
36 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Big	Data,	Bisimulation,	Data	Index,	Data	Web,	Graph	Databases,	Mashups,	Query	Optimization,	
RDF,	RDF	Stores,	Structural	Summaries,	Trace	Equivalence

ABSTRACT
Querying	large	data	graphs	has	brought	the	attention	of	the	research	community.	Many	solutions	were	pro-
posed,	such	as	Oracle	Semantic	Technologies,	Virtuoso,	RDF3X,	and	C-Store,	among	others.	Although	such	
approaches	have	shown	good	performance	in	queries	with	medium	complexity,	they	perform	poorly	when	
the	complexity	of	the	queries	increases.	In	this	paper,	the	authors	propose	the	Graph	Signature	Index,	a	novel	
and	scalable	approach	to	index	and	query	large	data	graphs.	The	idea	is	that	they	summarize	a	graph	and	
instead	of	executing	the	query	on	the	original	graph,	they	execute	it	on	the	summaries.	The	authors’	experi-
ments	with	Yago	(16M	triples)	have	shown	that	e.g.,	a	query	with	4	levels	costs	62	sec	using	Oracle	but	it	
only	costs	about	0.6	sec	with	their	index.	Their	index	can	be	implemented	on	top	of	any	Graph	database,	but	
they	chose	to	implement	it	as	an	extension	to	Oracle	on	top	of	the	SEM_MATCH	table	function.	The	paper	
also	introduces	disk-based	versions	of	the	Trace	Equivalence	and	Bisimilarity	algorithms	to	summarize	data	
graphs,	and	discusses	their	complexity	and	usability	for	RDF	graphs.

The Graph Signature:
A Scalable Query Optimization Index for

RDF Graph Databases Using Bisimulation
and Trace Equivalence Summarization

Mustafa	Jarrar,	Sina	Institute,	Birzeit	University,	Birzeit,	Palestine

Anton	Deik,	Sina	Institute,	Birzeit	University,	Birzeit,	Palestine

1. INTRODUCTION AND MOTIVATION

Big Data, Data Web, Linked and Open Data are examples of an emerging era of data industry
and data science. We are witnessing a rapid growth of the amount of available structured and
linked data. As of June 2015, the Linking Open Data Statistics project (LODStats) records 3308
published datasets consisting of around 89.9 billion RDF triples.1 Examples of published datasets
are: DBPedia, Yago, DBLP, CiteSeer, ACM, Freebase, Geonames, MusicBrainz, as well as open
governmental datasets such as those of the UK (data.gov.uk), the US (data.gov), and Ireland
(opendata.ie), and many others. The biggest software companies are encouraging the trend of
publishing and linking structured data on the web. For example, Google, Yahoo, and Microsoft

DOI: 10.4018/IJSWIS.2015040102

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 37

have joined efforts in developing a shared ontology.2 Facebook is also providing access to parts
of its data via its Graph API.3

To exploit structured data on the web to its full potential, people need efficient querying
methods. SPARQL was introduced by W3C as a standardized query language that enables query-
ing decentralized collections of RDF data. However, SPARQL is oriented for technical people.
So, in order to allow people with limited IT skills to query structured data, many solutions were
proposed, among which are those which proposed an interactive approach that allows the user
to formulate queries without prior knowledge of the underlying data or its structure. Examples
of such approaches are: Lore (Goldman & Widom, 1997) which was developed for querying
schema-free XML, and MashQL, which is a query formulation language for RDF introduced in
previous work (Jarrar & Dikaiakos, 2008; 2009; 2010; 2012). In July 2013, Facebook started
rolling out a “Graph Search” functionality,4 allowing users to formulate structured queries over
the Facebook data graph. Not only do such approaches motivate the importance of querying data
graphs, but they also emphasize the significance of having fast responses for queries executed
over large data graphs in an interactive environment.

The most widely adopted data model specification for representing structured data on the
web is RDF (Resource Description Framework). RDF syntax is based on XML and reflexes
simple graph-based data model. RDF represents data as triples <Subject,	Predicate,	Object>.5
For instance, the fact that the book called Wamadat is authored by Naima can be represented by
the following three triples which form a directed labeled graph (see Figure 1):
< BK3, Name, Wamadat >
< BK3, Author, AU3 >
< AU3, Name, Naima >

Data representation using RDF is more elementary than relational databases and XML
models, which enables easy data integration and interoperability of systems. However, querying
RDF data graphs (especially large graphs) is a major challenge that faces all querying ap-
proaches, and therefore has brought the attention of the research community (e.g., Abadi et al.,
2007; Chong et al., 2005; Schätzle et al., 2013; Tran et al., 2013; Yuan et al., 2013). Querying
such data, which is typically stored in one relational table denoted by <S,P,O> is of high com-
plexity because traversing a graph stored in relational model involves many self-joins of that
table. More specifically, a query with n() edges on such a table requires n −()1 self joins of
that table (Abadi et al., 2007).

Several solutions were proposed to solve the problem of querying large RDF datasets. Among
these solutions are Oracle Semantic Technologies (Chong et al., 2005),6 OpenLink Virtuoso (Erling
& Mikhailov, 2007; 2010), Vertical Partitioning (Abadi et al., 2007), and RDF3X (Neumann &
Weikum, 2008), to name a few. Although these approaches have shown good performance in
queries with medium complexity (such queries cost several seconds), they tend to perform poorly
when the complexity of the queries increase. In this paper, we provide an optimization solution
for a type of queries that these solutions tend to perform poorly in. Specifically, we propose an
index called the Graph Signature Index (GS). The idea of our index is to summarize the RDF
graph through grouping nodes based on their outgoing and their incoming paths, and instead of
executing the query on the original data graph, we execute it on the index. Because the resultant
summaries are typically much smaller than the original graph, executing the query on the index
is faster. Our proposed index can be implemented on top of any of the aforementioned solutions.
However, we choose here to demonstrate our work on top of Oracle Semantic Technologies be-
cause of its availability and support by one of the most reputable Database Management Engines
in the world (Oracle Database). Our experiments have shown a promising enhancement; e.g., a

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

38 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

query of medium complexity that consists of only one path spanning three levels costs about 20
seconds using Oracle but it only costs 0.3 seconds with our proposed index.

Generating graph summaries is known to be a challenging problem, especially when dealing
with large graphs. The XML research community (Goldman & Widom, 1997; Kaushik et al.,
2002a; 2002b; Milo & Suciu, 1999; Nestorov et al., 1997) has utilized two well-known algorithms
from the theoretical computing world (Paige & Tarjan, 1987; Fernandez, 1990; Henzinger, 1995)
to summarize relatively small XML data graphs. These two algorithms are the Trace	Equivalence
and Bisimilarity	(or	Bisimulation) algorithms. For instance, indexing techniques for XML such
as DataGuides (Goldman & Widom, 1997; Nestorov, 1997), 1-index (Milo & Suciu, 1999),
A(k)-index (Kaushik et al., 2002a), and F&B (Kaushik et al., 2002b) all use Trace Equivalence
and Bisimilarity algorithms for summarizing XML data. Using these two algorithms to summa-
rize large graph-shaped data (e.g., RDF) is a challenging problem as the versions of these two
algorithms that are found in literature are memory-based; that is, they not scalable to be used to
summarize large RDF datasets. In addition, these versions found in literature are used to sum-
marize XML data, which is tree-shaped, unlike RDF data which is graph-shaped. In this paper,
we propose disk-based versions of Trace Equivalence and Bisimilarity to summarize RDF data.

Figure	1.	A	data	graph	and	it	Graph	Signature	(SO	and	SI)

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 39

The performance and resultant summaries of these two algorithms were experimentally analyzed
for usage in the construction of the Graph Signature Index.

In short, the original contribution of this paper is two-fold:

1. The Graph Signature Indexing approach, which proposes to construct a twofold summary:
one based on outgoing paths and another based on incoming paths. Our approach proposes
to store both summaries separately but uses them jointly to precisely answer queries, instead
of answering them using the original graph. A distinct feature of the Graph Signature Index-
ing approach is that it is a generic solution to be built on top of any RDF store or any other
query optimization solution – rather than being proposed as a parallel alternative.

2. Disk-based versions of Trace Equivalence and Bisimilarity used to summarize medium
to relatively large data graphs. This paper also comparatively studies the behavior of both
algorithms in summarizing RDF data and proposes not to neglect Trace Equivalence but
instead to use it in particular practical and real-life scenarios.

Preliminary versions of our disk-based algorithms for data graph summarization appeared
in previous work (Hawash, Deik, & Jarrar, 2010), without analyzing their performances and
resultant summaries to be used for the Graph Signature. In this paper, we position and revise
our disk-based algorithms, analyzing their performances and resultant summaries thoroughly
to be used for the construction of the Graph Signature (section 5). Also, primitive ideas of the
Graph Signature approach appeared in previous work (Jarrar & Dikaiakos, 2010; 2012) only to
optimize the background queries of MashQL. Here we extend our solution and redesign it as a
generic solution; we expand the query model, introduce a new generic query execution plan to
be implemented on top of any Graph Store, introduce new query evaluation theories to support
our execution plan, and demonstrate our approach by implementing it as an enhancement to
Oracle and experimenting it on a different RDF dataset.

The remainder of this paper is organized as follows. Related work is discussed in section
2. In section 3, we present the intuition of the Graph Signature Index. Section 4 presents an ap-
plication use case of the Graph Signature. In section 5, we present our two-disk based versions
of Trace Equivalence and Bisimilarity in addition to their experimental evaluation. Section 6
presents the query model and section 7 discusses query evaluation with the Graph Signature.
In section 8, we discuss our implementation of the Graph Signature on top of Oracle and we
experimentally evaluate it in section 9. Section 10 concludes our discussion and provides direc-
tions for future work.

2. RELATED WORK

In this section we review the work related to our Graph Signature Indexing approach and com-
pare and position our work among those available in literature. We present related work in three
categories: (i) indexing of XML data, (ii) recent work on indexing RDF data, and (iii) a review
of some of the most popular RDF storage systems.

2.1. Indexing of XML Data

Several techniques have been proposed in literature to summarize XML data for XQuery optimi-
zation. The DataGuide (Nestorov, 1997) was the first to suggest summarizing XML by grouping
nodes reachable by any incoming path. The problem with this way is that, because nodes that

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

40 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

extrinsically have some similar property labels are grouped together, many false positives are
generated. The Strong	DataGuide (Goldman & Widom, 1997) proposed to solve this issue by
grouping nodes reachable by simple paths, as the DataGuide; but, it allows a node to exist in
multiple groups. As pointed by the authors, this approach is efficient for tree-shaped data, but
the size of the summary grows exponentially the more the data is graph-shaped (and can be
larger than the original graph). Further, DataGuides are not adequate for complex queries hav-
ing several regular expressions and variables (Milo & Suciu, 1999). In practice, this approach
becomes very problematic when applied to cyclic graphs, as Goldman and Widom (1997) were
unable to compute the strong DataGuide on a small subset of the IMDB dataset.

