphasize on the requirements “at hand”, or that evaluate ontolo-
gies based only on how they fulfill specific requirements, will lead to application 
ontologies, similar to conceptual data schemas containing less reusable knowledge. 
Likewise, the methodologies that emphasize only on the genericity of the knowledge 
will lead to less usable ontologies, since they have no intended use by ignoring re-
quirements at hand [BBH96][RVMS99]. 

In our approach, we introduce an essential principle that underpins the foundation of 
ontologies. Unlike ontology engineering proposals, which consider an ontology as one 
“unit”, holding both conceptual relations and rules together (e.g. [G95], [G98], 
[FHVDEK00]): we decompose an ontology into an ontology base and a layer of onto-
logical commitments. The ontology base holds conceptual relations, as domain knowl-
edge. The commitment layer consists of a set of ontological commitments, where each 
commitment holds ontology rules, which formally and explicitly provide an interpreta-
tion of an application or task in terms of the domain knowledge, (see fig. 7). We will 
show that ontology rules are mostly application/task-dependent knowledge, i.e. 
strongly influenced by the intended use of the knowledge and requirements at hand. 
Therefore, as a result of the decomposition, the genericity of the knowledge in the 
ontology base level is increased, while rules influenced by requirements at hand are 
kept separated in the commitment layer. Hence, a conceptual schema can be seen as 
an ontological commitment defined in terms of the domain knowledge. In what 
follows, we respectively describe the ontology base and the commitment layer, 
illustrating both by means of a detailed example. For further details about the 
DOGMA approach, see [JM02a] and [JM02b]. 

 
Fig. 7. Knowledge organization in the DOGMA approach 

The ontology base consists of  “plausible” intuitive domain fact types, represented 
and organized as a set of context-specific binary conceptual relations, called lexons. A 
lexon is formally described as a 4-tuple of the form <γ: Term1, Role, Term2>, where γ 
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is a context identifier, used to group lexons that are intuitively and informally 
“related” in an intended conceptualization of a domain. For each context γ and Term 
T, the pair (γ, T) is assumed to refer to a concept.  

Fig. 8. shows an example of an ontology base represented in a table format (see fig. 13 
for its corresponding “tree” representation using DogmaModeler). The ontology base 
in this example consists of two contexts: ”Books” and ”Categories”. Notice that the 
term “Product” that appears within both contexts refers to two different concepts: the 
intended meaning of “Product” within the context “Categories” –that deal with the 
subject classification of books- refers to a topic or a subject of a book, while within 
the context “Books”, it refers to a real world’s entity. More about our notion of con-
text will be discussed at the end of this section.  

 

Fig. 8.  Example of an ontology base  

The layer of ontological commitments mediates between the ontology base 
and its applications. Each commitment consists of: (1) an ontological view that 
specifies which lexons from the ontology base are relevant7 to this commitment, i.e. 
selection of lexons, and (2) rules that formally constrain and specify the intended 
meaning of the selected lexons. For simplicity, one can see a commitment as a concep-
tual schema, where its conceptual relations correspond to lexons in the ontology base. 
Applications that use (or more precisely, “commit to”)  a certain commitment must 
satisfy all rules declared in this commitment. In other words, any possible world, for 
an application, must conform to the rules declared in its commitment(s) (cf. model-
theoretic semantics). 

Each ontological commitment corresponds to an explicit instance of an (intensional) 
first order interpretation of the domain knowledge in the ontology base. In other 
words, it is the role of commitments to provide the formal interpretation(s) of the 

                                                           
7 Notice that the relevancy is an application-dependent choice. 



 

 12 

lexons. Therefore, the lexons in an ontology base are free of a particular formal inter-
pretation. This allows different formalizations and interpretations, even if sometimes 
they disagree about certain things, to co-exist as different commitments in the com-
mitment layer and to share what they have in common.  

