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ABSTRACT
Querying	large	data	graphs	has	brought	the	attention	of	the	research	community.	Many	solutions	were	pro-
posed,	such	as	Oracle	Semantic	Technologies,	Virtuoso,	RDF3X,	and	C-Store,	among	others.	Although	such	
approaches	have	shown	good	performance	in	queries	with	medium	complexity,	they	perform	poorly	when	
the	complexity	of	the	queries	increases.	In	this	paper,	the	authors	propose	the	Graph	Signature	Index,	a	novel	
and	scalable	approach	to	index	and	query	large	data	graphs.	The	idea	is	that	they	summarize	a	graph	and	
instead	of	executing	the	query	on	the	original	graph,	they	execute	it	on	the	summaries.	The	authors’	experi-
ments	with	Yago	(16M	triples)	have	shown	that	e.g.,	a	query	with	4	levels	costs	62	sec	using	Oracle	but	it	
only	costs	about	0.6	sec	with	their	index.	Their	index	can	be	implemented	on	top	of	any	Graph	database,	but	
they	chose	to	implement	it	as	an	extension	to	Oracle	on	top	of	the	SEM_MATCH	table	function.	The	paper	
also	introduces	disk-based	versions	of	the	Trace	Equivalence	and	Bisimilarity	algorithms	to	summarize	data	
graphs,	and	discusses	their	complexity	and	usability	for	RDF	graphs.
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1. INTRODUCTION AND MOTIVATION

Big Data, Data Web, Linked and Open Data are examples of an emerging era of data industry 
and data science. We are witnessing a rapid growth of the amount of available structured and 
linked data. As of June 2015, the Linking Open Data Statistics project (LODStats) records 3308 
published datasets consisting of around 89.9 billion RDF triples.1 Examples of published datasets 
are: DBPedia, Yago, DBLP, CiteSeer, ACM, Freebase, Geonames, MusicBrainz, as well as open 
governmental datasets such as those of the UK (data.gov.uk), the US (data.gov), and Ireland 
(opendata.ie), and many others. The biggest software companies are encouraging the trend of 
publishing and linking structured data on the web. For example, Google, Yahoo, and Microsoft 
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have joined efforts in developing a shared ontology.2 Facebook is also providing access to parts 
of its data via its Graph API.3

To exploit structured data on the web to its full potential, people need efficient querying 
methods. SPARQL was introduced by W3C as a standardized query language that enables query-
ing decentralized collections of RDF data. However, SPARQL is oriented for technical people. 
So, in order to allow people with limited IT skills to query structured data, many solutions were 
proposed, among which are those which proposed an interactive approach that allows the user 
to formulate queries without prior knowledge of the underlying data or its structure. Examples 
of such approaches are: Lore (Goldman & Widom, 1997) which was developed for querying 
schema-free XML, and MashQL, which is a query formulation language for RDF introduced in 
previous work (Jarrar & Dikaiakos, 2008; 2009; 2010; 2012). In July 2013, Facebook started 
rolling out a “Graph Search” functionality,4 allowing users to formulate structured queries over 
the Facebook data graph. Not only do such approaches motivate the importance of querying data 
graphs, but they also emphasize the significance of having fast responses for queries executed 
over large data graphs in an interactive environment.

The most widely adopted data model specification for representing structured data on the 
web is RDF (Resource Description Framework). RDF syntax is based on XML and reflexes 
simple graph-based data model. RDF represents data as triples <Subject,	Predicate,	Object>.5 
For instance, the fact that the book called Wamadat is authored by Naima can be represented by 
the following three triples which form a directed labeled graph (see Figure 1):
< BK3, Name, Wamadat >
< BK3, Author, AU3 > 
< AU3, Name, Naima >

Data representation using RDF is more elementary than relational databases and XML 
models, which enables easy data integration and interoperability of systems. However, querying 
RDF data graphs (especially large graphs) is a major challenge that faces all querying ap-
proaches, and therefore has brought the attention of the research community (e.g., Abadi et al., 
2007; Chong et al., 2005; Schätzle et al., 2013; Tran et al., 2013; Yuan et al., 2013). Querying 
such data, which is typically stored in one relational table denoted by <S,P,O> is of high com-
plexity because traversing a graph stored in relational model involves many self-joins of that 
table. More specifically, a query with n( ) edges on such a table requires n −( )1  self joins of 
that table (Abadi et al., 2007).

Several solutions were proposed to solve the problem of querying large RDF datasets. Among 
these solutions are Oracle Semantic Technologies (Chong et al., 2005),6 OpenLink Virtuoso (Erling 
& Mikhailov, 2007; 2010), Vertical Partitioning (Abadi et al., 2007), and RDF3X (Neumann & 
Weikum, 2008), to name a few. Although these approaches have shown good performance in 
queries with medium complexity (such queries cost several seconds), they tend to perform poorly 
when the complexity of the queries increase. In this paper, we provide an optimization solution 
for a type of queries that these solutions tend to perform poorly in. Specifically, we propose an 
index called the Graph Signature Index (GS). The idea of our index is to summarize the RDF 
graph through grouping nodes based on their outgoing and their incoming paths, and instead of 
executing the query on the original data graph, we execute it on the index. Because the resultant 
summaries are typically much smaller than the original graph, executing the query on the index 
is faster. Our proposed index can be implemented on top of any of the aforementioned solutions. 
However, we choose here to demonstrate our work on top of Oracle Semantic Technologies be-
cause of its availability and support by one of the most reputable Database Management Engines 
in the world (Oracle Database). Our experiments have shown a promising enhancement; e.g., a 
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query of medium complexity that consists of only one path spanning three levels costs about 20 
seconds using Oracle but it only costs 0.3 seconds with our proposed index.

Generating graph summaries is known to be a challenging problem, especially when dealing 
with large graphs. The XML research community (Goldman & Widom, 1997; Kaushik et al., 
2002a; 2002b; Milo & Suciu, 1999; Nestorov et al., 1997) has utilized two well-known algorithms 
from the theoretical computing world (Paige & Tarjan, 1987; Fernandez, 1990; Henzinger, 1995) 
to summarize relatively small XML data graphs. These two algorithms are the Trace	Equivalence 
and Bisimilarity	(or	Bisimulation) algorithms. For instance, indexing techniques for XML such 
as DataGuides (Goldman & Widom, 1997; Nestorov, 1997), 1-index (Milo & Suciu, 1999), 
A(k)-index (Kaushik et al., 2002a), and F&B (Kaushik et al., 2002b) all use Trace Equivalence 
and Bisimilarity algorithms for summarizing XML data. Using these two algorithms to summa-
rize large graph-shaped data (e.g., RDF) is a challenging problem as the versions of these two 
algorithms that are found in literature are memory-based; that is, they not scalable to be used to 
summarize large RDF datasets. In addition, these versions found in literature are used to sum-
marize XML data, which is tree-shaped, unlike RDF data which is graph-shaped. In this paper, 
we propose disk-based versions of Trace Equivalence and Bisimilarity to summarize RDF data. 

Figure	1.	A	data	graph	and	it	Graph	Signature	(SO	and	SI)
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The performance and resultant summaries of these two algorithms were experimentally analyzed 
for usage in the construction of the Graph Signature Index.

In short, the original contribution of this paper is two-fold:

1.  The Graph Signature Indexing approach, which proposes to construct a twofold summary: 
one based on outgoing paths and another based on incoming paths. Our approach proposes 
to store both summaries separately but uses them jointly to precisely answer queries, instead 
of answering them using the original graph. A distinct feature of the Graph Signature Index-
ing approach is that it is a generic solution to be built on top of any RDF store or any other 
query optimization solution – rather than being proposed as a parallel alternative.

2.  Disk-based versions of Trace Equivalence and Bisimilarity used to summarize medium 
to relatively large data graphs. This paper also comparatively studies the behavior of both 
algorithms in summarizing RDF data and proposes not to neglect Trace Equivalence but 
instead to use it in particular practical and real-life scenarios.

Preliminary versions of our disk-based algorithms for data graph summarization appeared 
in previous work (Hawash, Deik, & Jarrar, 2010), without analyzing their performances and 
resultant summaries to be used for the Graph Signature. In this paper, we position and revise 
our disk-based algorithms, analyzing their performances and resultant summaries thoroughly 
to be used for the construction of the Graph Signature (section 5). Also, primitive ideas of the 
Graph Signature approach appeared in previous work (Jarrar & Dikaiakos, 2010; 2012) only to 
optimize the background queries of MashQL. Here we extend our solution and redesign it as a 
generic solution; we expand the query model, introduce a new generic query execution plan to 
be implemented on top of any Graph Store, introduce new query evaluation theories to support 
our execution plan, and demonstrate our approach by implementing it as an enhancement to 
Oracle and experimenting it on a different RDF dataset.

The remainder of this paper is organized as follows. Related work is discussed in section 
2. In section 3, we present the intuition of the Graph Signature Index. Section 4 presents an ap-
plication use case of the Graph Signature. In section 5, we present our two-disk based versions 
of Trace Equivalence and Bisimilarity in addition to their experimental evaluation. Section 6 
presents the query model and section 7 discusses query evaluation with the Graph Signature. 
In section 8, we discuss our implementation of the Graph Signature on top of Oracle and we 
experimentally evaluate it in section 9. Section 10 concludes our discussion and provides direc-
tions for future work.

2. RELATED WORK

In this section we review the work related to our Graph Signature Indexing approach and com-
pare and position our work among those available in literature. We present related work in three 
categories: (i) indexing of XML data, (ii) recent work on indexing RDF data, and (iii) a review 
of some of the most popular RDF storage systems.