The 1-index (Milo & Suciu, 1999) proposed to group nodes reachable by all incoming
paths (which is analogous to our I-Signature), but it does not consider the outgoing paths (as
our O-Signature) that yields an efficient reduction of false positives. A similar approach to the
1-index, namely, the A(k)	index (Kaushik et al., 2002a) was suggested, based on the concept of
k-bisimulation, to also group nodes reachable by all incoming paths up to k levels, thus it can
only answer queries with k levels. Since this approach generates many false positives, the same
authors of the A(k) suggested another approach called F&B	index (Kaushik et al., 2002b). This
approach groups nodes reachable by both all incoming and all outgoing paths, i.e., forward and
backward at the same time. This approach produces much less false positives in query evalua-
tion, but its size is not much less than the original. For example, the size of the F&B index for
the Xmark dataset is only 10% less than the original (Kaushik et al., 2002b). As such, the time
needed to query the F&B summary is close to querying the original data.

In general, our work differs from the work presented above in the following: (i) Our focus
is on RDF rather than XML; that is, we adapt both Trace Equivalence and Bisimilarity to RDF.
(ii) Unlike the F&B approach that generates one large incoming-and-outgoing index, we store
the incoming and outgoing indexes separately, but they are jointly used, thus achieving small
indexes and less false positives at the same time. (iii) Our Graph Signature Index relies on disk-
based versions of Trace Equivalence and Bisimilarity which scale to relatively large data graphs,
as opposed to the memory-based summarization algorithms used for summarizing XML. (iv)
A query model and an evaluation scenario for RDF query paths is proposed, which is different
from XML paths, as for instance, property labels, not only node labels, can be retrieved.

2.2. Recent Work on Indexing RDF Data

After publishing preliminary ideas of our Graph Signature approach in (Hawash, Deik, & Jarrar,
2010; Jarrar & Dikaiakos, 2010; 2012), other researchers also worked on the idea of summariz-
ing data graphs, in particular, using Bisimulation. Tran et al. (2013), used Bisimilarity-based
summaries in a query execution plan that combines both querying the summary as well as the
original data, which they store in a way similar to the Vertical Partitioning approach (Abadi,
2007), but which utilizes information captured by the Bisimilarity summary. However, Tran et
al. do not tackle the problem of generating the Bisimilarity summaries, but rather naively skip
this problem and appear satisfied with only presenting the definition of the Bisimulation relation.
They also store the summary in the main memory, which is not scalable when dealing with large
RDF graphs. Furthermore, the authors exactly use the F&B approach introduced by Kaushik et
al. (2002b) to summarize XML data, and apply it for RDF, resulting in summaries that are not
much smaller than the original graph (as in the case of using F&B for XML). For example, they
summarized about 12.9 million triples of DBLP data in 11.6 million (a mere 10% reduction).
In order to solve this problem, the authors parameterized the Bisimilarity algorithm to produce
summaries up to a certain number of levels and for certain labels in the graph, but this generates

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 41

more false positives. As for their query evaluation, instead of building upon and utilizing well-
established fully-fledged RDF stores and optimization solutions, the authors restrict themselves to
storing the original data in a way similar to Vertical Partitioning, and use their F&B summary as
an enhancement only to their particular RDF storage solution. Moreover, they do not fully study
how to answer queries precisely from the summary without going back to the original graph.

Other researchers recently introduced disk-based versions of the Bisimilarity algorithm.
Hellings et al. (2012) introduced an efficient disk-based algorithm for computing Bisimilation.
However, this algorithm is designed for Directed Acyclic Graphs (DAGs) and therefore cannot
be applied for RDF graphs as they typically contain cycles (Schätzle et al., 2013). Schätzle et
al (2013) presented two implementations of Bisimilarity for RDF summarization; one using
SQL, similar to the initial version of our Bisimilarity disk-based algorithm (Hawash, Deik, &
Jarrar, 2010), and the other using MapReduce Technology. The MapReduce implementation
showed promising results for summarizing datasets of several-hundred-million to billion triples.
Another effort to introduce a MapReduce implementation of Bisimilarity was presented by Luo
et al. (2013), also with promising results for massive graphs. In spite of such promising results,
an SQL version of Bisimilarity remains of great practical importance, due to its suitability for
datasets of several-million triples (see section 5.6), as well as its simple implementation, as
also acknowledged by Schätzle et al. (2013). Nevertheless, none of these efforts on disk-based
Bisimilarity have studied deeply the theoretical or practical features of the algorithm for RDF
usage, nor did any of them compare Bisimilarity with Trace Equivalence (neither theoretically
nor empirically). In fact, they did not even consider introducing a disk-based Trace Equivalence
algorithm, and did not investigate how to utilize such summaries for query evaluation.

Our work is different from the work above in the following: (i) We pay a close attention to
the problem of generating summaries, unlike Tran et al. (2013), and solve it by introducing disk-
based versions of Bisimilarity as well as Trace Equivalence. (ii) Not only that, but also, unlike
the work of Hellings et al. (2012), Luo et al. (2013), and Schätzle et al. (2013), we do study and
compare the resultant summaries of both algorithms (both theoretically and empirically) and
conclude in suggesting the usage of both algorithms depending on the practical scenario at hand.
(iii) Unlike the F&B approach (Kaushik et al., 2002b) used by Tran et al. (2013), we propose a
novel approach to store our generated incoming and outgoing summaries separately, but use them
jointly, which results in smaller summaries and also less false positives. (iv) Graph Signature
focuses on answering complex queries precisely using the summary alone without going back
to the original data. (v) Our approach is generic; it is designed to be implemented on top of any
RDF store utilizing its features and capabilities, unlike Tran et al. (2013).

2.3. RDF Stores

Our Graph Signature is a generic index that can be implemented on top of any RDF Store. The
summary itself is a data graph and therefore both storing and querying it is done in the same
way as the original data graph. This section discusses the most prominent RDF Stores and how
our index could be implemented on top of them as an enhancement.

Oracle introduced an SQL-based scheme to query RDF data in (Chong et al., 2005). Spe-
cifically, an SQL table function called “RDF_MATCH” (or “SEM_MATCH”) was introduced,
which takes a SPARQL-like query as an argument, and returns a table of results that can be
further queried using SQL. Oracle stores RDF triples in one table G(S,P,O); thus a query with
n-levels implies joining the table n-1 times. In addition, Oracle builds several B-tree indexes on
G, as well as subject-property materialized views, such as V1 (s, p1, p2, …, pn). A tuple in V1 is a
subject identifier x, and the value of the column pi (i=1,2,…,n) is an object y. In this way, data

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

42 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

is transformed from a graph into a relational form; thus, less joins are needed when executing
a query. These subject-property views are seen as auxiliary, rather than core, indexes. This is
because there is no general criteria to know which subjects and which properties to group. Oracle
uses statistics to find possibly good groupings, otherwise, queries are executed on the original
graph; hence queries with many joins remain a challenge.

OpenLink has developed native RDF support within its Virtuoso RDBMS (Erling &
Mikhailov, 2007; 2010). Its initial storage solution for RDF is fairly conventional and similar
to Oracle. Virtuoso stores RDF as a single table of four columns (G,S,P,O), with two covering
indices: <G,S,P,O> and <O,G,P,S>. Also, Virtuoso assigns the O’s of string type that are longer
than 12 characters a unique ID, which enhances query performance. However, deep linear que-
ries of many variables remain a challenge as answering such queries involve several expensive
self-joins of the table.

RDF3X (Neumann & Weikum, 2008) proposes to store the RDF triples as a single (S,P,O)
table and to build B+-tree indexes over 6 permutations of the three dimensions (i.e. SPO, SOP,
PSO, POS, OSP, OPS). To exploit these indexes to their full potential, the query optimizer
chooses the best order and the types of joins to build an execution plan. Experiments conducted
by Neumann and Weikum (2008) show that execution time is still relatively large; a query of
three levels on the Yago RDF dataset took about 22 seconds.

Vertical	Partitioning (Abadi et al., 2007) proposes to store RDF triples as n two-column
tables, where n is the unique number of predicates P(S,O). Although this method attains sig-
nificant optimization, queries spanning several levels with many variables are expensive; a
query of only two levels took 15.88 seconds (Abadi et al., 2007).

Our Graph Signature can be built on top of any of the above mentioned RDF stores. The
idea of our solution is to reduce the size of the data by means of summarization. Implementing
our Graph Signature on top of an RDF Store means that we store and query our summaries in
the same way as the original data. Specifically, in Oracle, we store our summary as an SPO table
and query it using RDF_MATCH, whereas in OpenLink Virtuoso, one may store it as the two
suggested covering indices and query it using the Virtuoso API. In the case of RDF3X, our sum-
maries can be stored in SPO tables applying all kinds of suggested indices over them and using
the same query optimizer of RDF3X. In the case of using Vertical Partitioning, the Graph Sig-
nature can be vertically partitioned (in n two-column tables) and queried accordingly. It is worth
mentioning that several other promising RDF stores are available in literature and industry such
as Neo4j,7 TripleBit (Yuan et al., 2013), and Trinity.RDF (Zeng et al., 2013), on top of which
we can also implement our Graph Signature. In this paper, we choose to demonstrate our ap-
proach by implementing it on top of Oracle as it is one of the most reputable Database Manage-
ment Engines with wide-spread industrial support and commercial availability. The details of
our implementation and experimental evaluation are in sections 8 and 9, respectively.

3. INTUITION OF THE GRAPH SIGNATURE INDEX

The idea of the Graph Signature Index is to summarize a data graph such that queries are evalu-
ated using the summary instead of the original graph. Because the size of the summary is smaller
than that of the original graph, query evaluation using the Graph Signature can be faster. For
instance, we summarized 16 million triples of Yago in 0.5 million such that a query that costs
62.7 seconds on the 16 million triples, costs less than 0.6 seconds on the 0.5 million triples, while
producing exactly the same set of results.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 43

Given a data graph G, its Graph Signature is a two-fold summary: the O-Signature (SO)
and the I-Signature (SI). The O-Signature is a summary of the original data graph constructed
by grouping nodes that have the same set of their outgoing paths. The I-Signature is another
summary of the original graph, but it is constructed by grouping nodes that have the same set
of their incoming paths. Figure 1 shows a data graph (G) with its Graph Signature (SO and SI).
One can notice that nodes in the O-Signature are combined based on their outgoing paths. For
example, nodes CN1 and CN2 are grouped together because the sets of their outgoing paths
are the same: {(Name), (Capital, Population), (Capital, Name)}. However, node CN3 is not put
into the same group with CN1 and CN2 because there are two extra outgoing paths from CN3:
{(NotableFigure, BornIn), (NotableFigure, Name)}. The same can be noticed in the I-Signature.
For example, AU2 is not combined with AU1 and AU3 because it has an extra incoming path:
{(Editor)}. Each of the two summaries (SI and SO) is computed and stored separately the same
way the original graph G is stored, but they are jointly used when evaluating a query to produce
precise	answers (answers that are equal to those resulting from querying the original graph).
To illustrate this, in Table 1 we execute 6 queries on both summaries of the graph G depicted in
Figure 1, and compare the results with the target	answer (the answer obtained from G).