 
In our approach, ontological commitments are not restricted to be expressed in a 
certain specification language. However, as the goal of this paper is to enable the use 
of conceptual modeling methods, we illustrate representing ontological commitments 
using the ORM-ML. In the next example, as well as in the next section, we illustrate 
how commitments can be modeled using the ORM graphical notation, while the 
corresponding ORM-ML is being generated automatically. 

In the next example, we show how an ontology base -holding domain knowledge- may 
have different formal interpretations in different commitments, and that is because of 
the difference in the intended use of the same domain knowledge. 
 
 Example 

The example given below is based on the Biblio-OntologyBase domain knowledge 
provided in Fig. 8. We present two different kinds of applications: library applications 
that need to interoperate with other libraries, and bookstore applications that addition-
ally need to interoperate with other bookstores. Each kind of application has different 
rules (i.e. interpretation) that do not necessarily agree with the other’s rules. E.g., 
unlike bookstores, pricing information is not relevant for library applications. Like-
wise, bookstores identify a book by its ISBN, while in library applications, ISBN is 
not a mandatory property for every instance of a book, so it cannot be used for iden-
tity8 purposes; instead, they identify a book by the combination of its title and authors. 
So for bookstores, instances of a “Thesis”, a ‘Manual’, etc. are not considered as 
books -since they do not have ISBN- while for libraries they are. However, suppose 
that both bookstore and library applications have the same agreement about categories 
(i.e. topics of books). Fig. 9, Fig. 10, and Fig. 11 illustrate the use of the ORM graphi-
cal representation of ontological commitments for ‘Bookstore’ ‘Library’, and ‘Catego-
ries’ respectively.  

                                                           
8 Notice that in ORM, the identity of a concept is based on the Uniqueness and Mandatory 

properties together. For example, if an ISBN is a mandatory and a unique property for all in-
stances of the concept book, then one can use the ISBN as an identify property for the con-
cept book. Furthermore, in ORM, one can use the combination of two (or more) properties to 
identify a concept, e.g. the combination of (title, author) of a book. In that case both proper-
ties must be unique and mandatory for every instance of a book, at any time. 
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Fig. 9. ‘Bookstore’ Ontological Commitment 

 

Fig. 10. ‘Library’ Ontological Commitment 

Topic Computers 

Sports 

Arts 

Computer_Science 

Programming 

Product 
SuperTopicOf SuperTopicOf 

SuperTopicOf 

SuperTopicOf 

SuperTopicOf 

SuperTopicOf 

DBMS 

Word_Processors 

Case_Tools 

SuperTopicOf 

SuperTopicOf 

SuperTopicOf 

 
Fig. 11.  ‘Categories’ Ontological Commitment9 

 
All commitments share the same Biblio-OntologyBase shown in Fig. 8: all fact types 
in each commitment correspond to lexons in the ontology base. Notice that a commit-
ment only uses the lexons that are relevant to it, i.e. the ontological view. For example, 
the lexons {<Books: Book, ValuedBy, Price>, <Books: Price, Has, Value>…} do not 
appear in the ‘Library’ commitment.  

Fig. 12 shows commitments sharing the same Biblio-OntologyBase together with 
some bookstore applications committing to the ‘Bookstore’ and ‘Categories’ commit-
ments, and some library applications committing to the ‘Library’ and ‘Categories’ 
commitments.  

 

Fig. 12. Using ontological commitments  

                                                           
9 Notice that we do not use the subtype relationship in ORM to represent the “SuperTopicOf” 

relationship in Fig. 11; since they do not have the same formal semantics. For more informa-
tion about the formalization of topics and subjects, see [WJ99]. 