2.1. Indexing of XML Data

Several techniques have been proposed in literature to summarize XML data for XQuery optimi-
zation. The DataGuide (Nestorov, 1997) was the first to suggest summarizing XML by grouping 
nodes reachable by any incoming path. The problem with this way is that, because nodes that 
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extrinsically have some similar property labels are grouped together, many false positives are 
generated. The Strong	DataGuide (Goldman & Widom, 1997) proposed to solve this issue by 
grouping nodes reachable by simple paths, as the DataGuide; but, it allows a node to exist in 
multiple groups. As pointed by the authors, this approach is efficient for tree-shaped data, but 
the size of the summary grows exponentially the more the data is graph-shaped (and can be 
larger than the original graph). Further, DataGuides are not adequate for complex queries hav-
ing several regular expressions and variables (Milo & Suciu, 1999). In practice, this approach 
becomes very problematic when applied to cyclic graphs, as Goldman and Widom (1997) were 
unable to compute the strong DataGuide on a small subset of the IMDB dataset.

The 1-index (Milo & Suciu, 1999) proposed to group nodes reachable by all incoming 
paths (which is analogous to our I-Signature), but it does not consider the outgoing paths (as 
our O-Signature) that yields an efficient reduction of false positives. A similar approach to the 
1-index, namely, the A(k)	index (Kaushik et al., 2002a) was suggested, based on the concept of 
k-bisimulation, to also group nodes reachable by all incoming paths up to k levels, thus it can 
only answer queries with k levels. Since this approach generates many false positives, the same 
authors of the A(k) suggested another approach called F&B	index (Kaushik et al., 2002b). This 
approach groups nodes reachable by both all incoming and all outgoing paths, i.e., forward and 
backward at the same time. This approach produces much less false positives in query evalua-
tion, but its size is not much less than the original. For example, the size of the F&B index for 
the Xmark dataset is only 10% less than the original (Kaushik et al., 2002b). As such, the time 
needed to query the F&B summary is close to querying the original data.

In general, our work differs from the work presented above in the following: (i) Our focus 
is on RDF rather than XML; that is, we adapt both Trace Equivalence and Bisimilarity to RDF. 
(ii) Unlike the F&B approach that generates one large incoming-and-outgoing index, we store 
the incoming and outgoing indexes separately, but they are jointly used, thus achieving small 
indexes and less false positives at the same time. (iii) Our Graph Signature Index relies on disk-
based versions of Trace Equivalence and Bisimilarity which scale to relatively large data graphs, 
as opposed to the memory-based summarization algorithms used for summarizing XML. (iv) 
A query model and an evaluation scenario for RDF query paths is proposed, which is different 
from XML paths, as for instance, property labels, not only node labels, can be retrieved.

2.2. Recent Work on Indexing RDF Data

After publishing preliminary ideas of our Graph Signature approach in (Hawash, Deik, & Jarrar, 
2010; Jarrar & Dikaiakos, 2010; 2012), other researchers also worked on the idea of summariz-
ing data graphs, in particular, using Bisimulation. Tran et al. (2013), used Bisimilarity-based 
summaries in a query execution plan that combines both querying the summary as well as the 
original data, which they store in a way similar to the Vertical Partitioning approach (Abadi, 
2007), but which utilizes information captured by the Bisimilarity summary. However, Tran et 
al. do not tackle the problem of generating the Bisimilarity summaries, but rather naively skip 
this problem and appear satisfied with only presenting the definition of the Bisimulation relation. 
They also store the summary in the main memory, which is not scalable when dealing with large 
RDF graphs. Furthermore, the authors exactly use the F&B approach introduced by Kaushik et 
al. (2002b) to summarize XML data, and apply it for RDF, resulting in summaries that are not 
much smaller than the original graph (as in the case of using F&B for XML). For example, they 
summarized about 12.9 million triples of DBLP data in 11.6 million (a mere 10% reduction). 
In order to solve this problem, the authors parameterized the Bisimilarity algorithm to produce 
summaries up to a certain number of levels and for certain labels in the graph, but this generates 
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more false positives. As for their query evaluation, instead of building upon and utilizing well-
established fully-fledged RDF stores and optimization solutions, the authors restrict themselves to 
storing the original data in a way similar to Vertical Partitioning, and use their F&B summary as 
an enhancement only to their particular RDF storage solution. Moreover, they do not fully study 
how to answer queries precisely from the summary without going back to the original graph.

Other researchers recently introduced disk-based versions of the Bisimilarity algorithm. 
Hellings et al. (2012) introduced an efficient disk-based algorithm for computing Bisimilation. 
However, this algorithm is designed for Directed Acyclic Graphs (DAGs) and therefore cannot 
be applied for RDF graphs as they typically contain cycles (Schätzle et al., 2013). Schätzle et 
al (2013) presented two implementations of Bisimilarity for RDF summarization; one using 
SQL, similar to the initial version of our Bisimilarity disk-based algorithm (Hawash, Deik, & 
Jarrar, 2010), and the other using MapReduce Technology. The MapReduce implementation 
showed promising results for summarizing datasets of several-hundred-million to billion triples. 
Another effort to introduce a MapReduce implementation of Bisimilarity was presented by Luo 
et al. (2013), also with promising results for massive graphs. In spite of such promising results, 
an SQL version of Bisimilarity remains of great practical importance, due to its suitability for 
datasets of several-million triples (see section 5.6), as well as its simple implementation, as 
also acknowledged by Schätzle et al. (2013). Nevertheless, none of these efforts on disk-based 
Bisimilarity have studied deeply the theoretical or practical features of the algorithm for RDF 
usage, nor did any of them compare Bisimilarity with Trace Equivalence (neither theoretically 
nor empirically). In fact, they did not even consider introducing a disk-based Trace Equivalence 
algorithm, and did not investigate how to utilize such summaries for query evaluation.

Our work is different from the work above in the following: (i) We pay a close attention to 
the problem of generating summaries, unlike Tran et al. (2013), and solve it by introducing disk-
based versions of Bisimilarity as well as Trace Equivalence. (ii) Not only that, but also, unlike 
the work of Hellings et al. (2012), Luo et al. (2013), and Schätzle et al. (2013), we do study and 
compare the resultant summaries of both algorithms (both theoretically and empirically) and 
conclude in suggesting the usage of both algorithms depending on the practical scenario at hand. 
(iii) Unlike the F&B approach (Kaushik et al., 2002b) used by Tran et al. (2013), we propose a 
novel approach to store our generated incoming and outgoing summaries separately, but use them 
jointly, which results in smaller summaries and also less false positives. (iv) Graph Signature 
focuses on answering complex queries precisely using the summary alone without going back 
to the original data. (v) Our approach is generic; it is designed to be implemented on top of any 
RDF store utilizing its features and capabilities, unlike Tran et al. (2013).

2.3. RDF Stores

Our Graph Signature is a generic index that can be implemented on top of any RDF Store. The 
summary itself is a data graph and therefore both storing and querying it is done in the same 
way as the original data graph. This section discusses the most prominent RDF Stores and how 
our index could be implemented on top of them as an enhancement.

Oracle introduced an SQL-based scheme to query RDF data in (Chong et al., 2005). Spe-
cifically, an SQL table function called “RDF_MATCH” (or “SEM_MATCH”) was introduced, 
which takes a SPARQL-like query as an argument, and returns a table of results that can be 
further queried using SQL. Oracle stores RDF triples in one table G(S,P,O); thus a query with 
n-levels implies joining the table n-1 times. In addition, Oracle builds several B-tree indexes on 
G, as well as subject-property materialized views, such as V1 (s, p1, p2, …, pn). A tuple in V1 is a 
subject identifier x, and the value of the column pi (i=1,2,…,n) is an object y. In this way, data 
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is transformed from a graph into a relational form; thus, less joins are needed when executing 
a query. These subject-property views are seen as auxiliary, rather than core, indexes. This is 
because there is no general criteria to know which subjects and which properties to group. Oracle 
uses statistics to find possibly good groupings, otherwise, queries are executed on the original 
graph; hence queries with many joins remain a challenge.

OpenLink has developed native RDF support within its Virtuoso RDBMS (Erling & 
Mikhailov, 2007; 2010). Its initial storage solution for RDF is fairly conventional and similar 
to Oracle. Virtuoso stores RDF as a single table of four columns (G,S,P,O), with two covering 
indices: <G,S,P,O> and <O,G,P,S>. Also, Virtuoso assigns the O’s of string type that are longer 
than 12 characters a unique ID, which enhances query performance. However, deep linear que-
ries of many variables remain a challenge as answering such queries involve several expensive 
self-joins of the table.

RDF3X (Neumann & Weikum, 2008) proposes to store the RDF triples as a single (S,P,O) 
table and to build B+-tree indexes over 6 permutations of the three dimensions (i.e. SPO, SOP, 
PSO, POS, OSP, OPS). To exploit these indexes to their full potential, the query optimizer 
chooses the best order and the types of joins to build an execution plan. Experiments conducted 
by Neumann and Weikum (2008) show that execution time is still relatively large; a query of 
three levels on the Yago RDF dataset took about 22 seconds.

Vertical	Partitioning (Abadi et al., 2007) proposes to store RDF triples as n  two-column 
tables, where n  is the unique number of predicates P(S,O). Although this method attains sig-
nificant optimization, queries spanning several levels with many variables are expensive; a 
query of only two levels took 15.88 seconds (Abadi et al., 2007).

