
M
as

hu
ps

30 Published by the IEEE Computer Society 1089-7801/10/$26.00 © 2010 IEEE IEEE INTERNET COMPUTING

I n parallel with the hypertext Web’s
continuous development, we’re
witnessing an explosion of struc-

tured data published on the Web, with
companies such as Google, Freebase,
Upcoming, eBay, Yahoo, and Ama-
zon competing to gather and publish
this content in a way that encourages
people to reuse it. The trend of pub-
lishing structured data on the Web
is shifting the focus of Web tech-
nologies toward new paradigms of
structured data retrieval. Traditional
search engines can’t serve such data
adequately because a keyword-based
query will still be ambiguous, even
though the underlying data is struc-
tured. To exploit the massive amount of
structured data on the Web to its full

potential, users should be able to easily
query and fuse it.

Unlike keyword-based information
retrieval, the main challenge in struc-
tured data retrieval is that, before for-
mulating a query, the user has to know
the data’s structure and attribute labels
(that is, the schema). However, in many
cases, a schema can be dynamic, add-
ing and dropping several kinds of items
that have different attributes. Other
data sources might be schema-free,
or the schema might consist of asser-
tions mixed up with the data. In RDF,
for example, the data doesn’t have to
be consistent with a certain schema or
ontology, so the user has to manually
investigate the RDF data itself before
querying it to understand both vocab-

MashQL, a novel query formulation language for querying and mashing up
structured data on the Web, doesn’t require users to know the queried
data’s structure or the data itself to adhere to a schema. In this article, the
authors address the fact that being a language, not merely an interface (and
simultaneously schema-free), MashQL faces a particular set of challenges. In
particular, the authors propose and evaluate a novel technique for optimizing
queries over large data sets to allow instant user interaction.

Mustafa Jarrar
Birzeit University, Palestine

Marios D. Dikaiakos
University of Cyprus, Cyprus

Querying the Data Web
The MashQL Approach

MAY/JUNE 2010 31

Querying the Data Web

ulary and data structures. This becomes even
more challenging when a query involves mul-
tiple RDF sources.

As discussed in the “Related Work in Query
Formulation” sidebar, helping users easily search
and consume data is a general and known chal-
lenge in many different areas. For a query lan-
guage to be practically sound in the context of
an open environment such as the Web, the lan-
guage should hold the following assumptions:

• The user doesn’t know the schema.
• The data might be schema-free.
• A query could involve multiple data sources.
• The language is suf!ciently expressive —

that is, it isn’t merely a single-purpose user
interface.

We present here a query formulation language
called MashQL, the novelty of which is that it
considers all these assumptions. MashQL is a
general-purpose query formulation language,

but we focus on the data Web scenario, mean-
ing we regard the Web as a database in which
each data source is a table. In this way, we can
regard a data mashup as a query involving
multiple data sources. To illustrate MashQL’s
power, we focus on RDF not only because it’s
the most challenging data model, but because
it’s also the most primitive — that is, we can
easily map other models (such as XML and
databases) into it.

MashQL
Figure 1 shows two RDF sources and a MashQL
query to retrieve “anything written by Lara,
published after 2007, and with a title.” The !rst
module speci!es the input and the second the
query. The user can pipe the output into a third
module (not shown here), thereby rendering the
results into a certain format (such as HTML or
XML) or as RDF input to other queries. As we
describe later, such a query is formulated inter-
actively, without any prior knowledge of the

Related Work in Query Formulation

Here’s a brief review of some of the main approaches to
query formulation and how they relate to MashQL’s novel

contributions:

• Query-by-form is the simplest approach for queries, but not
!exible.

• Query-by-example requires data to be schematized and
users to be aware of the schema.

• Conceptual queries let people query a database starting from
its diagrams (many databases have EER or ORM conceptual
diagrams describing them).1

• Natural language queries let users write their queries as
natural language sentences, which are then translated by
query engines into SQL2 or XQuery.3 Unfortunately, this
approach is fundamentally bound with language ambiguity.

• Mashup editors and visual scripting let users write query
scripts inside a module and visualize these modules as
boxes connected with lines. However, when a user needs
to express a query over structured data, he or she has
to use that editor’s formal language (for example, YQL for
Yahoo). Deri Pipes4 are inspired by visual scripting, letting
users write SPARQL queries in a textual form inside a box
and link it to other boxes. Deri Pipes focus on the pipelining
aspects, such as what operators are needed in a pipeline.
MashQL was inspired by the way Yahoo visualizes query
modules, but its main purpose is query formulation itself
— that is, what’s inside a query model. Hence, MashQL
is a complement, rather than an alternative, to Yahoo and

Deri Pipes.
• Interactive queries let users query schema-free XML. The

closest approach to MashQL is Lorel,5 but instead of que-
rying the original data, Lorel queries a summary of the
data in a DataGuide that contains only the possible paths
between predicates (that is, it groups unrelated items hav-
ing the same property labels). Moreover, Lorel doesn’t
support querying multiple sources, and its expressivity is
very basic. In contrast, MashQL supports path disjunc-
tions, negations, variables, union, and reverse properties,
among others.

References
1. A. Bloesch and T. Halpin, “Conceptual Queries Using ConQuer-II,” Proc.

15th Int’l Conf. Conceptual Modeling (ER 97), LNCS 1157, Springer, 1996, pp.

113–126.

2. Y. Li, H. Yang, and H. Jagadish, “NaLIX: An Interactive Natural Language

Interface for Querying XML,” Proc. ACM SIGMOD Int’l Conf. Management

of Data, ACM Press, 2005, pp. 900–902.

3. A. Popescu, O. Etzioni, and H. Kautz, “Towards a Theory of Natural Lan-

guage Interfaces to Databases,” Proc. 8th Int’l Conf. Intelligent User Interfaces,

ACM Press, 2003, pp. 149–157.