 

 14 

Discussion  

One can see from the previous example that application-kinds, even within the same 
domain, may have different formal interpretations of the same knowledge. For exam-
ple, the set of possible instances of the concept “book” for library applications is for-
mally not the same as for bookstore applications, since both have different identity 
criteria, etc. Nevertheless, in reality, both kinds of applications intuitively share the 
same concept of what is really a book. For example, suppose that one assigns an ISBN 
for an instance of a “Master Thesis”, then this instance can be considered as a book 
for bookstores, or that one removes an ISBN for an instance of a book, then this in-
stance will no longer be a book, although, this instance remains the same real life 
object and is still being referred to and used as a book. Obviously, one of the main 
requirements at hand (i.e. intended use) for bookstores is “what can be sold”, which 
influences the identity criteria and thus the formal interpretation of the domain knowl-
edge. However, there is more to “say”, than an ISBN, in order to identify a book in 
real world domains (e.g. structuring, formatting, authoring, publishing, printing, ver-
sioning, copying…). And, that the identity criteria should be based on essential prop-
erties that help to distinguish real world objects as being the same or not [G02]. In 
other words, for modelling ontologies at the domain level, the identity of a concept 
should serve to identify all of its instances in all applications.  

 
Please note that the aim of this paper is not to discuss the identity rule, but we use this 
example to illustrate the difference (and requirements) between modeling knowledge 
at the domain level vs. modeling knowledge at the application level.  
 
At the domain level, in our approach, we have introduced the notion of context; so that 
a term within a context refers intuitively to a concept. The intuition that a context 
provides here is: a set of implicit or maybe tacit10 assumptions that are necessary for 
all instances of a concept in all its applications. In other words, a context is an ab-
stract identifier that refers to implicit and tacit assumptions in a domain, and that maps 
a term to its intended meaning (i.e. concept) within these assumptions. Notice that a 
context in our approach is not explicit formal knowledge. In practice, we define a 
context by referring to a source (e.g. a set of documents, laws and regulations, infor-
mal description of “best practice”, etc.), which, by human understanding, is assumed 
to “contain” the necessary assumptions. 
 
We suppose that the ontology base –as intuitive domain knowledge- is free of any 
particular formal interpretation; or rather, lexons are assumed (by human understand-

                                                           
10 The difference between implicit and tacit assumptions, is that the implicit assumptions, in 

principle, can be articulated but still they have not, while tacit assumptions are the knowl-
edge that cannot be articulated: it consists partially of technical skills –the kind of informal, 
hard-to-pin-down skills captured in terms like “know-how”, “we know more than we can tell 
or put in words”, etc. Even if tacit assumptions cannot be articulated, but they can be trans-
ferred through other means over than verbal or formal descriptions [Innovanet03] [N94]. In 
many cases, the knowledge about the real world (such as the identity of a person, book, etc.) 
is tacit knowledge [P96]. 
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ing) to be “true within their context’s source”. The formal interpretation of the lexons 
is provided through ontological commitments, which are explicit and formal (and thus 
machine-understandable) knowledge. 
 
As a result and as we have illustrated before, we enable the use of conceptual model-
ing methods for modeling ontological commitments. The application-independency 
level of an ontology is increased, by separating the commitments (mostly applica-
tion/task-dependent knowledge) from the ontology base (intuitive domain knowledge). 
In other words, the interaction problem has “neglectable” influence on the genericity 
of the ontology base level, because ontology modelers are prevented from entering 
their application-specific rules at this level.  
 
Remark: In accordance to the given independency discussion, we emphasize that 
modeling ontological commitments should not be specific to certain needs, they 
should be made more generic (e.g. describing application kinds, generic tasks, etc.), 
and seen as reusable components of knowledge. In our approach, the ontological 
commitments that are specific to a limited number of applications do not affect the 
independency of other commitments in the same commitment layer. Rather, 
Commitments -specially large ones- can even be modularized into smaller and 
interrelated commitments, so that the general purpose –i.e. reusable- parts can be 
separated from the more specific parts [JM02b]. And therefore, not only the ontology 
base (i.e. lexons and the intuitive definitions of their terms) can be shared and reused 
among commitments, but also the ontological commitments themselves can be modu-
larized and seen as a set of reusable knowledge components. 

5 DogmaModeler ontology engineering tool 

This section briefly outlines our DogmaModeler Tool prototype for ontology engi-
neering. Its implementation is based on the approach described in this paper. 