For any query, each part of the Graph Signature produces the correct answer and some more
results, called false	positives. That is, the target answer is equal to or is a subset of the answer
of each part of the signature. Hence, the intersection of the SO and SI answers equals to or is a
smaller superset of the target answer. One can notice from Table 1 that some queries do produce
precise results when queried over either SO or SI (e.g., Q1), while in Q2, SO is enough to answer
this query precisely and in Q3, SI is enough. Q4 represents the case of queries producing empty
results. In this case, the empty result is the precise answer. In Q5, three queries are presented
with different projections pertaining to the same query body: when the first node is projected
(Q5.a) SO is enough to produce precise results, while in (Q5.b), the intersection of the answers
of SI and SO suffice to precisely answer the query, and in (Q5.c) SI is enough. Q6 is an example
of a query that does not conform to our query model (section 6) and is not guaranteed to produce
precise results using SI, SO, nor the intersection of their results. The answer of such queries in-
cludes the target answer in addition to false positives. In our execution plan (section 7), queries
that conform to our query model (such as Q1-Q5) are executed on the summaries while others
are executed via the native RDF store on the original data.

4. APPLICATION USE CASE OF THE GRAPH SIGNATURE INDEX

This section presents a use case where challenging queries over large RDF datasets must be
answered within very short response-time. In particular, we illustrate MashQL, a graphical
query formulation language introduced in previous work (Jarrar & Dikaiakos, 2008; 2009;
2010; 2012), which allows non-technical people to easily query and fuse RDF data on the web.
Formulating a query in MashQL is an interactive process done using a “MashQL editor”, dur-
ing which the user performs selections from drop-down lists. While the user interacts with the
editor, the editor performs queries in the background to generate these lists. These queries are
called Background	Queries.

Figure 2.a depicts six snapshots (Windows I - VI) of the MashQL editor taken while a user is
formulating a query over the data graph in Figure 1. The query means “Give me all authors who
are born in a place whose capital is called Beirut”. While formulating this query, the MashQL
editor executes several queries in the background (Q1-Q5). In order to maintain an acceptable

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

interactive environment in such applications, the response time of background queries is expected
to be very small; within a few hundred milliseconds (Miller, 1968).

This use case demonstrates the importance of handling deep and complex query models.
The complexity of queries does not necessarily come from the many constraints they include.
For example, a star-shaped query (which is more generic than linear-shaped) might include many
constraints, but with short paths. In general, one of the most challenging types of queries are
those that span several levels (i.e. deep queries), as they require many expensive joins. It will be
shown later how such queries (deep, linear and demanding fast response) can be answered pre-
cisely (and quickly) using our Graph Signature Index without the need to query the original data.

5. CONSTRUCTION OF THE GRAPH SIGNATURE

Before presenting our query model and execution plan, we present the Graph Signature Index
and the algorithms to construct it. The reader can also glimpse at the query model and evalua-
tion in sections 6 and 7 first.

5.1. Basic Definitions

A directed labeled graph (also referred to here by data graph) is composed of vertices (nodes)
and edges connecting those vertices. The formal definition below is based on the definition of
the labeled graph of Champin and Solnon (2003):

Table	1.	Graph	Signature	answers	compared	with	the	target	answers

Query G answer SO Answer SI Answer SO∩ SI

Q1 ? p 1 ? p 4: (? s 1 ? p 1
? o 1 ? p 2 ? o 2 ? p 3
?o3?p4 ?o4)

A u t h o r N a m e ,
Author Populat ion,
A u t h o r B o r n I n ,
Editor Name, Editor
Populat ion, BornIn
Capital, BornIn Name,
BornIn NotableFigure,
NotableFigure BornIn,
NotableFigure Name,
NotableFigure
Population

A u t h o r N a m e ,
Author Population,
A u t h o r B o r n I n ,
Editor Name, Editor
Population, BornIn
Capital, BornIn Name,
BornIn NotableFigure,
NotableFigure BornIn,
NotableFigure Name,
NotableFigure
Population

A u t h o r N a m e ,
Author Populat ion,
A u t h o r B o r n I n ,
Editor Name, Editor
Populat ion, BornIn
Capital, BornIn Name,
BornIn NotableFigure,
NotableFigure BornIn,
NotableFigure Name,
NotableFigure
Population

A u t h o r N a m e ,
Author Populat ion,
A u t h o r B o r n I n ,
Editor Name, Editor
Populat ion, BornIn
Capital, BornIn Name,
BornIn NotableFigure,
NotableFigure BornIn,
NotableFigure Name,
NotableFigure
Population

Q2 ?p: (<BK3> <Author> ?o1
?p ?o2)

Name, BornIn Name, BornIn N a m e , B o r n I n ,
Affiliation

Name, BornIn

Q3 ?p: ?s ?p <AU1> Author Author, Editor Author Author

Q4 ?o2: (<BK3> <Author> ?o1
<Affiliation> ?o2)

{} {} CU {}

Q5 (a) ?s | (b) ?o1 | (c) ?o3:
(? s < A u t h o r >
? o 1 < B o r n I n >
?o2 <NotableFigure> ?o3)
*Three	queries	with	three	
different	 projections:	
?s,?o1,?o3

(a) B K 3 , B K 4
(b) A U 3 , A U 4
(c) AU4

(a) B K 3 , B K 4

(b) A U 3 , A U 4

(c) AU3, AU4

(a) BK3, BK4, BK1
(b) AU3, AU4, AU1
(c) AU4

(a) B K 3 , B K 4
(b) A U 3 , A U 4
(c) AU4

Q6 ? s : (? s < B o r n I n >
? o 1 < C a p i t a l >
? o 2 < N a m e >
<Jerusalem>)

AU1 AU1, AU2, AU3, AU4 AU1, AU3 AU1, AU3

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 45

Definition 1 (Directed Labeled Graph): Given	a	finite	set	of	vertex	labels LV and	a	finite	set	
of	edge	labels LE , a	directed	labeled	graph	is	defined	by	a	triple G V r rV E= , , , such	
that:

 ◦ V is	a	finite	set	of	vertices.
 ◦ r V LV V⊆ × is	the	relation	that	associates	vertices	with	labels,	such	that	each	vertex	

in	V	is	associated	with	exactly	one	vertex	label	in	LV	and	each	vertex	label	in	LV	is	as-
sociated	with	exactly	one	vertex	in	V,	i.e., rV is	the	set	of	couples v l,() such	that	each	
vertex v has	exactly	one	label l and	l	is	not	associated	with	any	other	vertex.

Figure	2.	A	MashQL	query	formulation	session	and	its	accompanying	queries

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

46 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

 ◦ r V V LE E⊆ × × is	the	relation	that	associates	edges	with	labels,	i.e., rE is	the	set	of	
triples v u l, ,() such	that	edge v u,() has	label l . We	can	define	the	set	of	edges E

as: E v u l rE= (){ }, , � .

It is worth mentioning here that an RDF graph is in fact a directed labeled graph. Thus, in
this paper we use the terms Data	Graph, RDF	Graph, and Directed	Labeled	Graph interchange-
ably. Definition (2) below defines the notion of a Path based on Definition (1). A Node Path can
be defined as: v v l v v l v v l v v ln n n n n n1 2 1 2 3 2 2 1 2 1 1, , , , , , , , , , , ,() () … () ()− − − − − , such that, v v l ri i i E, ,+()∈1
for i=1,2,…,n-1. Because in this paper we are interested in the structure of the path regardless
of the nodes v v vn1 2, , ,…() , we define the Path as an ordered set of consecutive edge labels.

Definition 2 (Path): A	Path	is	an	ordered	set	of	consecutive	edge	labels l l lm1 2→ →…→ ,
such	that	for li and li+1

 there	exist	some	nodes v u w G, , ∈ , such	that v u l ri E, ,()∈ , and

u w l ri E, , +() ∈1 (i=1,2,…,m-1).

5.2. The Notions of Trace Equivalence and Bisimilarity

Trace Equivalence is defined (based on outgoing paths) as an equivalence relation on the set of
vertices V, such that two vertices v u,() are Trace Equivalent if and only if the set of all paths
rooted in vertex v is equal to the set of all paths rooted in vertex u . We call the Trace Equiva-
lence relation when defined based on outgoing paths, O-Trace-Equivalence, and when it is based
on incoming paths, I-Trace-Equivalence. The formal definition of O-Trace-Equivalence based
on (Henzinger et al., 1995) is as follows.

Definition 3.a (O-Trace-Equivalence ≡O): The	vertex v trace-dominates	the	vertex u if	for	
every	finite	path	rooted	in u (u), there is a path rooted in v (v) such that u v= . The	
vertices u and v are	O-Trace-Equivalent,	written u v!O() if u trace-dominates v and v
trace-dominates u .

This definition can be trivially adapted to be based on incoming paths, in order to define
I-Trace-Equivalence as follows:

Definition 3.b (I-Trace-Equivalence ≡I): The	vertex v trace-dominates	 the	vertex u if	 for	

every	finite	path	terminated	in u
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟ , there	is	a	path	terminated	in v (v) such that u v= .

The	vertices u and v are	I-Trace-Equivalent,	written u v≡()!I! if u trace-dominates v
and v trace-dominates u .

A memory-based algorithm to generate summaries based on the Trace Equivalence relation
would simply suggest that we fully traverse the graph G and take each node in the graph and
find all outgoing paths from it and all incoming paths to it. After that, nodes having the same set
of outgoing paths are grouped together into one Equivalence Class, generating the O-Signature.
Similarly, nodes having the same set of incoming paths are grouped together, generating the I-

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 47

Signature. Each group in either summary is seen as an Equivalence Class of its members. Although
the idea of the Trace Equivalence algorithm appears to be straight-forward, unfortunately this
algorithm is computationally expensive; it is known to be PSPACE-complete (Henzinger et al.,
1995). However, as will be discussed later, in some practical cases one may use Trace Equiva-
lence to compute the data summary (e.g., when the data graph is simple or the summarization
time in not critical). Because of its usefulness in such cases, we decided to provide a disk-based
version of Trace Equivalence (section 5.4).