Our Graph Signature can be built on top of any of the above mentioned RDF stores. The 
idea of our solution is to reduce the size of the data by means of summarization. Implementing 
our Graph Signature on top of an RDF Store means that we store and query our summaries in 
the same way as the original data. Specifically, in Oracle, we store our summary as an SPO table 
and query it using RDF_MATCH, whereas in OpenLink Virtuoso, one may store it as the two 
suggested covering indices and query it using the Virtuoso API. In the case of RDF3X, our sum-
maries can be stored in SPO tables applying all kinds of suggested indices over them and using 
the same query optimizer of RDF3X. In the case of using Vertical Partitioning, the Graph Sig-
nature can be vertically partitioned (in n  two-column tables) and queried accordingly. It is worth 
mentioning that several other promising RDF stores are available in literature and industry such 
as Neo4j,7 TripleBit (Yuan et al., 2013), and Trinity.RDF (Zeng et al., 2013), on top of which 
we can also implement our Graph Signature. In this paper, we choose to demonstrate our ap-
proach by implementing it on top of Oracle as it is one of the most reputable Database Manage-
ment Engines with wide-spread industrial support and commercial availability. The details of 
our implementation and experimental evaluation are in sections 8 and 9, respectively.

3. INTUITION OF THE GRAPH SIGNATURE INDEX

The idea of the Graph Signature Index is to summarize a data graph such that queries are evalu-
ated using the summary instead of the original graph. Because the size of the summary is smaller 
than that of the original graph, query evaluation using the Graph Signature can be faster. For 
instance, we summarized 16 million triples of Yago in 0.5 million such that a query that costs 
62.7 seconds on the 16 million triples, costs less than 0.6 seconds on the 0.5 million triples, while 
producing exactly the same set of results.
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Given a data graph G, its Graph Signature is a two-fold summary: the O-Signature (SO) 
and the I-Signature (SI). The O-Signature is a summary of the original data graph constructed 
by grouping nodes that have the same set of their outgoing paths. The I-Signature is another 
summary of the original graph, but it is constructed by grouping nodes that have the same set 
of their incoming paths. Figure 1 shows a data graph (G) with its Graph Signature (SO and SI). 
One can notice that nodes in the O-Signature are combined based on their outgoing paths. For 
example, nodes CN1 and CN2 are grouped together because the sets of their outgoing paths 
are the same: {(Name), (Capital, Population), (Capital, Name)}. However, node CN3 is not put 
into the same group with CN1 and CN2 because there are two extra outgoing paths from CN3: 
{(NotableFigure, BornIn), (NotableFigure, Name)}. The same can be noticed in the I-Signature. 
For example, AU2 is not combined with AU1 and AU3 because it has an extra incoming path: 
{(Editor)}. Each of the two summaries (SI and SO) is computed and stored separately the same 
way the original graph G is stored, but they are jointly used when evaluating a query to produce 
precise	answers (answers that are equal to those resulting from querying the original graph). 
To illustrate this, in Table 1 we execute 6 queries on both summaries of the graph G depicted in 
Figure 1, and compare the results with the target	answer (the answer obtained from G).

For any query, each part of the Graph Signature produces the correct answer and some more 
results, called false	positives. That is, the target answer is equal to or is a subset of the answer 
of each part of the signature. Hence, the intersection of the SO and SI answers equals to or is a 
smaller superset of the target answer. One can notice from Table 1 that some queries do produce 
precise results when queried over either SO or SI (e.g., Q1), while in Q2, SO is enough to answer 
this query precisely and in Q3, SI is enough. Q4 represents the case of queries producing empty 
results. In this case, the empty result is the precise answer. In Q5, three queries are presented 
with different projections pertaining to the same query body: when the first node is projected 
(Q5.a) SO is enough to produce precise results, while in (Q5.b), the intersection of the answers 
of SI and SO suffice to precisely answer the query, and in (Q5.c) SI is enough. Q6 is an example 
of a query that does not conform to our query model (section 6) and is not guaranteed to produce 
precise results using SI, SO, nor the intersection of their results. The answer of such queries in-
cludes the target answer in addition to false positives. In our execution plan (section 7), queries 
that conform to our query model (such as Q1-Q5) are executed on the summaries while others 
are executed via the native RDF store on the original data.

4. APPLICATION USE CASE OF THE GRAPH SIGNATURE INDEX

This section presents a use case where challenging queries over large RDF datasets must be 
answered within very short response-time. In particular, we illustrate MashQL, a graphical 
query formulation language introduced in previous work (Jarrar & Dikaiakos, 2008; 2009; 
2010; 2012), which allows non-technical people to easily query and fuse RDF data on the web. 
Formulating a query in MashQL is an interactive process done using a “MashQL editor”, dur-
ing which the user performs selections from drop-down lists. While the user interacts with the 
editor, the editor performs queries in the background to generate these lists. These queries are 
called Background	Queries.

Figure 2.a depicts six snapshots (Windows I - VI) of the MashQL editor taken while a user is 
formulating a query over the data graph in Figure 1. The query means “Give me all authors who 
are born in a place whose capital is called Beirut”. While formulating this query, the MashQL 
editor executes several queries in the background (Q1-Q5). In order to maintain an acceptable 
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interactive environment in such applications, the response time of background queries is expected 
to be very small; within a few hundred milliseconds (Miller, 1968).

This use case demonstrates the importance of handling deep and complex query models. 
The complexity of queries does not necessarily come from the many constraints they include. 
For example, a star-shaped query (which is more generic than linear-shaped) might include many 
constraints, but with short paths. In general, one of the most challenging types of queries are 
those that span several levels (i.e. deep queries), as they require many expensive joins. It will be 
shown later how such queries (deep, linear and demanding fast response) can be answered pre-
cisely (and quickly) using our Graph Signature Index without the need to query the original data.

5. CONSTRUCTION OF THE GRAPH SIGNATURE

Before presenting our query model and execution plan, we present the Graph Signature Index 
and the algorithms to construct it. The reader can also glimpse at the query model and evalua-
tion in sections 6 and 7 first.

5.1. Basic Definitions

A directed labeled graph (also referred to here by data graph) is composed of vertices (nodes) 
and edges connecting those vertices. The formal definition below is based on the definition of 
the labeled graph of Champin and Solnon (2003):

Table	1.	Graph	Signature	answers	compared	with	the	target	answers

Query G answer SO Answer SI Answer SO∩ SI

Q1 ? p 1 ? p 4:  ( ? s 1 ? p 1 
? o 1  ? p 2  ? o 2  ? p 3
?o3?p4 ?o4)

A u t h o r  N a m e , 
Author Populat ion, 
A u t h o r  B o r n I n , 
Editor Name, Editor 
Populat ion,  BornIn 
Capital, BornIn Name, 
BornIn NotableFigure, 
NotableFigure BornIn, 
NotableFigure Name, 
NotableFigure 
Population

A u t h o r  N a m e , 
Author Population, 
A u t h o r  B o r n I n , 
Editor Name, Editor 
Population, BornIn 
Capital, BornIn Name, 
BornIn NotableFigure, 
NotableFigure BornIn, 
NotableFigure Name, 
NotableFigure 
Population

A u t h o r  N a m e , 
Author Populat ion, 
A u t h o r  B o r n I n , 
Editor Name, Editor 
Populat ion,  BornIn 
Capital, BornIn Name, 
BornIn NotableFigure, 
NotableFigure BornIn, 
NotableFigure Name, 
NotableFigure 
Population

A u t h o r  N a m e , 
Author  Populat ion, 
A u t h o r  B o r n I n , 
Editor Name, Editor 
Populat ion,  BornIn 
Capital, BornIn Name, 
BornIn NotableFigure, 
NotableFigure BornIn, 
NotableFigure Name, 
NotableFigure 
Population

Q2 ?p: (<BK3> <Author> ?o1
?p ?o2)

Name, BornIn Name, BornIn N a m e ,  B o r n I n , 
Affiliation

Name, BornIn

Q3 ?p: ?s ?p <AU1> Author Author, Editor Author Author

Q4 ?o2: (<BK3> <Author> ?o1
<Affiliation> ?o2)

{} {} CU {}

Q5 (a) ?s | (b) ?o1 | (c) ?o3:
( ? s  < A u t h o r > 
? o 1  < B o r n I n >
?o2 <NotableFigure> ?o3)
*Three	queries	with	three	
different	 projections:	
?s,?o1,?o3

( a )  B K 3 ,  B K 4 
( b )  A U 3 ,  A U 4 
(c) AU4

( a ) B K 3 ,  B K 4 
 
( b )  A U 3 ,  A U 4 
 
(c) AU3, AU4

(a) BK3, BK4, BK1 
(b) AU3, AU4, AU1
(c) AU4

( a )  B K 3 ,  B K 4 
( b )  A U 3 ,  A U 4 
(c) AU4

Q6 ? s :  ( ? s  < B o r n I n > 
? o 1  < C a p i t a l >
? o 2  < N a m e > 
<Jerusalem>)

AU1 AU1, AU2, AU3, AU4 AU1, AU3 AU1, AU3
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Definition 1 (Directed Labeled Graph): Given	a	finite	set	of	vertex	labels LV  and	a	finite	set	
of	edge	labels LE , a	directed	labeled	graph	is	defined	by	a	triple G V r rV E= , , , such	
that:

 ◦ V  is	a	finite	set	of	vertices.
 ◦ r V LV V⊆ ×  is	the	relation	that	associates	vertices	with	labels,	such	that	each	vertex	

in	V	is	associated	with	exactly	one	vertex	label	in	LV	and	each	vertex	label	in	LV	is	as-
sociated	with	exactly	one	vertex	in	V,	i.e., rV  is	the	set	of	couples v l,( )  such	that	each	
vertex v  has	exactly	one	label l  and	l	is	not	associated	with	any	other	vertex.

Figure	2.	A	MashQL	query	formulation	session	and	its	accompanying	queries
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 ◦ r V V LE E⊆ × ×  is	the	relation	that	associates	edges	with	labels,	i.e., rE  is	the	set	of	
triples v u l, ,( )  such	that	edge v u,( )  has	label l . We	can	define	the	set	of	edges E  

as: E v u l rE= ( ){ }, , � .