DogmaModeler supports functionalities for modeling, browsing, and managing both 
the ontology base and the commitments. It supports modeling ontological commit-
ments using the ORM graphical notation, and it generates the corresponding ORM-
ML automatically. In addition, DogmaModeler supports verbalization of ontological 
commitments into pseudo natural language. Fig. 13 shows a screenshot of Dogma-
Modeler with demonstrates its three main windows: the ontology base window, the 
commitment modeling window, and the commitment library window. We will describe 
these windows in what follows. 
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Fig. 13. A screenshot of DogmaModeler. 

Ontology base window (The top left side of Fig. 13) 

Before building ontological commitments, ontology builders should define their lex-
ons in the ontology base window, in case it is empty. This window presents the set of 
lexons – {< γ : Term1, Role, Term2>} - in a tree-like structure11. The first level, (Ω) 
represents ontology bases (e.g. Biblio-Ontologybase).  In the second level, each node 
(γ) represents a context (e.g. Books).  Within a context, each node (Τ), in the third 
level, represents a term; while nodes ( ) in the fourth level, represent the set of (Role, 
Term2) for that term.  

Notice that level 0 ( ) in the tree represents an ontology base server, where the con-
tent of ontology bases is hosted and managed. All transactions on the ontology base 
(e.g. creating contexts, editing lexons, etc.) will be transmitted, verified and executed 
on the server side. As one can see in Fig. 13, DogmaModeler is connected with our 
DogmaServer12, which stores and serves the ontology base and the commitment layer. 

Commitment modeling window (The right side of Fig. 13) 

This window consists of three panels: ORM, ORM-ML, and Pseudo NL. To build an 
ontological commitment, ontology builders can drag and drop lexons from the ontol-
ogy base window into the ORM panel (i.e. defining the ontological view). When doing 

                                                           
11 The ontology base tree has advanced features, so it can also be browsed and seen as a graph. 
12 For more details, or to download DogmaServer, you can access: 

http://www.starlab.vub.ac.be/research/dogma/OntologyServer.htm. 
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so, lexons will be mapped automatically into ORM fact types. Then, in order to define 
rules on these lexons, ontology builders can use the ORM family of constraints; see 
icons in the top of the ORM panel. 

Remark: mapping lexons as intuitive domain knowledge into ORM fact types that 
have predefined formal semantics [V82] is done as the following: a Term within a 
context is mapped directly into an Object Type in ORM, Roles within a context are 
also mapped directly into ORM Roles. While in case of ORM Subtype relations that 
have specific “build-in” semantics, commitment builders need to customize the 
“Graph settings” window, in order to specify which roles should be mapped, see Fig. 
14. Further, DogmaModeler does not support ORM unary roles and nested fact types. 

As we mentioned before, our approach is not restricted to ORM; the tool is designed 
with flexibility of adding new plug-ins in order to support modeling commitments in 
other languages, e.g. EER, UML, DAML, OWL etc. 

 
Fig. 14: Mapping to ORM Subtyping relationship 

Fig. 15 shows the corresponding ORM markup language of the ORM model in Fig. 
13, which is automatically generated by the tool. DogmaModeler supports saving 
ORM-ML into text files, or uploading it into an ontology server.  
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Fig. 15 The ORM-ML panel window 

Fig. 16 shows the corresponding Pseudo Natural language (fixed-syntax English sen-
tences) of the ORM model from Fig. 13. It is automatically generated by the tool by 
applying predefined templates to the commitments’ content. We believe that this al-
lows non-experts to (help to) check, validate or build the commitment rules and will 
simplify the modeling process. 
 