To avoid the computational complexity of Trace Equivalence (when it matters), we introduce
an alternative notion called Bisimilarity - an extensively discussed notion in the literature of
process algebra (Henzinger et al., 1995; Paige & Tarjan, 1987). Bisimilarity has the complexity
of O m nlog() for a graph with n vertices and m edges (Henzinger et al., 1995; Milo & Suciu,
1999). Thus, it is easier to compute than Trace Equivalence. Furthermore, we introduce the no-
tion of Bisimilarity as an approximation of Trace Equivalence, as suggested by Milo and Suciu
(1999). An equivalence relation (≈) on a data graph G is called an approximation of another
relation (≡), if it satisfies the following condition for nodes v u, in the data graph G: u v u v≈ ⇒ ≡
(Milo & Suciu, 1999). Because Bisimilarity satisfies this condition w.r.t Trace Equivalence (i.e.,
Bisimilarity implies Trace Equivalence), Bisimilarity is an approximation of Trace Equivalence.
That is, if two nodes are Bisimilar, this necessarily implies that they are Trace Equivalent (Fer-
nandez, 1990; Henzinger et al., 1995; Milo & Suciu, 1999).

Bisimilarity in a directed labeled graph is an Equivalence Relation defined on a set of ver-
tices V , such that two vertices u v,() are Bisimilar if and only if the set of edges coming im-
mediately out of u (predicates in RDF) is equal to the set of edges coming immediately out of
v (definition based on outgoing edges). Also, all successor nodes of u and v must be Bisimi-
lar. We call the Bisimilarity relation when defined based on outgoing paths, O-Bisimilarity, and
when it is based on incoming paths, I-Bisimilarity. The formal definitions are given in Defini-
tions (4.a) and (4.b) below.

Definition 4.a (O-Bisimilarity ≈O): Given	a	directed	labeled	graph	G=<V,	rV,	rE>	as	in	Defini-
tion	(1),	two	vertices u v V,() ∈ are O-Bisimilar, written u vO≈() , if	and	only	if:

1. For the set of all immediate edges out of v :
 { v v l v v l v v l En n, , , , , , , , , }' ' '

1 11 2 12 1() () … () ⊆ , there exists a set of immediate edges

out of u : u u l u u l u u l En n, , , , , , , , , ,' ' '
1 21 2 22 2() () … (){ }⊆ such that

l l i ni i1 2 1 2= = …()!for! , , , .
2. Conversely, for the set of all immediate edges out of u :

u u l u u l u u l En n, , , , , , , , ,' ' '
1 11 2 12 1() () … (){ }⊆ , there exists a set of immediate edges out

of v : v v l v v l v v l En n, , , , , , , , ,' ' '
1 21 2 22 2() () … (){ }⊆ such that l l i ni i1 2 1 2! ! , , , .= = …()!for!

3. The set of vertices v u i ni i
' ', , , ,() = …()!for! 1 2 are also O-Bisimilar.

The definition of I-Bisimilarity is trivially derived from Definition 4.a, as it is the inverse
of O-Bisimilarity:

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

48 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

Definition 4.b (I-Bisimilarity ≈I): Given	a	directed	labeled	graph	G=<V,	rV,	rE>	as	in	Definition	
(1),	two	vertices ! ,!u v V() ∈ are I-Bisimilar, written u vI≈() , if	and	only	if:

1. For the set of all immediate edges into v : { v v l v v l v v l En n1 11 2 12 1
'' '' '', , , , , , , , , }() () … () ⊆ ,

there exists a set of immediate edges into u : u u l u u l u u l En n1 21 2 22 2
'' '' '', , , , , , , , ,() () … (){ }⊆ ,

such that l l i ni i1 2 1 2! ! , , , .= = …()!for!
2. Conve r s e ly, f o r t he s e t o f a l l immed ia t e edges i n to u : {

u u l u u l u u l En n1 11 2 12 1
'' '' '', , , , , , , , , }() () … () ⊆ , there exists a set of immediate edges into v :

{ v v l v v l v v l En n1 21 2 22 2
'' '' '', , , , , , , , , }() () … () ⊆ such that l l i ni i1 2 1 2! ! , , , .= = …()!for!

3. The set of vertices v u i ni i
'' '', , , ,() = …()!for! 1 2 are also I-Bisimilar.

The memory-based version of the Bisimilarity algorithm can be found in (Paige & Tarjan,
1987). The idea of the algorithm is to create summaries in an iterative process. In each iteration,
the algorithm groups nodes up to a certain number of levels. Applying the Bisimilarity algorithm
to a data graph G to produces the summary based on outgoing paths (SO) involves two steps.
First, the algorithm groups the nodes based on the immediate edge labels (or predicates in RDF).
Second, these groups go through a number of iterations to split the nodes that conflict with the
Bisimilarity relation, until no more splitting can be done. The main issue with the memory-based
versions of both Bisimilarity and Trace Equivalence is that they are not suitable for large data
graphs, since a data graph needs to be loaded into the computer’s memory and the algorithms
are executed there. To solve this problem, disk-based versions of the algorithms need to be
introduced (see also (Hellings et al., 2012; Luo et al., 2013; Schätzle et al., 2013) on the impor-
tance of introducing disk-based algorithms for large data graphs). In section 5.4, we introduce
disk-based versions of Trace Equivalence and Bisimilarity and experiment them in section 5.6
on relatively large RDF datasets. Before that, we formally define our Graph Signature Index.

5.3. The Graph Signature Index

The Graph Signature Index consists of two summaries; one based on outgoing paths, called, the
O-Signature (SO) and another based on incoming paths, called, the I-Signature (SI). Each of these
two signatures can be built in two ways: either using Trace Equivalence, or Bisimilarity. We call
the O-Signature produced by Trace Equivalence SOT, and SOB when produced by Bisimilarity.
Similarly, when the I-Signature is produced by Trace Equivalence, we call it SIT, and SIB when it
is produced by Bisimilarity. Every node in any summary is an Equivalence	Class of some node
in the original graph G. We define the Equivalence Class in SOT by the O-Trace-Equivalence rela-
tion (≡O) defined above, whereas, in SOB, the Equivalence Class is defined by the O-Bisimilarity
relation (≈O). The Equivalence Class in SIT is defined by I-Trace-Equivalence (≡I) and, in SIB, it
is defined by I-Bisimilarity (≈I).

As will be discussed later, Trace Equivalence produces smaller summaries thus query
evaluation using Trace Equivalence summaries is faster than using Bisimilarity summaries.
However, computing Trace Equivalence is of high complexity (PSPACE complete). Neverthe-
less, it might be still used in case the summarization time is not very critical or in case the data
graph is simple. On the other hand, Bisimilarity produces larger summaries – thus query evalu-
ation using them can be slower – but the algorithm itself is easier to compute: O m nlog()

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 49

complexity. As a result, it is recommended to have Bisimilarity as a default summarization al-
gorithm while keeping the option for the user to choose Trace Equivalence if needed (see section
5.6). Here we present two versions of the definition of our Graph Signature, one based on Trace
Equivalence (Definition 5) and another based on Bisimilarity (Definition 5’).

Definition 5 (Graph Signature based on Trace Equivalence ST): Given	a	data	graph	G,	its	
Graph	Signature	ST	is	the	twofold	summary:	the	O-Signature	SOT	and	the	I-Signature	SIT.	In	
general,	ST	=	<SOT,	SIT>.

Definition 5.a (O-Signature based on Trace Equivalence SOT): Given	a	data	graph	G,	its	SOT	
summary	is	a	directed	labeled	graph	where	each	node	in	SOT	is	an	Equivalence	Class	on	
O-Trace-Equivalence	(≡O)	of	some	node	in	G,	such	that	every	node	in	G	has	exactly	one	
Equivalence	Class	in	SOT,	and	there	exists	an	edge	p	in	SOT	from	u	to	v	(u	

P→	v)	iff	G	contains	
an	edge	p	from	a	to	b	(a	P→	b)	and	a	∈	u,	b	∈	v.

Definition 5.b (I-Signature based on Trace Equivalence SIT): Given	a	data	graph	G,	its	SIT	
summary	is	a	directed	labeled	graph	where	each	node	in	SIT	is	an	Equivalence	Class	on	
I-Trace-Equivalence	(≡I)	of	some	node	in	G,	such	that	every	node	in	G	has	exactly	one	
Equivalence	Class	in	SIT,	and	there	exists	an	edge	p	in	SIT	from	u	to	v	(u	

P→	v)	iff	G	contains	
an	edge	p	from	a	to	b	(a	P→	b)	and	a	∈	u,	b	∈	v.

In the following we present the same definition of the Graph Signature above, but this time
based on Bisimilarity:

Definition 5’ (Graph Signature based on Bisimilarity SB): Given	a	data	graph	G,	its	Graph	
Signature	SB	is	the	twofold	summary:	the	O-Signature	SOB	and	the	I-Signature	SIB.	In	general,	
SB	=	<SOB,	SIB>.

Definition 5’.a (O-Signature based on Bisimilarity SOB): Given	a	data	graph	G,	its	SOB	sum-
mary	is	a	directed	labeled	graph	where	each	node	in	SOB	is	an	Equivalence	Class	on	O-
Bisimilarity	(≈O)	of	some	node	in	G,	such	that	every	node	in	G	has	exactly	one	Equivalence	
Class	in	SOB,	and	there	exists	an	edge	p	in	SOB	from	u	to	v	(u	

P→	v)	iff	G	contains	an	edge	p	
from	a	to	b	(a	P→	b)	and	a	∈	u,	b	∈	v.

Definition 5’.b (I-Signature based on Bisimilarity SIB): Given	a	data	graph	G,	its	SIB	summary	
is	a	directed	labeled	graph	where	each	node	in	SIB	is	an	Equivalence	Class	on	I-Bisimilarity	
(≈I)	of	some	node	in	G,	such	that	every	node	in	G	has	exactly	one	Equivalence	Class	in	SIB,	
and	there	exists	an	edge	p	in	SIB	from	u	to	v	(u	

P→	v)	iff	G	contains	an	edge	p	from	a	to	b	
(a	P→	b)	and	a	∈	u,	b	∈	v.

5.4. Disk-based Versions of Trace Equivalence and
Bisimilarity Summarization Algorithms

In order to summarize large graph-shaped data, we introduce disk-based versions of the algo-
rithms. Our disk-based version of Trace Equivalence is presented formally in Figure 3 using
Relational Algebra notation (as it is SQL-based). Its idea is based on Definitions 3.a and 3.b
of Trace Equivalence. That is, in order to generate the summary of a graph (based on outgoing
paths), we first find all outgoing paths of a node and then group the nodes that have the same
set of paths together. Since a data graph is represented as an <S,P,O> table, finding the set of
all paths from a node is done by continuously performing self-left joins to this table until all
paths are determined. The number of self-left joins required depends on the levels the longest

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

50 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

path spans, e.g., if the longest path is only two levels only one join is needed, if it is four levels
deep then two joins are needed, and so on. The stopping condition of this process is: when no
more left joins possible; i.e., the longest path has been retrieved and further joins do not retrieve
additional paths.