It is worth mentioning here that an RDF graph is in fact a directed labeled graph. Thus, in 
this paper we use the terms Data	Graph, RDF	Graph, and Directed	Labeled	Graph interchange-
ably. Definition (2) below defines the notion of a Path based on Definition (1). A Node Path can 
be defined as: v v l v v l v v l v v ln n n n n n1 2 1 2 3 2 2 1 2 1 1, , , , , , , , , , , ,( ) ( ) … ( ) ( )− − − − − , such that, v v l ri i i E, ,+( )∈1  
for i=1,2,…,n-1. Because in this paper we are interested in the structure of the path regardless 
of the nodes v v vn1 2, , ,…( ) , we define the Path as an ordered set of consecutive edge labels.

Definition 2 (Path): A	Path	is	an	ordered	set	of	consecutive	edge	labels l l lm1 2→ →…→ , 
such	that	for li  and li+1

 there	exist	some	nodes v u w G, , ∈ , such	that v u l ri E, ,( )∈ , and 

u w l ri E, , +( ) ∈1  (i=1,2,…,m-1).

5.2. The Notions of Trace Equivalence and Bisimilarity

Trace Equivalence is defined (based on outgoing paths) as an equivalence relation on the set of 
vertices V, such that two vertices v u,( )  are Trace Equivalent if and only if the set of all paths 
rooted in vertex v  is equal to the set of all paths rooted in vertex u . We call the Trace Equiva-
lence relation when defined based on outgoing paths, O-Trace-Equivalence, and when it is based 
on incoming paths, I-Trace-Equivalence. The formal definition of O-Trace-Equivalence based 
on (Henzinger et al., 1995) is as follows.

Definition 3.a (O-Trace-Equivalence ≡O): The	vertex v  trace-dominates	the	vertex u  if	for	
every	finite	path	rooted	in u  (u ), there is a path rooted in v  (v ) such that u v= . The	
vertices u  and v  are	O-Trace-Equivalent,	written u v!O( )  if u  trace-dominates v  and v  
trace-dominates u .

This definition can be trivially adapted to be based on incoming paths, in order to define 
I-Trace-Equivalence as follows:

Definition 3.b (I-Trace-Equivalence ≡I): The	vertex v  trace-dominates	 the	vertex u  if	 for	

every	finite	path	terminated	in u
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ , there	is	a	path	terminated	in v  (v ) such that u v= . 

The	vertices u  and v  are	I-Trace-Equivalent,	written u v≡( )!I!  if u  trace-dominates v  
and v  trace-dominates u .

A memory-based algorithm to generate summaries based on the Trace Equivalence relation 
would simply suggest that we fully traverse the graph G and take each node in the graph and 
find all outgoing paths from it and all incoming paths to it. After that, nodes having the same set 
of outgoing paths are grouped together into one Equivalence Class, generating the O-Signature. 
Similarly, nodes having the same set of incoming paths are grouped together, generating the I-
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Signature. Each group in either summary is seen as an Equivalence Class of its members. Although 
the idea of the Trace Equivalence algorithm appears to be straight-forward, unfortunately this 
algorithm is computationally expensive; it is known to be PSPACE-complete (Henzinger et al., 
1995). However, as will be discussed later, in some practical cases one may use Trace Equiva-
lence to compute the data summary (e.g., when the data graph is simple or the summarization 
time in not critical). Because of its usefulness in such cases, we decided to provide a disk-based 
version of Trace Equivalence (section 5.4).

To avoid the computational complexity of Trace Equivalence (when it matters), we introduce 
an alternative notion called Bisimilarity - an extensively discussed notion in the literature of 
process algebra (Henzinger et al., 1995; Paige & Tarjan, 1987). Bisimilarity has the complexity 
of O m nlog( )  for a graph with n  vertices and m  edges (Henzinger et al., 1995; Milo & Suciu, 
1999). Thus, it is easier to compute than Trace Equivalence. Furthermore, we introduce the no-
tion of Bisimilarity as an approximation of Trace Equivalence, as suggested by Milo and Suciu 
(1999). An equivalence relation (≈) on a data graph G is called an approximation of another 
relation (≡), if it satisfies the following condition for nodes v u,  in the data graph G: u v u v≈ ⇒ ≡  
(Milo & Suciu, 1999). Because Bisimilarity satisfies this condition w.r.t Trace Equivalence (i.e., 
Bisimilarity implies Trace Equivalence), Bisimilarity is an approximation of Trace Equivalence. 
That is, if two nodes are Bisimilar, this necessarily implies that they are Trace Equivalent (Fer-
nandez, 1990; Henzinger et al., 1995; Milo & Suciu, 1999).

Bisimilarity in a directed labeled graph is an Equivalence Relation defined on a set of ver-
tices V , such that two vertices u v,( )  are Bisimilar if and only if the set of edges coming im-
mediately out of u  (predicates in RDF) is equal to the set of edges coming immediately out of 
v  (definition based on outgoing edges). Also, all successor nodes of u  and v  must be Bisimi-
lar. We call the Bisimilarity relation when defined based on outgoing paths, O-Bisimilarity, and 
when it is based on incoming paths, I-Bisimilarity. The formal definitions are given in Defini-
tions (4.a) and (4.b) below.

Definition 4.a (O-Bisimilarity ≈O): Given	a	directed	labeled	graph	G=<V,	rV,	rE>	as	in	Defini-
tion	(1),	two	vertices u v V,( ) ∈  are O-Bisimilar, written u vO≈( ) , if	and	only	if:

1.  For the set of all immediate edges out of v :
 { v v l v v l v v l En n, , , , , , , , , }' ' '

1 11 2 12 1( ) ( ) … ( ) ⊆ , there exists a set of immediate edges 

out of u : u u l u u l u u l En n, , , , , , , , , ,' ' '
1 21 2 22 2( ) ( ) … ( ){ }⊆  such that 

l l i ni i1 2 1 2= = …( )!for! , , , .
2.  Conversely, for the set of all immediate edges out of u : 

u u l u u l u u l En n, , , , , , , , ,' ' '
1 11 2 12 1( ) ( ) … ( ){ }⊆ , there exists a set of immediate edges out 

of v : v v l v v l v v l En n, , , , , , , , ,' ' '
1 21 2 22 2( ) ( ) … ( ){ }⊆  such that l l i ni i1 2 1 2! ! , , , .= = …( )!for!

3.  The set of vertices v u i ni i
' ', , , ,( ) = …( )!for! 1 2  are also O-Bisimilar.

The definition of I-Bisimilarity is trivially derived from Definition 4.a, as it is the inverse 
of O-Bisimilarity:
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Definition 4.b (I-Bisimilarity ≈I): Given	a	directed	labeled	graph	G=<V,	rV,	rE>	as	in	Definition	
(1),	two	vertices ! ,!u v V( ) ∈  are I-Bisimilar, written u vI≈( ) , if	and	only	if:

1.  For the set of all immediate edges into v : { v v l v v l v v l En n1 11 2 12 1
'' '' '', , , , , , , , , }( ) ( ) … ( ) ⊆ , 

there exists a set of immediate edges into u : u u l u u l u u l En n1 21 2 22 2
'' '' '', , , , , , , , ,( ) ( ) … ( ){ }⊆ , 

such that l l i ni i1 2 1 2! ! , , , .= = …( )!for!
2.  Conve r s e ly,  f o r  t he  s e t  o f  a l l  immed ia t e  edges  i n to  u :  {

u u l u u l u u l En n1 11 2 12 1
'' '' '', , , , , , , , , }( ) ( ) … ( ) ⊆ , there exists a set of immediate edges into v : 

{ v v l v v l v v l En n1 21 2 22 2
'' '' '', , , , , , , , , }( ) ( ) … ( ) ⊆  such that l l i ni i1 2 1 2! ! , , , .= = …( )!for!

3.  The set of vertices v u i ni i
'' '', , , ,( ) = …( )!for! 1 2  are also I-Bisimilar.

The memory-based version of the Bisimilarity algorithm can be found in (Paige & Tarjan, 
1987). The idea of the algorithm is to create summaries in an iterative process. In each iteration, 
the algorithm groups nodes up to a certain number of levels. Applying the Bisimilarity algorithm 
to a data graph G to produces the summary based on outgoing paths (SO) involves two steps. 
First, the algorithm groups the nodes based on the immediate edge labels (or predicates in RDF). 
Second, these groups go through a number of iterations to split the nodes that conflict with the 
Bisimilarity relation, until no more splitting can be done. The main issue with the memory-based 
versions of both Bisimilarity and Trace Equivalence is that they are not suitable for large data 
graphs, since a data graph needs to be loaded into the computer’s memory and the algorithms 
are executed there. To solve this problem, disk-based versions of the algorithms need to be 
introduced (see also (Hellings et al., 2012; Luo et al., 2013; Schätzle et al., 2013) on the impor-
tance of introducing disk-based algorithms for large data graphs). In section 5.4, we introduce 
disk-based versions of Trace Equivalence and Bisimilarity and experiment them in section 5.6 
on relatively large RDF datasets. Before that, we formally define our Graph Signature Index.