Commitment library window (Under the ontology base window) 
The purpose of this window is to enhance the reusability, management, and organiza-
tion of ontological commitments. The current implementation allows ontology build-
ers to access and browse ontological commitments stored in a library (Θ). Each node 
( ) in the first level of the tree represents a commitment. By expanding a commitment 
node, the set of lexons and the set of rules -subject to this commitment- will appear in 
the second level. Advanced features e.g. indexing, modularization/composing, ver-
sioning, etc. of ontological commitments are ongoing research issues. 
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Fig. 16. The Pseudo NL panel window 

6 Conclusions and Future Work 

This paper has presented and discussed two main disparities between conceptual data 
schemes and ontologies, and we have shown how these disparities can be tackled 
when adopting conceptual data modeling techniques for ontology engineering pur-
poses. First, we have presented how conceptual diagrams can be marked up and thus 
accessed and processed at run-time of applications. We have illustrated this by defin-
ing a conceptual markup language in order to textually represent ORM conceptual 
diagrams. Second, we have discussed and analyzed the differences between modeling 
knowledge at the application level vs. modeling knowledge at the domain level and 
thus conceptual data schemes vs. ontologies. We have presented an ontology engineer-
ing approach and tool that increase the application-independency of an ontology by 
decomposing it into an ontology base (that holds intuitive domain knowledge) and a 
set of ontological commitments (that hold application specific knowledge). Hence, we 
have enabled conceptual data modeling methods to be used for modeling and repre-
senting ontological commitments. 

 
Future research on our approach concerns the development and engineering of com-
mitment libraries, which open new several research issues such as e.g. indexing, ver-
sioning, distributed development, modularization, etc. of ontological commitments. 
Currently, our main priority is to develop and formalize a methodology for modulariz-
ing (and thus composing) ontological commitments. As a work in progress, we have 
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defined an inclusion interrelationship between ontological commitments, so that all 
concepts and constraints introduced in the included commitment will be inherited in 
the including commitment. 
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Appendix A 

A complete example of an ORM Schema with the associated ORM-ML file, ORM 
pseudo NL generated by the DogmaModeler tool. 

ORM Schema 

 

 
ORM-ML 
<?xml version="1.0" encoding="UTF-8"?> 
<ORMSchema xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance  
xsi:noNamespaceSchemaLocation= http://starlab.vub.ac.be/ORMML/ormml.xsd 
xmlns:dc="http://purl.org/dc/elements/1.1/"> 

<ORMMeta> 
         <dc:title>ORM ML example</dc:title> 
         <dc:creator> Mustafa Jarrar </dc:creator> 
         <dc:description>A complete example of an ORM ML file</dc:description> 
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         <dc:contributor>Jan Demey</dc:contributor> </ORMMeta> 
<ORMBody> 

<Object xsi:type='NOLOT' Name='Committee' /> 
<Object xsi:type='NOLOT' Name='Person' /> 
<Object xsi:type='NOLOT' Name='Author' /> 
<Object xsi:type='NOLOT' Name='Reviewer' /> 
<Object xsi:type='NOLOT' Name='Paper' /> 
<Object xsi:type='LOT' Name='PaperTitle' /> 
<Subtype Parent='Person' Child='Author'/> 
<Subtype Parent='Person' Child='Reviewer'/>   
<Predicate> 

<Object_Role ID='2' Object='Committee' Role='Includes'/> 
<Object_Role ID='3' Object='Person' Role='IsMemberOf'/> </Predicate> 

<Predicate> 
<Object_Role ID='4' Object='Committee' Role='ChairedBy'/> 
<Object_Role ID='5' Object='Person' Role='Chairs'/>    </Predicate> 

<Predicate> 
<Object_Role ID='6' Object='Reviewer' Role='Reviewes'/> 
<Object_Role ID='7' Object='Paper' Role='ReviewedBy'/> </Predicate> 

<Predicate> 
<Object_Role ID='8' Object='Author' Role='Writes'/> 
<Object_Role ID='9' Object='Paper' Role='WrittenBy'/>  </Predicate> 

<Predicate> 
<Object_Role ID='10' Object='Author' Role='Presents'/> 
<Object_Role ID='11' Object='Paper' Role='PresentedBy'/> </Predicate> 

<Predicate> 
 <Object_Role ID='12' Object='PaperTitle' Role='isOf'/> 
 <Object_Role ID='13' Object='Paper' Role='Has'/> </Predicate> 