Because a self-left join becomes more expensive as the table becomes larger, the algorithm
eliminates the columns that are not needed before performing each join in order to enhance the
performance. Specifically, the result of the first self-left join of the table s p o, , is a table named

s p o s p o1 1 1 2 2 2, , , , , (self-left join is done on !o s1 2=). Before performing the second self-left

join we eliminate columns o s1 2, , resulting in redundant rows, which are then eliminated when

creating the reduced table, s p p o, , ,1 2 on which the second self-left join is performed, and so
on. This column elimination is done in order to remove redundant rows that appear after remov-
ing the columns, thus reducing the size of the table, which results in significant enhancement in
performance as well as reducing space requirements. An additional step to detect and resolve
loops before performing each self-left join is done by checking the condition “s o= ” for each
row (line 4 in Figure 3), i.e., to check whether the starting vertex of the path is equal to the
terminating one. Such rows are isolated and are not considered in the further joins.

Although we have implemented some technical enhancements in our disk-based version
of Trace Equivalence as described above, the computational complexity of our version of the
algorithm is still the same as the memory-based version (PSPACE Complete). Improving the
complexity of the algorithm is beyond the scope of our paper.

In what follows we introduce a disk-based version of the Bisimilarity algorithm, which is
computationally less expensive than Trace Equivalence. The complexity of our disk-based ver-
sion of Bisimilarity is again similar to that of the memory-based version; O m nlog() for a graph

Figure	3.	The	disk-based	Trace	Equivalence	algorithm

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 51

with n vertices and m edges. To generate the O-Signature using our disk-based version of
Bisimilarity (Figure 4), the initial grouping of nodes with similar outgoing predicates is done by
assigning to each distinct predicate (P) a unique hash value (lines 2-4 in Figure 4). Then, for
each node, the algorithm calculates the sum of the hash values of its predicates (line 5). Nodes
that end up having the same summation belong to the same group. That is, this summation reflects
the category of the node.

In the second step (i.e., the iterative step), for each node in the graph, we find its successors,
and then we sum the node’s category with a hash value of the sum of all its successors’ catego-
ries. This new sum is then hashed, and its new value is used as the new category number of the
node. In this way, nodes in each category are split according to their successors’ categories. In
general, this step is repeated k times, until the table stabilizes (no more categories are updated),
with k corresponding to the longest acyclic path in the graph. The problem of cycles in the
graph are solved by the condition of the iterative step (the while-loop condition, line 6 in Figure
4), which breaks the while-loop when the number of the categories are not changing anymore.
This loop condition guarantees that the algorithm stops regardless of the existence of cyclic paths
in the graph. It is worth mentioning that in our implementation using Oracle DBMS, we used
Oracle’s hash function (ORA_HASH8) that produces a number between 1 and 232-1.

The algorithms in Figures 3 and 4 produce summaries based on outgoing paths (SOT, SOB).
Adapting these algorithms to generate summaries based on incoming paths (SIT, SIB) is straight
forward. We simply use the same algorithms presented in Figures 3 and 4, but in line (1) of both
algorithms, instead of copying G into table R0, we copy the inverse of G. That is, instead of
copying <S,P,O> from G into R0, we copy <O,P,S> from G into R0. After that the algorithms
continue normally as described in Figures 3 and 4. Using relational algebra, line (1) in Figures
3 and 4 is replaced by: ρ π! ,! , , !R GO P S0() . In SQL, this can be written as:
create table R0 (S,P,O) as select (O,P,S) from G.

Figure	4.	The	disk-based	Bisimilarity	algorithm

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

52 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

As mentioned previously, the memory-based version of the Bisimilarity algorithm was used
in literature to summarize XML data using several different techniques, such as 1-index (Milo
& Suciu, 1999), A(k)-index (Kaushik et al., 2002a), and F&B (Kaushik et al., 2002b). However,
RDF is more complex than XML in several ways. RDF in its nature forms a graph, thus there
is no single root, whereas XML is tree structured. This tree structure implies that every node
has only one parent, and that for every node there is only one unique path that this node can be
reached from (Milo & Suciu, 1999). Conversely, in RDF, the same node may be accessed via
several paths, and through different nodes. Also, RDF may contain cycles that should be taken
into consideration.

These differences between tree-shaped data (XML) and graph-shaped data (RDF) are re-
flected on the summaries of Trace Equivalence and Bisimilarity. For tree-shaped data the two
equivalence relations coincide, thus their algorithms generate identical summaries (Milo & Suciu,
1999). However, in the case of graph-shaped data, Bisimilarity summaries are approximations
of Trace Equivalence summaries. This is because Bisimilarity does not catch/summarize all
cases that are Trace Equivalent. In other words, some nodes that are grouped together because
they are Trace Equivalent might not be Bisimilar and thus might not be grouped together. In the
following, we explain this issue by pointing out two typical cases.

The first case (see Figure 5.a) emerges from the fact that, in graph-shaped data, edge labels
(predicates) coming out of a node (or going into a node) might not be unique. Using Trace
Equivalence, nodes A1, A2, and A3 in Figure 5.a have the same set of outgoing paths, so they
are grouped together in the O-Signature (SOT). However, this is not the case in the Bisimilarity
algorithm, because the successors of these nodes do not fall in the same category (i.e., they are
not bisimilar). Thus, in Bisimilarity, the three nodes A1, A2, and A3 are put into three different
categories in SOB. The second case that appears in graph-shaped data, which is discussed by Milo
and Suciu (1999), is depicted in Figure 5.b. One can notice that A1 and A2 are grouped together
using the Trace Equivalence algorithm to generate the O-Signature as they have the same set
of paths. Meanwhile, these two nodes are not Bisimilar; because their successors (M1 and M3)
are not Bisimilar. Such	cases	result	in	Bisimilarity	summaries	larger	than	Trace	Equivalence	
summaries.	Thus,	query	evaluation	on	Trace	Equivalent	summaries	can	be	faster,	although	the	
Trace	Equivalence	algorithm	is	computationally	more	expensive.

5.5. Storage and Size of the Graph Signature

The Graph Signature Index is an RDF Graph that can be stored the same way the original RDF
graph is stored. Thus, storing it depends on the particular RDF store used. In this paper, we
choose to demonstrate our work on top of Oracle as it is a well known database solution that
supports RDF. Since Oracle basically stores the RDF graph in one table of <S, P, O>, each part
of the Graph Signature (i.e., the O/I-Signature) is stored as an <S,P,O> table. The subjects and
objects of each signature table are category numbers corresponding to summarization groups.
In addition, we build two Graph	Signature	Extents, each of which is a lookup table storing each
node in the original graph and its corresponding category in the O/I-Signature. The schemas of
the extent tables are:
extent_o(SoID,Node), extent_i(SiID,Node).

If our Graph Signature is to be implemented on top of another solution, its storage will be
different. For example, if we are to implement our index using C-Store (Stonebraker et al., 2005)
with Vertical Partitioning (Abadi et al., 2007), then it needs to be vertically partitioned into n
two-column tables, where n is the unique number of predicates.

The space cost for storing each part of the Graph Signature consists of the space of the
signature and the space of the extent. The size of each part of the Graph Signature is at most as

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 53

large as the data graph; but in practice, it is much less, as our experimental evaluation shows
(section 5.6). The size of the extent is exactly the number of unique nodes in the data graph.

5.6. Experimental Evaluation of the Summarization Algorithms

5.6.1. Experiment Setup

Our disk-based versions of Trace Equivalence and Bisimilarity were implemented using PL/
SQL in Oracle 11g. The experiments were conducted on a PC with a 2.50 GHz Intel Core 2
Quad CPU and a 250 GiB SATA Hard Disk, on a Windows XP SP2 Operating System. Each
experiment was conducted twice; once with 2GiB of memory and another time with only 1GiB,
in order to demonstrate that our algorithms are disk based. For the purpose of the experiments
presented here we used both algorithms to generate summaries based on outgoing paths (SO,T
and SO,B). The behavior of both algorithms to generate I-Signatures is similar to the O-Signatures
case presented here.

In the experiments, we used two real-world RDF datasets: DBLP and Yago. Yago is a large
semantic knowledge base derived from Wikipedia and WordNet containing more than 2 million
entities (e.g., persons, organizations, cities), whereas DBLP is about scientific publications from
the DBLP Bibliography. Our Yago dataset contains 15 million triples (1.10GiB) whereas the
DBLP dataset contains 8 million RDF triples (1.07GiB). We partitioned Yago into 5 tables: Y3
with 3 million triples, Y6 with 6 million, Y9 9 million, Y12 12 million, and Y15 with 15 mil-
lion triples. DBLP was partitioned into 4 tables: D2, D4, D6, and D8 with 2, 4, 6, and 8 million
triples, respectively. Note that no sorting was applied on the data before partitioning (e.g., D4
was created by:
create table D4 as select * from D8 where rownum<=4000000).

The two datasets differ in the nature of the data they contain. DBLP data tends to be more
homogenous as most of its nodes have similar paths. Also, DBLP paths tend to be shorter than
those in the Yago dataset (the longest path in our DBLP dataset is 4 levels long). Yago data,
on the other hand, is more heterogeneous as it contains data from a very diverse spectrum of
domains (the domains of Wikipedia and Wordnet) and node paths tend to be longer than those
in DBLP. Note that these observations impact the results of the experiments (Tables 2 and 3),
as will be discussed shortly.

5.6.2. Analysis of the Experimental Results

The fact that our algorithms are written in SQL and executed using Oracle DBMS shows that
they are disk-based. This is further confirmed by the results of our experiments in Tables 2 and
3; reducing the memory installed on the machine from 2 GiB to 1 GiB had no impact on the
time cost of summarization for both algorithms. Furthermore, one can notice the scalability of
the behavior of both algorithms with respect to the number of triples. For instance, in the case of
Trace Equivalence (and similar for Bisimilarity), the whole Yago dataset (Y15) is summarized
by 462K triples. This number tends to increase when the data is smaller (e.g. 658K for Y12).
The same is true with DBLP; D8 is summarized in 30K triples using Trace Equivalence while
D6 is summarized in 118K triples. This is because more similarities were found when the whole
data is put together (notice that we did not apply any sorting before partitioning the data). In
other words, some nodes in D6 are grouped in several equivalence classes (instead of one) as
they have different paths, while when all data is put together in D8, it is found that these nodes
have the same paths. This implies that the size of the summary does not necessarily increase
when more triples are added to the data graph. Moreover, it is noticed that the nature of the data
being summarized impacts the size of the summaries and the summarization time. For example,

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

54 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

the summary of D6 (118K, using Trace Equivalence) is smaller than the summary of Y6 (312K,
using Trace Equivalence), as DBLP is more homogenous. Also notice that Y6 is summarized in
241 seconds while D6 is summarized in 68 seconds (using Bisimilarity) though both contain 6
million triples. This is because DBLP is more homogenous and its paths are shorter.