5.3. The Graph Signature Index

The Graph Signature Index consists of two summaries; one based on outgoing paths, called, the 
O-Signature (SO) and another based on incoming paths, called, the I-Signature (SI). Each of these 
two signatures can be built in two ways: either using Trace Equivalence, or Bisimilarity. We call 
the O-Signature produced by Trace Equivalence SOT, and SOB when produced by Bisimilarity. 
Similarly, when the I-Signature is produced by Trace Equivalence, we call it SIT, and SIB when it 
is produced by Bisimilarity. Every node in any summary is an Equivalence	Class of some node 
in the original graph G. We define the Equivalence Class in SOT by the O-Trace-Equivalence rela-
tion (≡O) defined above, whereas, in SOB, the Equivalence Class is defined by the O-Bisimilarity 
relation (≈O). The Equivalence Class in SIT is defined by I-Trace-Equivalence (≡I) and, in SIB, it 
is defined by I-Bisimilarity (≈I).

As will be discussed later, Trace Equivalence produces smaller summaries thus query 
evaluation using Trace Equivalence summaries is faster than using Bisimilarity summaries. 
However, computing Trace Equivalence is of high complexity (PSPACE complete). Neverthe-
less, it might be still used in case the summarization time is not very critical or in case the data 
graph is simple. On the other hand, Bisimilarity produces larger summaries – thus query evalu-
ation using them can be slower – but the algorithm itself is easier to compute: O m nlog( )  



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015   49

complexity. As a result, it is recommended to have Bisimilarity as a default summarization al-
gorithm while keeping the option for the user to choose Trace Equivalence if needed (see section 
5.6). Here we present two versions of the definition of our Graph Signature, one based on Trace 
Equivalence (Definition 5) and another based on Bisimilarity (Definition 5’).

Definition 5 (Graph Signature based on Trace Equivalence ST): Given	a	data	graph	G,	its	
Graph	Signature	ST	is	the	twofold	summary:	the	O-Signature	SOT	and	the	I-Signature	SIT.	In	
general,	ST	=	<SOT,	SIT>.

Definition 5.a (O-Signature based on Trace Equivalence SOT): Given	a	data	graph	G,	its	SOT	
summary	is	a	directed	labeled	graph	where	each	node	in	SOT	is	an	Equivalence	Class	on	
O-Trace-Equivalence	(≡O)	of	some	node	in	G,	such	that	every	node	in	G	has	exactly	one	
Equivalence	Class	in	SOT,	and	there	exists	an	edge	p	in	SOT	from	u	to	v	(u	

P→	v)	iff	G	contains	
an	edge	p	from	a	to	b	(a	P→	b)	and	a	∈	u,	b	∈	v.

Definition 5.b (I-Signature based on Trace Equivalence SIT): Given	a	data	graph	G,	its	SIT	
summary	is	a	directed	labeled	graph	where	each	node	in	SIT	is	an	Equivalence	Class	on	
I-Trace-Equivalence	(≡I)	of	some	node	in	G,	such	that	every	node	in	G	has	exactly	one	
Equivalence	Class	in	SIT,	and	there	exists	an	edge	p	in	SIT	from	u	to	v	(u	

P→	v)	iff	G	contains	
an	edge	p	from	a	to	b	(a	P→	b)	and	a	∈	u,	b	∈	v.

In the following we present the same definition of the Graph Signature above, but this time 
based on Bisimilarity:

Definition 5’ (Graph Signature based on Bisimilarity SB): Given	a	data	graph	G,	its	Graph	
Signature	SB	is	the	twofold	summary:	the	O-Signature	SOB	and	the	I-Signature	SIB.	In	general,	
SB	=	<SOB,	SIB>.

Definition 5’.a (O-Signature based on Bisimilarity SOB): Given	a	data	graph	G,	its	SOB	sum-
mary	is	a	directed	labeled	graph	where	each	node	in	SOB	is	an	Equivalence	Class	on	O-
Bisimilarity	(≈O)	of	some	node	in	G,	such	that	every	node	in	G	has	exactly	one	Equivalence	
Class	in	SOB,	and	there	exists	an	edge	p	in	SOB	from	u	to	v	(u	

P→	v)	iff	G	contains	an	edge	p	
from	a	to	b	(a	P→	b)	and	a	∈	u,	b	∈	v.

Definition 5’.b (I-Signature based on Bisimilarity SIB): Given	a	data	graph	G,	its	SIB	summary	
is	a	directed	labeled	graph	where	each	node	in	SIB	is	an	Equivalence	Class	on	I-Bisimilarity	
(≈I)	of	some	node	in	G,	such	that	every	node	in	G	has	exactly	one	Equivalence	Class	in	SIB,	
and	there	exists	an	edge	p	in	SIB	from	u	to	v	(u	

P→	v)	iff	G	contains	an	edge	p	from	a	to	b	
(a	P→	b)	and	a	∈	u,	b	∈	v.

5.4. Disk-based Versions of Trace Equivalence and 
Bisimilarity Summarization Algorithms

In order to summarize large graph-shaped data, we introduce disk-based versions of the algo-
rithms. Our disk-based version of Trace Equivalence is presented formally in Figure 3 using 
Relational Algebra notation (as it is SQL-based). Its idea is based on Definitions 3.a and 3.b 
of Trace Equivalence. That is, in order to generate the summary of a graph (based on outgoing 
paths), we first find all outgoing paths of a node and then group the nodes that have the same 
set of paths together. Since a data graph is represented as an <S,P,O> table, finding the set of 
all paths from a node is done by continuously performing self-left joins to this table until all 
paths are determined. The number of self-left joins required depends on the levels the longest 
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path spans, e.g., if the longest path is only two levels only one join is needed, if it is four levels 
deep then two joins are needed, and so on. The stopping condition of this process is: when no 
more left joins possible; i.e., the longest path has been retrieved and further joins do not retrieve 
additional paths.

Because a self-left join becomes more expensive as the table becomes larger, the algorithm 
eliminates the columns that are not needed before performing each join in order to enhance the 
performance. Specifically, the result of the first self-left join of the table s p o, ,  is a table named 

s p o s p o1 1 1 2 2 2, , , , ,  (self-left join is done on !o s1 2= ). Before performing the second self-left 

join we eliminate columns o s1 2, , resulting in redundant rows, which are then eliminated when 

creating the reduced table, s p p o, , ,1 2  on which the second self-left join is performed, and so 
on. This column elimination is done in order to remove redundant rows that appear after remov-
ing the columns, thus reducing the size of the table, which results in significant enhancement in 
performance as well as reducing space requirements. An additional step to detect and resolve 
loops before performing each self-left join is done by checking the condition “s o= ” for each 
row (line 4 in Figure 3), i.e., to check whether the starting vertex of the path is equal to the 
terminating one. Such rows are isolated and are not considered in the further joins.

Although we have implemented some technical enhancements in our disk-based version 
of Trace Equivalence as described above, the computational complexity of our version of the 
algorithm is still the same as the memory-based version (PSPACE Complete). Improving the 
complexity of the algorithm is beyond the scope of our paper.

In what follows we introduce a disk-based version of the Bisimilarity algorithm, which is 
computationally less expensive than Trace Equivalence. The complexity of our disk-based ver-
sion of Bisimilarity is again similar to that of the memory-based version; O m nlog( )  for a graph 

Figure	3.	The	disk-based	Trace	Equivalence	algorithm
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with n  vertices and m  edges. To generate the O-Signature using our disk-based version of 
Bisimilarity (Figure 4), the initial grouping of nodes with similar outgoing predicates is done by 
assigning to each distinct predicate (P) a unique hash value (lines 2-4 in Figure 4). Then, for 
each node, the algorithm calculates the sum of the hash values of its predicates (line 5). Nodes 
that end up having the same summation belong to the same group. That is, this summation reflects 
the category of the node.

In the second step (i.e., the iterative step), for each node in the graph, we find its successors, 
and then we sum the node’s category with a hash value of the sum of all its successors’ catego-
ries. This new sum is then hashed, and its new value is used as the new category number of the 
node. In this way, nodes in each category are split according to their successors’ categories. In 
general, this step is repeated k  times, until the table stabilizes (no more categories are updated), 
with k  corresponding to the longest acyclic path in the graph. The problem of cycles in the 
graph are solved by the condition of the iterative step (the while-loop condition, line 6 in Figure 
4), which breaks the while-loop when the number of the categories are not changing anymore. 
This loop condition guarantees that the algorithm stops regardless of the existence of cyclic paths 
in the graph. It is worth mentioning that in our implementation using Oracle DBMS, we used 
Oracle’s hash function (ORA_HASH8) that produces a number between 1 and 232-1.

The algorithms in Figures 3 and 4 produce summaries based on outgoing paths (SOT, SOB). 
Adapting these algorithms to generate summaries based on incoming paths (SIT, SIB) is straight 
forward. We simply use the same algorithms presented in Figures 3 and 4, but in line (1) of both 
algorithms, instead of copying G into table R0, we copy the inverse of G. That is, instead of 
copying <S,P,O> from G into R0, we copy <O,P,S> from G into R0. After that the algorithms 
continue normally as described in Figures 3 and 4. Using relational algebra, line (1) in Figures 
3 and 4 is replaced by: ρ π! ,! , , !R GO P S0( ) . In SQL, this can be written as: 
create table R0 (S,P,O) as select (O,P,S) from G.

Figure	4.	The	disk-based	Bisimilarity	algorithm
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As mentioned previously, the memory-based version of the Bisimilarity algorithm was used 
in literature to summarize XML data using several different techniques, such as 1-index (Milo 
& Suciu, 1999), A(k)-index (Kaushik et al., 2002a), and F&B (Kaushik et al., 2002b). However, 
RDF is more complex than XML in several ways. RDF in its nature forms a graph, thus there 
is no single root, whereas XML is tree structured. This tree structure implies that every node 
has only one parent, and that for every node there is only one unique path that this node can be 
reached from (Milo & Suciu, 1999). Conversely, in RDF, the same node may be accessed via 
several paths, and through different nodes. Also, RDF may contain cycles that should be taken 
into consideration.