<Constraint xsi:type='Mandatory'> <Object_Role>2</Object_Role></Constraint> 
<Constraint xsi:type='Mandatory'><Object_Role>4</Object_Role></Constraint> 
<Constraint xsi:type='Mandatory'><Object_Role>6</Object_Role></Constraint> 
<Constraint xsi:type='Mandatory'><Object_Role>8</Object_Role></Constraint> 
<Constraint xsi:type='Mandatory'><Object_Role>9</Object_Role></Constraint> 
<Constraint xsi:type='Mandatory'><Object_Role>13</Object_Role></Constraint> 
<Constraint xsi:type='Uniqueness'><Object_Role>4</Object_Role></Constraint> 
<Constraint xsi:type='Subset'> 

<Parent><Object_Role>2</Object_Role><Object_Role>3</Object_Role> </Parent> 
<Child> <Object_Role>4</Object_Role> <Object_Role>5</Object_Role> </Child> 

</Constraint> 
<Constraint xsi:type='Uniqueness'> 

<Object_Role>2</Object_Role><Object_Role>3</Object_Role></Constraint> 
<Constraint xsi:type='Uniqueness'> 
<Constraint xsi:type='Uniqueness'> 

<Object_Role>10</Object_Role><Object_Role>11</Object_Role></Constraint> 
<Constraint xsi:type='Uniqueness'> 

<Object_Role>8</Object_Role><Object_Role>9</Object_Role></Constraint> 
<Constraint xsi:type='Uniqueness'> 

<Object_Role>6</Object_Role><Object_Role>7</Object_Role></Constraint> 
<Constraint xsi:type='Exclusion'> 

<First><Object_Role>8</Object_Role><Object_Role>9</Object_Role></First> 
<Second><Object_Role>6</Object_Role><Object_Role>7</Object_Role></Second> 

</Constraint> 
<Constraint xsi:type='Uniqueness'> 

<Object_Role>12</Object_Role><Object_Role>8</Object_Role></Constraint> 
<Constraint xsi:type='Uniqueness'><Object_Role>13</Object_Role></Constraint> 
<Constraint xsi:type='Uniqueness'><Object_Role>12</Object_Role></Constraint> 
<Constraint xsi:type='Subset'> 

<Parent>  <Object_Role>8</Object_Role>  <Object_Role>9</Object_Role> </Parent> 
<Child> <Object_Role>10</Object_Role> <Object_Role>11</Object_Role> </Child> 
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    </Constraint>  
  </ORMBody>  
</ORMSchema> 

 
ORM Verbalization  
(Pseudo NL sentences, generated by DogmaModeler) 

 
 Each Committee must ChairedBy at least one Person. 

 Each Committee must Includes at least one Person. 

 Each Reviewer must Reviewes at least one Paper. 

 Each Author must Writes at least one Paper. 

 Each Paper must WrittenBy at least one Author. 

 Each Paper must Has at most one PaperTitle.  

 Each PaperTitle must isOf at most one Paper. 

 Each Committee must ChairedBy at most one Person. 

 It is disallowed that the same Committee Includes the same Person more then once, and 
it is disallowed that the same Person IsMemberOf the same Committee more then 
once. 

 It is disallowed that the same Author Presents the same Paper more then once, and it is 
disallowed that the same Paper PresentedBy the same Author more then once. 

 It is disallowed that the same Author Writes the same Paper more then once, and it is 
disallowed that the same Paper WrittenBy the same Author more then once. 

 It is disallowed that the same Reviewer Reviewes the same Paper more then once, and it 
is disallowed that the same Paper ReviewedBy the same Reviewer more then once. 

  Each Person who Chairs a Committee must also IsMemberOf  that  Committee. 

 Each Paper who WrittenBy  a  Author must also PresentedBy that  Author. 

 Each Paper which is WrittenBy a Person must not ReviewedBy with that Person. 

 Each (PaperTitle, Author) as a combination refers to at most one Paper. 

 