In comparing between the behavior of Bisimilarity and Trace Equivalence algorithms, one
notices some differences. First, the time cost of the Bisimilarity algorithm is almost always less
than that of Trace Equivalence. In particular, as the number of triples increases in the graph, the
difference between the time-costs of both algorithms increases. For example, Y3 was summa-
rized in 95 seconds using Trace Equivalence and in 96 seconds using Bisimilarity using 2 GiB of
memory, i.e., no significant difference between the performances of both algorithms. However,
the summarization of Y6 using Trace Equivalence costs 311 seconds whereas, using Bisimilarity,
the cost is 241 seconds; a difference of 70 seconds (22.5% less). For the Y15 dataset, the Trace
Equivalence algorithm finishes after 9,869 seconds, whereas the Bisimilarity algorithm finishes
after 1,818 seconds (about 81.6% less than the time-cost of Trace Equivalence).

A second difference between Bisimilarity and Trace Equivalence is in the performance
behavior of both algorithms with respect to the data size. An initial look at the results of the
experiments conducted on the DBLP dataset (Table 3) reveals no major difference in the perfor-
mance behavior of both algorithms; both appear to be almost linear (Figure 6.a). Due to the
simple homogenous nature of the DBLP data, the behavior of Trace Equivalence becomes
closer to that of Bisimilarity. This is also because the longest path in DBLP spans four levels;
that is, Trace Equivalence takes a maximum of two joins to traverse the D8 graph. However, the
experiments on the more heterogeneous Yago dataset reveal the more accurate performance
behavior of both algorithms. This behavior is depicted in Figure 6.b, which shows that the per-
formance behavior of the Bisimilarity algorithm is linear with respect to the number of triples
in the graph, whereas the performance of the Trace Equivalence algorithm is exponential. In
fact, one can expect such performance behavior from both algorithms; theoretically, Trace
Equivalence is known to be PSPACE complete, whereas Bisimilarity is O m nlog() for a graph
with n vertices and m edges.

Table	2.	Summary	of	experimental	results	using	our	disk-based	versions	of	Trace	Equivalence	
and	Bisimilarity	on	YAGO	dataset

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 55

A third difference between Trace Equivalence and Bisimilarity is in the summary itself.
One can notice from Tables 2 and 3 that in all the experiments, Bisimilarity summaries are
always larger than Trace Equivalence summaries. For example, the summary of D8 using Trace
Equivalence contains 30K triples, whereas using Bisimilarity, it contains 35K triples. The same
can be noticed in the Y15 dataset: it is summarized into 462K using Trace Equivalence and into
499K using Bisimilarity. As explained previously, the reason behind this is that Bisimilarity is
an approximation of Trace Equivalence. One might also notice that the differences in the sizes of
the summaries between Trace Equivalence and Bisimilarity tend to be higher in DBLP data than
Yago; Bisimilarity summaries are 5.7% larger (on average) in the case of Yago than their Trace
Equivalence counterparts, while DBLP Bisimilarity summaries are 16.5% larger, on average.
The reason for this is the nature of the data itself; DBLP data is about scientific publications,
where a publication tends to have several authors, resulting in many nodes in the data graph
having several non-unique predicates, which might cause cases such as those depicted in Figure
5, which Bisimilarity does not summarize.

Table	3.	Summary	of	experimental	results	using	our	disk-based	versions	of	Trace	Equivalence	
and	Bisimilarity	on	DBLP	dataset

Figure	5.	Special	cases	that	appear	only	in	graph-shaped	data

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

56 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

From our discussion above, we noticed that the summarization time cost of Bisimilarity
is less than that of Trace Equivalence. On the other hand, Trace Equivalence produces smaller
summaries than Bisimilarity, which means evaluating queries over Trace Equivalence summaries
is typically faster. We also noticed that when the data itself tends to be more homogenous and
its paths shorter (as in DBLP), the behavior of Trace Equivalence becomes close to that of Bi-
similarity. Based on this, we propose using Bisimilarity in some cases and Trace Equivalence in
others. In general, because of its better performance, we recommend Bisimilarity as the default
summarization algorithm, while using Trace Equivalence in particular scenarios. For example,
when the summarization time-cost is not critical for the user and/or the data is homogenous with
short paths, one might use Trace Equivalence. For instance, for our particular setup here, we would
recommend using Bisimilarity to summarize Yago and Trace Equivalence to summarize DBLP.

6. THE QUERY MODEL

As mentioned earlier, our query model tackles one of the most challenging query types; deep
linear-shaped queries of many variables, spanning several levels. Such queries are among the
most expensive, especially when evaluated on a large RDF graph stored in one <S,P,O> table, as
they require multiple expensive self joins. The complexity of such queries does not necessarily
come from the many conditions they include, but rather from the depth of the query (the levels
it spans) and the number of variables. The more levels a query spans and the more variables it
contains, the more joins are required and the more expensive these joins are. Optimizing such
queries, however, leads to optimizing more generic query models such as tree and star-shaped
queries, as the linear query model is the building block of these models.

Definition 6 (Query Path): We define a query path as an expression of the form:
O PO P P On n1 1 2 2 1…{ }− , where Oi is a query node, and Pj is a query edge (i=1,2,…,n;	
j=1,2,…,n-1). A variable node (unbound node) is denoted by ?Oi and a variable edge (un-
bound edge) by ?Pj. A non-variable node (bound node) is denoted by < >Oi and a non-

variable edge (bound edge) by < >Pj . To refer to nodes and edges that can be either bound

or unbound we use the notation Oi for nodes and Pj for edges.

Figure	6.	Performance	behavior	of	Trace	Equivalence	and	Bisimilarity

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 57

Definition 7 (Graph Signature Query Model �): Our Graph Signature Query Model (�)
is defined as: ? , ,? | ? :P P O O PO P P On i n n1 1 1 1 2 2 1… …{ }− − , i n= …1 2 3, , , , ! , where the

query condition is a linear path O PO P P On n1 1 2 2 1…{ }− ! and the projections are only predicates

(? , ,?)P Pn1 1… − or alternatively one node (?Oi), such that when a query node is projected
(?Oi) all other query nodes must be unbound.

7. EVALUATING QUERIES WITH THE GRAPH SIGNATURE

Recall from our earlier discussion, that the answer obtained from executing a query on the O-
Signature -and similarly on the I-Signature- is always a superset or equals the target answer (the
answer obtained from the original data graph). In case the answer of the I/O-Signature equals
the target answer, we call it a precise answer. Otherwise, it is called a safe answer, since it equals
the target answer and some more false	positives. In this section, we illustrate how queries that
conform to our query model (�) can be answered precisely using only the Graph Signature.
This is done through introducing a set of nine query evaluation theorems and an execution plan
based on them. Our theorems and execution plan produce precise results whether they are
evaluated on Trace-Equivalence-based Graph Signature (ST) or on Bisimilarity-based Graph
Signature (SB), following the proposition below.9

Proposition. Given	a	data	graph	G,	 its	Trace-Equivalence	summary	ST,	and	 its	Bisimilarity	
summary	SB,	if	a	query	(that	conforms	to �)	produces	precise	results	when	evaluated	on	
ST,	then	it	produces	precise	results	if	evaluated	on	SB.

Theorems 1 and 2 below are two intuitive theorems that apply to any arbitrary query:

Theorem 1. Given	an	arbitrary	query,	the	answer	of	the	O-Signature	is	always	safe	and	similarly	
the	answer	of	the	I-Signature.

Theorem 2. Given	an	arbitrary	query,	if	the	answer	of	the	I/O-Signature	is	empty	or	the	inter-
section	of	the	results	of	both	is	empty,	then	this	answer	is	always	precise.

The following theorems apply only to queries that conform to our query model such that
all projections are query edges:

Theorem 3. Given	a	query	that	conforms	to	our	query	model � such	that	all	projections	are	
query	edges,	if	all	query	nodes	are	unbound:?P1,…,?Pn-1:{?O1	P1 … Pn-1 ?On}, the	answer	
of	either	the	O-Signature	or	the	I-Signature	is	always	precise.

Theorem 4. Given	a	query	that	conforms	to	our	query	model � such	that	all	projections	are	
query	edges,	if	the	first	query	node	in	the	query	path	is	bound	and	all	remaining	query	nodes	
are	unbound:?P1,…,?Pn-1:	{<O1>P1	?O2	P2	…	Pn-1	?On},	then	the	answer	of	the	O-Signature	
is	always	precise.

Theorem 5. Given	a	query	that	conforms	to	our	query	model � such	that	all	projections	are	
query	edges,	if	the	last	query	node	in	the	query	path	is	bound	and	all	remaining	query	nodes	
are	unbound:	?P1,…,?Pn-1:{?O1	P1	?O2	P2	…	Pn-1	<On>},	then	the	answer	of	the	I-Signature	
is	always	precise.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

58 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

Theorem 6. Given	a	query	that	conforms	to	our	query	model � such	that	all	projections	are	
query	edges,	if	one	node	located	anywhere	in	the	query	path	is	bound	and	all	remaining	
query	nodes	are	unbound:	?P1,…,?Pn-1:	{?O1	P1	...	<Oi>	…	Pn-1	?On}	(where;	1≤ i ≤ n),	
then	the	intersection	of	the	answers	of	both	the	I-Signature	and	the	O-Signature	is	always	
precise.

The following theorems also apply only to queries that conform to our query model such
that the projection is exactly one query node and all query nodes in the query path are unbound.

Theorem 7. Given	a	query	that	conforms	to	our	query	model � such	that	the	projection	is	the	
first	query	node	in	the	query	path	and	all	query	nodes	are	unbound:	?O1:	{?O1	P1	?O2	P2	
…	Pn-1	?On},	then	the	answer	of	the	O-Signature	is	always	precise.

Theorem 8. Given	a	query	that	conforms	to	our	query	model � such	that	the	projection	is	the	
last	query	node	in	the	query	path	and	all	query	nodes	are	unbound:	?On:	{?O1	P1	?O2	P2	…	
Pn-1	?On},	then	the	answer	of	the	I-Signature	is	always	precise.

Theorem 9. Given	a	query	that	conforms	to	our	query	model � such	that	the	projection	is	
exactly	one	query	node	located	anywhere	in	the	query	path	and	all	query	nodes	are	unbound:	
?Oi:	{?O1	P1	...	?Oi	…	Pn-1	?On	}	(where;	1≤ i ≤ n), then	the	intersection	of	the	answers	of	
both	the	I-Signature	and	the	O-Signature	is	always	precise.

The flowchart in Figure 7 depicts the evaluation scenario based on the above theories. As
shown, the Graph Signature is used to answer queries that conforms to our query model � while
other queries are executed using the native query engine that the Graph Signature is built on.