These differences between tree-shaped data (XML) and graph-shaped data (RDF) are re-
flected on the summaries of Trace Equivalence and Bisimilarity. For tree-shaped data the two 
equivalence relations coincide, thus their algorithms generate identical summaries (Milo & Suciu, 
1999). However, in the case of graph-shaped data, Bisimilarity summaries are approximations 
of Trace Equivalence summaries. This is because Bisimilarity does not catch/summarize all 
cases that are Trace Equivalent. In other words, some nodes that are grouped together because 
they are Trace Equivalent might not be Bisimilar and thus might not be grouped together. In the 
following, we explain this issue by pointing out two typical cases.

The first case (see Figure 5.a) emerges from the fact that, in graph-shaped data, edge labels 
(predicates) coming out of a node (or going into a node) might not be unique. Using Trace 
Equivalence, nodes A1, A2, and A3 in Figure 5.a have the same set of outgoing paths, so they 
are grouped together in the O-Signature (SOT). However, this is not the case in the Bisimilarity 
algorithm, because the successors of these nodes do not fall in the same category (i.e., they are 
not bisimilar). Thus, in Bisimilarity, the three nodes A1, A2, and A3 are put into three different 
categories in SOB. The second case that appears in graph-shaped data, which is discussed by Milo 
and Suciu (1999), is depicted in Figure 5.b. One can notice that A1 and A2 are grouped together 
using the Trace Equivalence algorithm to generate the O-Signature as they have the same set 
of paths. Meanwhile, these two nodes are not Bisimilar; because their successors (M1 and M3) 
are not Bisimilar. Such	cases	result	in	Bisimilarity	summaries	larger	than	Trace	Equivalence	
summaries.	Thus,	query	evaluation	on	Trace	Equivalent	summaries	can	be	faster,	although	the	
Trace	Equivalence	algorithm	is	computationally	more	expensive.

5.5. Storage and Size of the Graph Signature

The Graph Signature Index is an RDF Graph that can be stored the same way the original RDF 
graph is stored. Thus, storing it depends on the particular RDF store used. In this paper, we 
choose to demonstrate our work on top of Oracle as it is a well known database solution that 
supports RDF. Since Oracle basically stores the RDF graph in one table of <S, P, O>, each part 
of the Graph Signature (i.e., the O/I-Signature) is stored as an <S,P,O> table. The subjects and 
objects of each signature table are category numbers corresponding to summarization groups. 
In addition, we build two Graph	Signature	Extents, each of which is a lookup table storing each 
node in the original graph and its corresponding category in the O/I-Signature. The schemas of 
the extent tables are: 
extent_o(SoID,Node), extent_i(SiID,Node).

If our Graph Signature is to be implemented on top of another solution, its storage will be 
different. For example, if we are to implement our index using C-Store (Stonebraker et al., 2005) 
with Vertical Partitioning (Abadi et al., 2007), then it needs to be vertically partitioned into n 
two-column tables, where n is the unique number of predicates.

The space cost for storing each part of the Graph Signature consists of the space of the 
signature and the space of the extent. The size of each part of the Graph Signature is at most as 



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015   53

large as the data graph; but in practice, it is much less, as our experimental evaluation shows 
(section 5.6). The size of the extent is exactly the number of unique nodes in the data graph.

5.6. Experimental Evaluation of the Summarization Algorithms

5.6.1. Experiment Setup

Our disk-based versions of Trace Equivalence and Bisimilarity were implemented using PL/
SQL in Oracle 11g. The experiments were conducted on a PC with a 2.50 GHz Intel Core 2 
Quad CPU and a 250 GiB SATA Hard Disk, on a Windows XP SP2 Operating System. Each 
experiment was conducted twice; once with 2GiB of memory and another time with only 1GiB, 
in order to demonstrate that our algorithms are disk based. For the purpose of the experiments 
presented here we used both algorithms to generate summaries based on outgoing paths (SO,T 
and SO,B). The behavior of both algorithms to generate I-Signatures is similar to the O-Signatures 
case presented here.

In the experiments, we used two real-world RDF datasets: DBLP and Yago. Yago is a large 
semantic knowledge base derived from Wikipedia and WordNet containing more than 2 million 
entities (e.g., persons, organizations, cities), whereas DBLP is about scientific publications from 
the DBLP Bibliography. Our Yago dataset contains 15 million triples (1.10GiB) whereas the 
DBLP dataset contains 8 million RDF triples (1.07GiB). We partitioned Yago into 5 tables: Y3 
with 3 million triples, Y6 with 6 million, Y9 9 million, Y12 12 million, and Y15 with 15 mil-
lion triples. DBLP was partitioned into 4 tables: D2, D4, D6, and D8 with 2, 4, 6, and 8 million 
triples, respectively. Note that no sorting was applied on the data before partitioning (e.g., D4 
was created by: 
create table D4 as select * from D8 where rownum<=4000000).

The two datasets differ in the nature of the data they contain. DBLP data tends to be more 
homogenous as most of its nodes have similar paths. Also, DBLP paths tend to be shorter than 
those in the Yago dataset (the longest path in our DBLP dataset is 4 levels long). Yago data, 
on the other hand, is more heterogeneous as it contains data from a very diverse spectrum of 
domains (the domains of Wikipedia and Wordnet) and node paths tend to be longer than those 
in DBLP. Note that these observations impact the results of the experiments (Tables 2 and 3), 
as will be discussed shortly.

5.6.2. Analysis of the Experimental Results

The fact that our algorithms are written in SQL and executed using Oracle DBMS shows that 
they are disk-based. This is further confirmed by the results of our experiments in Tables 2 and 
3; reducing the memory installed on the machine from 2 GiB to 1 GiB had no impact on the 
time cost of summarization for both algorithms. Furthermore, one can notice the scalability of 
the behavior of both algorithms with respect to the number of triples. For instance, in the case of 
Trace Equivalence (and similar for Bisimilarity), the whole Yago dataset (Y15) is summarized 
by 462K triples. This number tends to increase when the data is smaller (e.g. 658K for Y12). 
The same is true with DBLP; D8 is summarized in 30K triples using Trace Equivalence while 
D6 is summarized in 118K triples. This is because more similarities were found when the whole 
data is put together (notice that we did not apply any sorting before partitioning the data). In 
other words, some nodes in D6 are grouped in several equivalence classes (instead of one) as 
they have different paths, while when all data is put together in D8, it is found that these nodes 
have the same paths. This implies that the size of the summary does not necessarily increase 
when more triples are added to the data graph. Moreover, it is noticed that the nature of the data 
being summarized impacts the size of the summaries and the summarization time. For example, 
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the summary of D6 (118K, using Trace Equivalence) is smaller than the summary of Y6 (312K, 
using Trace Equivalence), as DBLP is more homogenous. Also notice that Y6 is summarized in 
241 seconds while D6 is summarized in 68 seconds (using Bisimilarity) though both contain 6 
million triples. This is because DBLP is more homogenous and its paths are shorter.

In comparing between the behavior of Bisimilarity and Trace Equivalence algorithms, one 
notices some differences. First, the time cost of the Bisimilarity algorithm is almost always less 
than that of Trace Equivalence. In particular, as the number of triples increases in the graph, the 
difference between the time-costs of both algorithms increases. For example, Y3 was summa-
rized in 95 seconds using Trace Equivalence and in 96 seconds using Bisimilarity using 2 GiB of 
memory, i.e., no significant difference between the performances of both algorithms. However, 
the summarization of Y6 using Trace Equivalence costs 311 seconds whereas, using Bisimilarity, 
the cost is 241 seconds; a difference of 70 seconds (22.5% less). For the Y15 dataset, the Trace 
Equivalence algorithm finishes after 9,869 seconds, whereas the Bisimilarity algorithm finishes 
after 1,818 seconds (about 81.6% less than the time-cost of Trace Equivalence).

A second difference between Bisimilarity and Trace Equivalence is in the performance 
behavior of both algorithms with respect to the data size. An initial look at the results of the 
experiments conducted on the DBLP dataset (Table 3) reveals no major difference in the perfor-
mance behavior of both algorithms; both appear to be almost linear (Figure 6.a). Due to the 
simple homogenous nature of the DBLP data, the behavior of Trace Equivalence becomes 
closer to that of Bisimilarity. This is also because the longest path in DBLP spans four levels; 
that is, Trace Equivalence takes a maximum of two joins to traverse the D8 graph. However, the 
experiments on the more heterogeneous Yago dataset reveal the more accurate performance 
behavior of both algorithms. This behavior is depicted in Figure 6.b, which shows that the per-
formance behavior of the Bisimilarity algorithm is linear with respect to the number of triples 
in the graph, whereas the performance of the Trace Equivalence algorithm is exponential. In 
fact, one can expect such performance behavior from both algorithms; theoretically, Trace 
Equivalence is known to be PSPACE complete, whereas Bisimilarity is O m nlog( )  for a graph 
with n  vertices and m  edges.

Table	2.	Summary	of	experimental	results	using	our	disk-based	versions	of	Trace	Equivalence	
and	Bisimilarity	on	YAGO	dataset
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A third difference between Trace Equivalence and Bisimilarity is in the summary itself. 
One can notice from Tables 2 and 3 that in all the experiments, Bisimilarity summaries are 
always larger than Trace Equivalence summaries. For example, the summary of D8 using Trace 
Equivalence contains 30K triples, whereas using Bisimilarity, it contains 35K triples. The same 
can be noticed in the Y15 dataset: it is summarized into 462K using Trace Equivalence and into 
499K using Bisimilarity. As explained previously, the reason behind this is that Bisimilarity is 
an approximation of Trace Equivalence. One might also notice that the differences in the sizes of 
the summaries between Trace Equivalence and Bisimilarity tend to be higher in DBLP data than 
Yago; Bisimilarity summaries are 5.7% larger (on average) in the case of Yago than their Trace 
Equivalence counterparts, while DBLP Bisimilarity summaries are 16.5% larger, on average. 
The reason for this is the nature of the data itself; DBLP data is about scientific publications, 
where a publication tends to have several authors, resulting in many nodes in the data graph 
having several non-unique predicates, which might cause cases such as those depicted in Figure 
5, which Bisimilarity does not summarize.