As the flowchart in Figure 7 depicts, an arbitrary query is first checked against our query
model � . If the query does not conform to the query model, it is directed to the native query
engine; otherwise it is checked for further conditions. If the query meets the exact conditions
imposed by the theories sketched above, it is executed according to the theories (either on the
O-Signature, the I-Signature, or both). A query that conforms to � is first checked for projec-
tions; if all projections are predicates, then the query is checked for bound nodes. If all nodes
are unbound, the query can be executed on either summary. If one node is bound, then its posi-
tion is checked and the query is executed accordingly; on the O-Signature if the bound node is
the first node in the query path, on the I-Signature if the bound node is the last node, otherwise,
the query is executed on both signatures and the intersection of the answers is the precise result
set (this implements theories 3-6). If more than one bound node is found, the query is directed
to the native query engine. In the case that the projection is one query node, the query is checked
for bound nodes. If there is any bound node, the query is directed to the native query engine,
else, it is processed according to theories (7-9), where the position of the projection node deter-
mines which signature it is executed on. However, no matter where the projection node is lo-
cated, the intersection of the answers of the O-Signature and the I-Signature always produces
precise results. Nevertheless, if the projection node is the first one in the query path, then the
O-Signature suffices to produce precise results, if it is the last, then the I-Signature is sufficient.

8. IMPLEMENTATION OF THE QUERY EXECUTION PLAN

The query evaluation scenario depicted in Figure 7 is implemented as a java stored procedure
that takes a SPARQL query as an input and returns precise results that can be further processed
using SQL . Java stored procedures are Java methods published to SQL and stored in the Oracle

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 59

DBMS for general use. They are compiled once and stored in an executable form, which results
in quick and efficient procedure calls with minimal overhead. Querying a data graph is done using
Oracle’s SEM_MATCH function. In specific, we have implemented our java stored-procedure
on top of SEM_MATCH, such that the stored procedure evaluates queries that conform to our
query model using the SEM_MATCH function over the Graph Signature (following the execu-
tion plan in Figure 7). The execution process follows these steps:

1. The function parses the SPARQL query to determine the variable and non-variable nodes
in addition to the number and types of projections in the query.

2. Using the information determined in step 1, the target summary to be used in query evalu-
ation is determined based on the conditions imposed by the theorems presented in section
7, as depicted in Figure 7.

3. Before executing the query over the target summary, the non-variable node labels in the
query are replaced with their corresponding category numbers found in the Graph Signature
Extent.

4. The query is then evaluated on the target summary using SEM_MATCH, according to the
chosen evaluation path. In the case where a node is projected, the results obtained contain
only group IDs. Therefore, these results are joined with the Graph Signature Extent to obtain
(i.e., lookup) the target answer for the query.

We have also implemented a Mapping	Dictionary to gain the best performance results. The
Mapping Dictionary is a lookup table that maps each node, and edge label in the RDF dataset
into a unique identifier (dID). All literals and URIs in the original data graph are replaced with
their corresponding dIDs, such that the data graph would consist of numerals only instead of long
URIs and literals. This is done before computing the Graph Signature and its extent. This has two
advantages. (i) The size of the O-Signature and the I-Signature and the extent are compacted in

Figure	7.	Flow	chart	depicting	the	execution	plan

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

60 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

terms of disk space usage. (ii) Executing queries on tables containing only numerals allows for
faster joins, comparison, and matching operations.

Our query execution plan does not currently optimize all types of queries, but rather
optimizes linear queries with many variables; a query type which Oracle performs poorly in.
Oracle’s query optimizer, however, can utilize our optimization of linear queries for evaluating
more generic query models such as tree-shaped and star-shaped queries. This could be done, for
instance, by submitting certain query paths to our query execution plan. In our implementation,
we built our execution plan on top of Oracle instead of tuning its query optimizer, as Oracle’s
query optimizer is not open.

9. EXPERIMENTAL EVALUATION OF THE
GRAPH SIGNATURE INDEX

This section presents the experimental evaluation of our proposed Graph Signature Index, which
we implemented on top of Oracle. Our experiment was conducted on the same PC we have used
in evaluating the summarization algorithms (section 5.6.1). For this experiment, we define two
sets of benchmark queries and execute them twice on a relatively large RDF graph in Oracle: once
without the Graph Signature and another time with the Graph Signature. For the RDF dataset, we
use the largest and most heterogeneous datasets of those presented earlier: Yago with 15 million
RDF triples (Y15), which is 1.10 GiB. Our queries are evaluated on the Bisimilarity-based Graph
Signature, which is larger than the Graph Signature produced by Trace Equivalence. Thus, we
demonstrate here a more challenging case of our approach, since if our queries were evaluated
on the summaries produced by Trace Equivalence, our query execution would be faster as the
summaries are smaller. Furthermore, our choice of the Y15 dataset reflects a realistic use case;
a real-world RDF dataset of medium complexity presenting data from Wikipedia and Wordnet.10

From the Yago dataset we derived 13 benchmark queries, divided into two groups (Table 4).
The first group contains several queries that are encountered in some Web 3.0 applications such
as MashQL. The second group of queries can be considered an extreme case of linear shaped
queries where all the query nodes and edges are variables - thus requiring expensive joins. The
aim of this second group of queries is to demonstrate the power of the enhancement that the
Graph Signature introduces to Oracle. Even though these queries are not necessarily faced in
practice, they form a good showcase for exposing the limits of Oracle Semantic Technologies
with and without the Graph Signature Index.

The results of our experiments are shown in Table 4 and Figure 8. One can notice that the
performance of Oracle is much improved with the Graph Signature Index. This improvement is
specially noticed in queries that span a long path (e.g., A6, A7). Queries in group B present an
extreme case for Oracle with and without the Graph Signature Index. As evident from the results,
the response of Oracle’s SEM_MATCH table function after the 4th level (B5), was larger than
20 minutes. On the other hand, although the execution time using our index increases at each
level, this increase remains acceptable for such type of extreme queries. Again, the performance
boost that the Graph Signature Index provides is due to its size, which is much smaller than that
of the original graph.

10. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel approach for query optimization for RDF stores, namely,
the Graph Signature Index, which is a generic index that can be implemented on top of any RDF

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 61

store as an enhancement. The idea is to summarize a data graph and instead of querying the
original data, we query the summary. Because the size of the summary is typically smaller than
the original data, querying it can be faster than querying the original data. Our summary (the
Graph Signature) is two-fold; the O-Signature, which groups nodes based on their outgoing paths,
and the I-Signature which is based on incoming paths. Both summaries are stored separately but

Table	4.	The	benchmark	queries	and	their	evaluation	time-cost

Benchmark Queries Time costs in seconds

Oracle with
GS

Oracle without
GS

Group A

A1 ?p1:{?s <y:wrote> ?o ?p1 ?o1 ?p2 ?o2} 0.441 25.640

A2 ?p,?p1,?p2:{<Palestine> ?p ?o ?p1 ?o1 ?p2 ?o2} 0.578 29.875

A3 ?p,?p1,?p2:{?s ?p ?o ?p1 <Palestine> ?p2 ?o2} 0.587 29.593

A4 ?p,?p1,?p2:{?s ?p ?o ?p1 ?o1 ?p2 <Palestine>} 0.556 29.641

A5 ?o2:{?s <y:isMarriedTo> ?o ?p ?o1 <y:locatedIn> ?o2} 0.291 21.922

A6 ?s:{?s <y:happenedIn> ?o ?p1 ?o1 ?p2 ?o2 ?p3 ?o3} 0.587 62.734

A7 ?o3:{?s ?p ?o ?p1 ?o1 ?p3 ?o2 <y:happenedIn> ?o3} 0.785 64.813

A8 ?o2:{?s ?p ?o ?p1 ?o1 <y:hasCurrency> ?o2 ?p3 ?o3} 2.469 32.703

Group B

B1 ?p:{?s ?p ?o} 0.344 110.390

B2 ?p:{?s ?p ?o ?p1 ?o1} 1.953 302.672

B3 ?p:{?s ?p ?o ?p1 ?o1 ?p2 ?o2} 5.250 525.844

B4 ?p:{?s ?p ?o ?p1 ?o1 ?p2 ?o2 ?p3 ?o3} 10.234 702.969

B5 ?p:{?s ?p ?o ?p1 ?o1 ?p2 ?o2 ?p3 ?o3 ?p4 ?o4} 24.672 >1200

Figure	8.	Graphs	showing	the	evaluation	time	costs	in	seconds	for	the	benchmark	queries

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

62 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

are used jointly to produce precise results, using an original execution plan and its underpin-
ning query evaluation theorems. We addressed the challenge of generating the Graph Signature
for relatively large RDF graphs by introducing two disk-based versions of the Bisimilarity and
Trace Equivalence algorithms. As the Graph Signature is a data graph, storing and querying it
is done in the same way as the original data graph, using the techniques of the host RDF store.
We have demonstrated our approach by implementing it on top of Oracle and experimenting it
on a relatively large RDF dataset, showing that it indeed enhances Oracle.

We plan to extend our query model to cover tree and star-shaped queries. This might be
a difficult challenge, but it is achievable since the linear query model is the building block for
tree and star-shaped queries. For instance, Theorem 7 can be extended to tree-shaped queries of
unbound nodes with the projection being the root of the query. Such query can be executed pre-
cisely using the O-Signature. Similar extensions will be made to the theorems and consequently
to the execution plan. In addition, we plan to study and utilize the false-positive answers that are
generated from queries not conforming to our query model. Such answers may be good-enough
for certain types of applications such as information retrieval and search engines, where precise
results are not necessarily needed. Also, we plan to develop a maintenance strategy to support
querying dynamic datasets.

ACKNOWLEDGMENT

This research is supported by Sina Institute at Birzeit University and is an extension of a research
that was originally supported by the SEARCHiN project (FP6-042467, Marie Curie Actions),
coordinated by Prof. Marios Dikaiakos. We would like also to thank Ala’ Hawash and Bilal Farraj
for their valuable contributions in developing the initial work of this research.

REFERENCES

Abadi, D. J., Marcus, A., Madden, S. R., & Hollenbach, K. (2007). Scalable Semantic Web Data Manage-
ment Using Vertical Partitioning. In Proceedings	of	the	33rd	International	Conference	on	Very	Large	Data	
Bases	(VLDB’07), Vienna, Austria (pp. 411-422).

Champin, P., & Solnon, C. (2003). Measuring the similarity of labeled graphs. In Proceedings	of	the	Fifth	
International	Conference	on	Case-Based	Reasoning, Berlin, Germany (pp. 80–95).

Chong, E. I., Das, S., Eadon, G., & Srinivasan, J. (2005). An Efficient SQL-Based RDF Querying Scheme.
In Proceedings	of	the	31st	International	Conference	on	Very	Large	Data	Bases	(VLDB’05), Trondheim,
Norway (pp. 1216-1227).

Erling, O., & Mikhailov, I. (2007). RDF Support in the Virtuoso DBMS. In Proceedings	of	the	1st	Confer-
ence	on	Social	Semantic	Web	(CSSW), Leipzig, Germany (pp. 59-68).

Erling, O., & Mikhailov, I. (2010). Virtuoso: RDF Support in a Native RDBMS. In R. de Virgilio, F. Gi-
unchiglia, & L. Tanca (Eds.), Semantic	Web	Information	Management	-	A	Model-Based	Perspective (pp.
501–519). Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-04329-1_21

Fernandez, J. C. (1990). An Implementation of an Efficient Algorithm for Bisimulation Equivalence. Sci-
ence	of	Computer	Programming, 13(2), 219–236. doi:10.1016/0167-6423(90)90071-K

Goldman, R., & Widom, J. (1997). Dataguides: Enabling Query Formulation and Optimization in Semi-
structured Databases. In Proceedings	of	the	Twenty-Third	International	Conference	on	Very	Large	Data	
Bases, Athens, Greece (pp. 436–445).

http://dx.doi.org/10.1007/978-3-642-04329-1_21
http://dx.doi.org/10.1016/0167-6423(90)90071-K

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 63

Hawash, A., Deik, A., & Jarrar, M. (2010). Towards Query Optimization for the Data Web - Disk Based
Algorithms: Trace Equivalence and Bisimilarity. In: Proceedings	 of	 the	 International	 Conference	 on	
Intelligent	 Semantic	 Web	 -	 Services	 and	 Applications	 (ISWSA’10), Amman, Jordan (pp. 131-137).
doi:10.1145/1874590.1874607

Hellings, J., Fletcher, G. H., & Haverkort, H. (2012). Efficient External-Memory Bisimulation on Dags.
In Proceedings	of	the	2012	ACM	SIGMOD	International	Conference	on	Management	of	Data, New York,
NY, USA (pp. 553-564). doi:10.1145/2213836.2213899

Henzinger, M. R., Henzinger, T., & Kopke, P. W. (1995). Computing Simulations on Finite and Infinite
Graphs. In Proceedings	of	 the	36th	Annual	Symposium	on	Foundations	of	Computer	Science	(FOCS),
Milwaukee, Wisconsin, USA (pp. 453-462). doi:10.1109/SFCS.1995.492576

Jarrar, M., & Dikaiakos, M. D. (2008). MashQL: A Query-by-Diagram Language - Towards Semantic Data
Mashups. Proceedings	of	the	2nd	International	Workshop	on	Ontologies	and	Information	Systems	for	the	
Semantic	Web	(ONISW’08),	Part	of	the	ACM	CIKM	Conference. Napa Valley, California, USA (pp. 89-96).
doi:10.1145/1458484.1458499

Jarrar, M., & Dikaiakos, M. D. (2009). A Data Mashup Language for the Data Web. In Proceedings	of	the	
WWW2009	Workshop	on	Linked	Data	on	the	Web	(LDOW’09), Madrid, Spain, online ceur-ws.org/Vol-538/
ldow2009_paper14.pdf

Jarrar, M., & Dikaiakos, M. D. (2010). Querying The Data Web: The MashQL Approach. IEEE	Internet	
Computing, 14(3), 58–67. doi:10.1109/MIC.2010.75

Jarrar, M., & Dikaiakos, M. D. (2012). A Query Formulation Language for the Data Web. IEEE	Transac-
tions	on	Knowledge	and	Data	Engineering, 24(5), 783–798. doi:10.1109/TKDE.2011.41

Kaushik, R., Bohannon, P., Naughton, J. F., & Korth, H. F. (2002b). Covering Indexes for Branching Path
Queries. In Proceedings	of	the	2002	ACM	SIGMOD	International	Conference	on	Management	of	Data,
Madison, Wisconsin, USA (pp. 133-144). doi:10.1145/564691.564707

Kaushik, R., Shenoy, P., Bohannon, P., & Gudes, E. (2002a). Exploiting Local Similarity for Indexing
Paths in Graph-Structured Data. In Proceedings	of	the	18th	International	Conference	on	Data	Engineering	
(ICDE’02), San Jose, California (pp. 129-140). doi:10.1109/ICDE.2002.994703

Luo, Y., de Lange, Y., Fletcher, G. H., De Bra, P., Hidders, J., & Wu, Y. (2013). Bisimulation Reduction
Of Big Graphs On MapReduce. In Proceedings	of	Big	Data,	 the	29th	British	National	Conference	on	
Databases, Oxford, UK (pp. 189-203). doi:10.1007/978-3-642-39467-6_18

Miller, R. B. (1968). Response Time in Man-Computer Conversational Transactions. In Proceedings	of	
the December	9-11,	1968, Fall	Joint	Computer	Conference,	Part	I	(AFIPS’68), San Francisco, California,
USA (pp. 267-277).

Milo, T., & Suciu, D. (1999). Index Structures for Path Expressions. In Proceedings	of	7th	International	
Conference	on	Database	Theory	(ICDT’99), Jerusalem (pp. 277-295).

Nestorov, S., Ullman, J., Wiener, J., & Chawathe, S. (1997). Representative Objects: Concise Representa-
tions of Semistructured, Hierarchical Data. In Proceedings	of	the	13th	International	Conference	on	Data	
Engineering	(ICDE’97), Birmingham, UK (pp. 79-90). doi:10.1109/ICDE.1997.581741

Neumann, T., & Weikum, G. (2008). RDF-3X: A RISC-Style Engine for RDF. Proceedings	of	the	34th	
International	Conference	on	Very	Large	Data	Bases	(VLDB’08), Auckland, New Zealand (pp. 647-659).

Paige, R., & Tarjan, R. E. (1987). Three Partition Refinement Algorithms. SIAM	Journal	on	Computing,
16(6), 973–989. doi:10.1137/0216062

Schätzle, A., Neu, A., Lausen, G., & Przyjaciel-Zablocki, M. (2013). Large-Scale Bisimulation of RDF
Graphs. In Proceedings	of	the	Fifth	Workshop	on	Semantic	Web	Information	Management	(SWIM	‘13),
New York, NY, USA. doi:10.1145/2484712.2484713

http://dx.doi.org/10.1145/1874590.1874607
http://dx.doi.org/10.1145/2213836.2213899
http://dx.doi.org/10.1109/SFCS.1995.492576
http://dx.doi.org/10.1145/1458484.1458499
http://dx.doi.org/10.1109/MIC.2010.75
http://dx.doi.org/10.1109/TKDE.2011.41
http://dx.doi.org/10.1145/564691.564707
http://dx.doi.org/10.1109/ICDE.2002.994703
http://dx.doi.org/10.1007/978-3-642-39467-6_18
http://dx.doi.org/10.1109/ICDE.1997.581741
http://dx.doi.org/10.1137/0216062
http://dx.doi.org/10.1145/2484712.2484713

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

64 International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015

Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., & Zdonik, S. B. et al.
(2005). C-Store: A Column-Oriented DBMS. In Proceedings	of	the	31st	International	Conference	on	Very	
Large	Data	Bases	(VLDB’05), Trondheim, Norway (pp. 553-564).

Tran, T., Ladwig, G., & Rudolph, S. (2013). Managing Structured And Semistructured RDF Data Using
Structure Indexes. IEEE	Transactions	on	Knowledge	and	Data	Engineering, 25(9), 2076–2089. doi:10.1109/
TKDE.2012.134

Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., & Liu, L. (2013). Triplebit: A Fast and Compact System
for Large Scale RDF Data. Proceedings	of	the	39th	International	Conference	on	Very	Large	Databases	
(VLDB’13), Trento, Italy (517-528). doi:10.14778/2536349.2536352

Zeng, K., Yang, J., Wang, H., Shao, B., & Wang, Z. (2013). A Distributed Graph Engine For Web Scale
RDF Data. Proceedings	of	the	39th	International	Conference	on	Very	Large	Databases	(VLDB’13), Trento,
Italy (pp. 265-276). doi:10.14778/2535570.2488333

ENDNOTES
1 http://stats.lod2.eu. Accessed: June 2015.
2 In early June 2011, Bing, Google and Yahoo! introduced schema.org (accessed: June 2015); an

ontology to be used to markup web pages.
3 http://developers.facebook.com/docs/reference/api. Accessed: June 2015.
4 http://search.fb.com. Accessed: June 2015.
5 For more about RDF, refer to the W3C documentation: http://www.w3.org/TR/rdf11-concepts/.

Accessed: July 2015.
6 In Oracle 12c, the commercial name “Oracle Semantic Technologies” was renamed to “Oracle Spatial

and Graph”.
7 See www.neo4j.com. Accessed: July 2015.
8 This hashing function randomly generates a number between 1 and 4,294,967,295, which is sufficient

for our purposes especially that the number of unique edge labels is typically not large and therefore
the chance of collisions is negligible. Nevertheless, more complex hashing functions might be used
such as MD5 or SHA, which produce 128-bit and 160-bit hash values, respectively – however on
the cost of performance overhead.

9 For space limitations, proofs of the proposition and all the theorems can be accessed through www.
jarrar.info/publications/GSProofs.pdf.

10 The reader might be interested to have a look at other experiments (with DBLP and DBPedia) that
we conducted on a preliminary previous work (Jarrar & Dikaiakos, 2012).

Mustafa	Jarrar	is	an	associate	professor	of	Computer	Science	at	Birzeit	University	in	Palestine.	
Before	joining	Birzeit	in	2009,	he	was	a	Marie	Curie	Fellow	at	the	University	of	Cyprus	(2007-
2009),	 and	a	Senior	Research	Scientist	 at	Vrije	Universiteit	Brussel	 (1999-2007),	where	he	
completed	his	Masters	(2000)	and	PhD	(early	2005).	He	is	the	founder	of	both	Sina	Institute	for	
Knowledge	Engineering	and	Arabic	Technologies,	and	the	Palestinian	e-Government	Academy,	
at	Birzeit	University.	Jarrar	published	+75	articles	and	refereed	reports	in	the	areas	of	Ontology	
Engineering,	Lexical	Semantics,	Semantic	Web,	and	Databases.

http://dx.doi.org/10.1109/TKDE.2012.134
http://dx.doi.org/10.1109/TKDE.2012.134
http://dx.doi.org/10.14778/2536349.2536352
http://dx.doi.org/10.14778/2535570.2488333

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 11(2), 36-65, April-June 2015 65

Anton	Deik	holds	an	MA	in	Hermeneutics	from	London	School	of	Theology	and	a	BEng	in	Com-
puter	Systems	Engineering	from	Birzeit	University.	His	areas	of	interest	in	Computer	Science	
include	Ontology	Engineering,	Semantic	and	Data	Web,	Graph	Databases,	Query	Optimization,	
in	addition	to	e-Learning.	He	also	takes	interest	in	Biblical	Studies	and	Biblical	Hermeneutics	
in	the	Palestinian	context.	He	is	a	research	collaborator	at	Sina	Institute	for	Knowledge	Engi-
neering	and	Arabic	Technologies	at	Birzeit	University	and	a	faculty	member	at	Bethlehem	Bible	
College,	where	he	also	serves	as	director	for	e-learning.

	Bookmarks