Table	3.	Summary	of	experimental	results	using	our	disk-based	versions	of	Trace	Equivalence	
and	Bisimilarity	on	DBLP	dataset

Figure	5.	Special	cases	that	appear	only	in	graph-shaped	data
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From our discussion above, we noticed that the summarization time cost of Bisimilarity 
is less than that of Trace Equivalence. On the other hand, Trace Equivalence produces smaller 
summaries than Bisimilarity, which means evaluating queries over Trace Equivalence summaries 
is typically faster. We also noticed that when the data itself tends to be more homogenous and 
its paths shorter (as in DBLP), the behavior of Trace Equivalence becomes close to that of Bi-
similarity. Based on this, we propose using Bisimilarity in some cases and Trace Equivalence in 
others. In general, because of its better performance, we recommend Bisimilarity as the default 
summarization algorithm, while using Trace Equivalence in particular scenarios. For example, 
when the summarization time-cost is not critical for the user and/or the data is homogenous with 
short paths, one might use Trace Equivalence. For instance, for our particular setup here, we would 
recommend using Bisimilarity to summarize Yago and Trace Equivalence to summarize DBLP.

6. THE QUERY MODEL

As mentioned earlier, our query model tackles one of the most challenging query types; deep 
linear-shaped queries of many variables, spanning several levels. Such queries are among the 
most expensive, especially when evaluated on a large RDF graph stored in one <S,P,O> table, as 
they require multiple expensive self joins. The complexity of such queries does not necessarily 
come from the many conditions they include, but rather from the depth of the query (the levels 
it spans) and the number of variables. The more levels a query spans and the more variables it 
contains, the more joins are required and the more expensive these joins are. Optimizing such 
queries, however, leads to optimizing more generic query models such as tree and star-shaped 
queries, as the linear query model is the building block of these models.

Definition 6 (Query Path): We define a query path as an expression of the form: 
O PO P P On n1 1 2 2 1…{ }− , where Oi is a query node, and Pj is a query edge (i=1,2,…,n;	
j=1,2,…,n-1). A variable node (unbound node) is denoted by ?Oi and a variable edge (un-
bound edge) by ?Pj. A non-variable node (bound node) is denoted by < >Oi  and a non-

variable edge (bound edge) by < >Pj . To refer to nodes and edges that can be either bound 

or unbound we use the notation Oi for nodes and Pj for edges.

Figure	6.	Performance	behavior	of	Trace	Equivalence	and	Bisimilarity
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Definition 7 (Graph Signature Query Model � ): Our Graph Signature Query Model (� ) 
is defined as: ? , ,? | ? :P P O O PO P P On i n n1 1 1 1 2 2 1… …{ }− − , i n= …1 2 3, , , , ! , where the 

query condition is a linear path O PO P P On n1 1 2 2 1…{ }− !  and the projections are only predicates 

( ? , ,? )P Pn1 1… −  or alternatively one node ( ?Oi), such that when a query node is projected 
( ?Oi) all other query nodes must be unbound.

7. EVALUATING QUERIES WITH THE GRAPH SIGNATURE

Recall from our earlier discussion, that the answer obtained from executing a query on the O-
Signature -and similarly on the I-Signature- is always a superset or equals the target answer (the 
answer obtained from the original data graph). In case the answer of the I/O-Signature equals 
the target answer, we call it a precise answer. Otherwise, it is called a safe answer, since it equals 
the target answer and some more false	positives. In this section, we illustrate how queries that 
conform to our query model (� ) can be answered precisely using only the Graph Signature. 
This is done through introducing a set of nine query evaluation theorems and an execution plan 
based on them. Our theorems and execution plan produce precise results whether they are 
evaluated on Trace-Equivalence-based Graph Signature (ST) or on Bisimilarity-based Graph 
Signature (SB), following the proposition below.9

Proposition. Given	a	data	graph	G,	 its	Trace-Equivalence	summary	ST,	and	 its	Bisimilarity	
summary	SB,	if	a	query	(that	conforms	to � )	produces	precise	results	when	evaluated	on	
ST,	then	it	produces	precise	results	if	evaluated	on	SB.

Theorems 1 and 2 below are two intuitive theorems that apply to any arbitrary query:

Theorem 1. Given	an	arbitrary	query,	the	answer	of	the	O-Signature	is	always	safe	and	similarly	
the	answer	of	the	I-Signature.

Theorem 2. Given	an	arbitrary	query,	if	the	answer	of	the	I/O-Signature	is	empty	or	the	inter-
section	of	the	results	of	both	is	empty,	then	this	answer	is	always	precise.

The following theorems apply only to queries that conform to our query model such that 
all projections are query edges:

Theorem 3. Given	a	query	that	conforms	to	our	query	model �  such	that	all	projections	are	
query	edges,	if	all	query	nodes	are	unbound:?P1,…,?Pn-1:{?O1	P1 … Pn-1 ?On}, the	answer	
of	either	the	O-Signature	or	the	I-Signature	is	always	precise.

Theorem 4. Given	a	query	that	conforms	to	our	query	model �  such	that	all	projections	are	
query	edges,	if	the	first	query	node	in	the	query	path	is	bound	and	all	remaining	query	nodes	
are	unbound:?P1,…,?Pn-1:	{<O1>P1	?O2	P2	…	Pn-1	?On},	then	the	answer	of	the	O-Signature	
is	always	precise.

Theorem 5. Given	a	query	that	conforms	to	our	query	model �  such	that	all	projections	are	
query	edges,	if	the	last	query	node	in	the	query	path	is	bound	and	all	remaining	query	nodes	
are	unbound:	?P1,…,?Pn-1:{?O1	P1	?O2	P2	…	Pn-1	<On>},	then	the	answer	of	the	I-Signature	
is	always	precise.
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Theorem 6. Given	a	query	that	conforms	to	our	query	model �  such	that	all	projections	are	
query	edges,	if	one	node	located	anywhere	in	the	query	path	is	bound	and	all	remaining	
query	nodes	are	unbound:	?P1,…,?Pn-1:	{?O1	P1	...	<Oi>	…	Pn-1	?On}	(where;	1≤  i ≤ n),	
then	the	intersection	of	the	answers	of	both	the	I-Signature	and	the	O-Signature	is	always	
precise.

The following theorems also apply only to queries that conform to our query model such 
that the projection is exactly one query node and all query nodes in the query path are unbound.

Theorem 7. Given	a	query	that	conforms	to	our	query	model �  such	that	the	projection	is	the	
first	query	node	in	the	query	path	and	all	query	nodes	are	unbound:	?O1:	{?O1	P1	?O2	P2	
…	Pn-1	?On},	then	the	answer	of	the	O-Signature	is	always	precise.

Theorem 8. Given	a	query	that	conforms	to	our	query	model �  such	that	the	projection	is	the	
last	query	node	in	the	query	path	and	all	query	nodes	are	unbound:	?On:	{?O1	P1	?O2	P2	…	
Pn-1	?On},	then	the	answer	of	the	I-Signature	is	always	precise.

Theorem 9. Given	a	query	that	conforms	to	our	query	model �  such	that	the	projection	is	
exactly	one	query	node	located	anywhere	in	the	query	path	and	all	query	nodes	are	unbound:	
?Oi:	{?O1	P1	...	?Oi	…	Pn-1	?On	}	(where;	1≤  i ≤ n), then	the	intersection	of	the	answers	of	
both	the	I-Signature	and	the	O-Signature	is	always	precise.

The flowchart in Figure 7 depicts the evaluation scenario based on the above theories. As 
shown, the Graph Signature is used to answer queries that conforms to our query model �  while 
other queries are executed using the native query engine that the Graph Signature is built on.

As the flowchart in Figure 7 depicts, an arbitrary query is first checked against our query 
model � . If the query does not conform to the query model, it is directed to the native query 
engine; otherwise it is checked for further conditions. If the query meets the exact conditions 
imposed by the theories sketched above, it is executed according to the theories (either on the 
O-Signature, the I-Signature, or both). A query that conforms to �  is first checked for projec-
tions; if all projections are predicates, then the query is checked for bound nodes. If all nodes 
are unbound, the query can be executed on either summary. If one node is bound, then its posi-
tion is checked and the query is executed accordingly; on the O-Signature if the bound node is 
the first node in the query path, on the I-Signature if the bound node is the last node, otherwise, 
the query is executed on both signatures and the intersection of the answers is the precise result 
set (this implements theories 3-6). If more than one bound node is found, the query is directed 
to the native query engine. In the case that the projection is one query node, the query is checked 
for bound nodes. If there is any bound node, the query is directed to the native query engine, 
else, it is processed according to theories (7-9), where the position of the projection node deter-
mines which signature it is executed on. However, no matter where the projection node is lo-
cated, the intersection of the answers of the O-Signature and the I-Signature always produces 
precise results. Nevertheless, if the projection node is the first one in the query path, then the 
O-Signature suffices to produce precise results, if it is the last, then the I-Signature is sufficient.

8. IMPLEMENTATION OF THE QUERY EXECUTION PLAN

The query evaluation scenario depicted in Figure 7 is implemented as a java stored procedure 
that takes a SPARQL query as an input and returns precise results that can be further processed 
using SQL . Java stored procedures are Java methods published to SQL and stored in the Oracle 
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DBMS for general use. They are compiled once and stored in an executable form, which results 
in quick and efficient procedure calls with minimal overhead. Querying a data graph is done using 
Oracle’s SEM_MATCH function. In specific, we have implemented our java stored-procedure 
on top of SEM_MATCH, such that the stored procedure evaluates queries that conform to our 
query model using the SEM_MATCH function over the Graph Signature (following the execu-
tion plan in Figure 7). The execution process follows these steps:

1.  The function parses the SPARQL query to determine the variable and non-variable nodes 
in addition to the number and types of projections in the query.

2.  Using the information determined in step 1, the target summary to be used in query evalu-
ation is determined based on the conditions imposed by the theorems presented in section 
7, as depicted in Figure 7.

3.  Before executing the query over the target summary, the non-variable node labels in the 
query are replaced with their corresponding category numbers found in the Graph Signature 
Extent.

4.  The query is then evaluated on the target summary using SEM_MATCH, according to the 
chosen evaluation path. In the case where a node is projected, the results obtained contain 
only group IDs. Therefore, these results are joined with the Graph Signature Extent to obtain 
(i.e., lookup) the target answer for the query.

We have also implemented a Mapping	Dictionary to gain the best performance results. The 
Mapping Dictionary is a lookup table that maps each node, and edge label in the RDF dataset 
into a unique identifier (dID). All literals and URIs in the original data graph are replaced with 
their corresponding dIDs, such that the data graph would consist of numerals only instead of long 
URIs and literals. This is done before computing the Graph Signature and its extent. This has two 
advantages. (i) The size of the O-Signature and the I-Signature and the extent are compacted in 

Figure	7.	Flow	chart	depicting	the	execution	plan
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terms of disk space usage. (ii) Executing queries on tables containing only numerals allows for 
faster joins, comparison, and matching operations.

Our query execution plan does not currently optimize all types of queries, but rather 
optimizes linear queries with many variables; a query type which Oracle performs poorly in. 
Oracle’s query optimizer, however, can utilize our optimization of linear queries for evaluating 
more generic query models such as tree-shaped and star-shaped queries. This could be done, for 
instance, by submitting certain query paths to our query execution plan. In our implementation, 
we built our execution plan on top of Oracle instead of tuning its query optimizer, as Oracle’s 
query optimizer is not open.

9. EXPERIMENTAL EVALUATION OF THE 
GRAPH SIGNATURE INDEX

This section presents the experimental evaluation of our proposed Graph Signature Index, which 
we implemented on top of Oracle. Our experiment was conducted on the same PC we have used 
in evaluating the summarization algorithms (section 5.6.1). For this experiment, we define two 
sets of benchmark queries and execute them twice on a relatively large RDF graph in Oracle: once 
without the Graph Signature and another time with the Graph Signature. For the RDF dataset, we 
use the largest and most heterogeneous datasets of those presented earlier: Yago with 15 million 
RDF triples (Y15), which is 1.10 GiB. Our queries are evaluated on the Bisimilarity-based Graph 
Signature, which is larger than the Graph Signature produced by Trace Equivalence. Thus, we 
demonstrate here a more challenging case of our approach, since if our queries were evaluated 
on the summaries produced by Trace Equivalence, our query execution would be faster as the 
summaries are smaller. Furthermore, our choice of the Y15 dataset reflects a realistic use case; 
a real-world RDF dataset of medium complexity presenting data from Wikipedia and Wordnet.10

From the Yago dataset we derived 13 benchmark queries, divided into two groups (Table 4). 
The first group contains several queries that are encountered in some Web 3.0 applications such 
as MashQL. The second group of queries can be considered an extreme case of linear shaped 
queries where all the query nodes and edges are variables - thus requiring expensive joins. The 
aim of this second group of queries is to demonstrate the power of the enhancement that the 
Graph Signature introduces to Oracle. Even though these queries are not necessarily faced in 
practice, they form a good showcase for exposing the limits of Oracle Semantic Technologies 
with and without the Graph Signature Index.

The results of our experiments are shown in Table 4 and Figure 8. One can notice that the 
performance of Oracle is much improved with the Graph Signature Index. This improvement is 
specially noticed in queries that span a long path (e.g., A6, A7). Queries in group B present an 
extreme case for Oracle with and without the Graph Signature Index. As evident from the results, 
the response of Oracle’s SEM_MATCH table function after the 4th level (B5), was larger than 
20 minutes. On the other hand, although the execution time using our index increases at each 
level, this increase remains acceptable for such type of extreme queries. Again, the performance 
boost that the Graph Signature Index provides is due to its size, which is much smaller than that 
of the original graph.

10. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel approach for query optimization for RDF stores, namely, 
the Graph Signature Index, which is a generic index that can be implemented on top of any RDF 
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store as an enhancement. The idea is to summarize a data graph and instead of querying the 
original data, we query the summary. Because the size of the summary is typically smaller than 
the original data, querying it can be faster than querying the original data. Our summary (the 
Graph Signature) is two-fold; the O-Signature, which groups nodes based on their outgoing paths, 
and the I-Signature which is based on incoming paths. Both summaries are stored separately but 

Table	4.	The	benchmark	queries	and	their	evaluation	time-cost

Benchmark Queries Time costs in seconds

Oracle with 
GS

Oracle without 
GS

Group A

A1 ?p1:{?s <y:wrote> ?o ?p1 ?o1 ?p2 ?o2} 0.441 25.640

A2 ?p,?p1,?p2:{<Palestine> ?p ?o ?p1 ?o1 ?p2 ?o2} 0.578 29.875

A3 ?p,?p1,?p2:{?s ?p ?o ?p1 <Palestine> ?p2 ?o2} 0.587 29.593

A4 ?p,?p1,?p2:{?s ?p ?o ?p1 ?o1 ?p2 <Palestine>} 0.556 29.641

A5 ?o2:{?s <y:isMarriedTo> ?o ?p ?o1 <y:locatedIn> ?o2} 0.291 21.922

A6 ?s:{?s <y:happenedIn> ?o ?p1 ?o1 ?p2 ?o2 ?p3 ?o3} 0.587 62.734

A7 ?o3:{?s ?p ?o ?p1 ?o1 ?p3 ?o2 <y:happenedIn> ?o3} 0.785 64.813

A8 ?o2:{?s ?p ?o ?p1 ?o1 <y:hasCurrency> ?o2 ?p3 ?o3} 2.469 32.703

Group B

B1 ?p:{?s ?p ?o} 0.344 110.390

B2 ?p:{?s ?p ?o ?p1 ?o1} 1.953 302.672

B3 ?p:{?s ?p ?o ?p1 ?o1 ?p2 ?o2} 5.250 525.844

B4 ?p:{?s ?p ?o ?p1 ?o1 ?p2 ?o2 ?p3 ?o3} 10.234 702.969

B5 ?p:{?s ?p ?o ?p1 ?o1 ?p2 ?o2 ?p3 ?o3 ?p4 ?o4} 24.672 >1200

Figure	8.	Graphs	showing	the	evaluation	time	costs	in	seconds	for	the	benchmark	queries
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are used jointly to produce precise results, using an original execution plan and its underpin-
ning query evaluation theorems. We addressed the challenge of generating the Graph Signature 
for relatively large RDF graphs by introducing two disk-based versions of the Bisimilarity and 
Trace Equivalence algorithms. As the Graph Signature is a data graph, storing and querying it 
is done in the same way as the original data graph, using the techniques of the host RDF store. 
We have demonstrated our approach by implementing it on top of Oracle and experimenting it 
on a relatively large RDF dataset, showing that it indeed enhances Oracle.

We plan to extend our query model to cover tree and star-shaped queries. This might be 
a difficult challenge, but it is achievable since the linear query model is the building block for 
tree and star-shaped queries. For instance, Theorem 7 can be extended to tree-shaped queries of 
unbound nodes with the projection being the root of the query. Such query can be executed pre-
cisely using the O-Signature. Similar extensions will be made to the theorems and consequently 
to the execution plan. In addition, we plan to study and utilize the false-positive answers that are 
generated from queries not conforming to our query model. Such answers may be good-enough 
for certain types of applications such as information retrieval and search engines, where precise 
results are not necessarily needed. Also, we plan to develop a maintenance strategy to support 
querying dynamic datasets.
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ENDNOTES
1  http://stats.lod2.eu. Accessed: June 2015.
2  In early June 2011, Bing, Google and Yahoo! introduced schema.org (accessed: June 2015); an 

ontology to be used to markup web pages.
3  http://developers.facebook.com/docs/reference/api. Accessed: June 2015.
4  http://search.fb.com. Accessed: June 2015.
5  For more about RDF, refer to the W3C documentation: http://www.w3.org/TR/rdf11-concepts/. 

Accessed: July 2015.
6  In Oracle 12c, the commercial name “Oracle Semantic Technologies” was renamed to “Oracle Spatial 

and Graph”.
7  See www.neo4j.com. Accessed: July 2015.
8  This hashing function randomly generates a number between 1 and 4,294,967,295, which is sufficient 

for our purposes especially that the number of unique edge labels is typically not large and therefore 
the chance of collisions is negligible. Nevertheless, more complex hashing functions might be used 
such as MD5 or SHA, which produce 128-bit and 160-bit hash values, respectively – however on 
the cost of performance overhead.

9  For space limitations, proofs of the proposition and all the theorems can be accessed through www.
jarrar.info/publications/GSProofs.pdf.

10  The reader might be interested to have a look at other experiments (with DBLP and DBPedia) that 
we conducted on a preliminary previous work (Jarrar & Dikaiakos, 2012).
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