4. D. Le Phuoc et al., “Rapid Prototyping of Semantic Mash-Ups through

Semantic Web Pipes,” Proc. 18th Int’l Conf. World Wide Web, ACM Press,

2009, pp. 581–590.

5. R. Goldman and J. Widom, “DataGuides: Enabling Query Formulation and

Optimization in Semistructured Databases,” Proc. 23rd Int’l Conf. Very Large

Data Bases, Morgan Kaufmann, 1997, pp. 436–445.

Mashups

32 www.computer.org/internet/ IEEE INTERNET COMPUTING

schema and without assuming that data adheres
to a schema or ontology.

The union operator “\” allows the combi-
nation of two properties within or across data
sources (for example, Year\PubYear). Notice
that although we can use MashQL for data inte-
gration and fusion, this isn’t a goal per se for
the language. Data integration requires not only
syntax but also semantic integration, which
MashQL doesn’t support. Instead, it’s mainly
designed for query formulation, by which peo-
ple are able to spot different labels for the same
properties (as they navigate through data sets)
and to manually combine them, as the previous
example illustrates.

MashQL’s Intuition
Each MashQL query is seen as a tree. The root
is called the query subject, which is the subject
matter being inquired; a subject can be a par-
ticular instance, an instance type, or a user-
de!ned variable label. Each branch of the tree
is called a restriction and is used to restrict a
certain property of the subject; branches can be
expanded to allow subtrees, called query paths.
In this case, a property’s object is seen as the
subject of its subquery, helping users navigate
through the underlying data set and build com-
plex queries. Objects marked with “✓” will be
returned in the query results. When querying

different sources, MashQL considers two prop-
erties (or two instances) to be the same if they
have the same URI.

To illustrate the notion of query paths, Fig-
ure 2 shows a query to retrieve recent articles
from Malta — that is, the title of every article
that has an author, this author has an address,
this address has the country “Malta,” and the
article is published after 2007.

Query Formulation
Formulating a query is an interactive process,
during which a user performs selections from
drop-down lists. While the user interacts with
the query editor, the editor queries the data set
in the background to generate these lists. After
specifying the input sources (the data set), the
user !rst selects from the subjects list, which
contains either the set of subject types (such as
Article) or the union of all subject and object
identi!ers in the data set, such as A1 or B2. The
user can also choose to introduce a new subject
label, which the MashQL editor then considers
as a variable and displays in italics — the default
variable is Anything. The user then selects from
the properties list, which the editor generates on
the "y and that comprises all properties pertinent
to the chosen subject. Finally, the user selects a
restriction: if he or she wants to add an object !l-
ter on the previously selected property, the editor

http://example1.com

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author “Tom Lara”
:A1 :Author “Bob Hacker”
:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author “Tom Lara”
:A2 :Year 2005

http://example2.com

:B1 :Title “Linked Data”
:B1 :Author “Lara T.”
:B1 :PubYear 2008
:B1 :Publisher “Springer”
:B2 :Title “Data on the Web”
:B2 :Author “Abiteboul S.”

SPARQL Query:

PREFIX S1:<http://example1.com>
PREFIX S2:<http://example2.com>
SELECT ?ArticleTitle
FROM <http://example1.com>
FROM <http://example2.com>
WHERE {{{?X S1:Title ?ArticleTitle} UNION
 {?X S2:Title ?ArticleTitle}}
 {?X S1:Author ?X1} UNION{?X S2:Author ?X1}
 {?X S1:Year ?X2} UNION {?X S2:PubYear ?X2}
 FILTER regex(?X1, “^Lara”)
 FILTER (?X2 > 2007)}

Figure 1. A query over two RDF data sources. Here, we’re trying to retrieve “anything written by Lara,
published after 2007, and with a title.”

MAY/JUNE 2010 33

Querying the Data Web

will offer a list {Equals, Contains, and so on}.
If the user wants to add an object identi!er as a
restriction, the editor will generate a list of the
possible objects (depending on the previous selec-
tions). Users can also choose to expand the prop-
erty to declare a query path. In this way, they can
navigate and query a data graph without prior
knowledge of it, even if the data is schema-free.

The formal algorithm to generate the drop-
down lists appears in the extended version of
this article.1

Syntax and Semantics
MashQL queries aren’t executed directly;
instead, the editor translates them into and
then executes them as SPARQL queries, thus
MashQL’s semantics follow SPARQL’s. When
evaluating a query Q(S), only the triples satis-
fying all restrictions are retrieved, such that

• If a restriction isn’t pre!xed with a modal
operator (R:=<empty, P, Of>), the editor
considers its evaluation to be true if the sub-
ject, the predicate, and the object-!lter are
matched (see Def. 3 in De!nition 1); this case
is mapped into a normal triple pattern in
SPARQL.

• If a restriction modality is “maybe”
(R:=<maybe, P, Of>), its evaluation is
always true and mapped into an optional
triple pattern in SPARQL.

• If a restriction is modality “without”
(R:=<without, P, Of>), its evaluation
is true if the subject S and the predicate P
don’t appear together in a triple — that is, the
object O shouldn’t be bound.

De!nition 1 presents a summary of MashQL’s
formal de!nitions; the full SPARQL interpreta-
tion appears elsewhere.1

When evaluating the query in Figure 3, we
retrieve all RDF triples with the same subject
that have a predicate Title, a predicate Artist
with an object identi!er being Shakera, and an
optional predicate Album, and don’t have the
predicate Copyright.

MashQL supports nine forms of !lters and
query paths (Def. 4); four forms of unions (Def.
5); formulating queries at the type level (Def. 6);
and exploring an RDF graph backward (Def. 7),
not just forward.

The MashQL Editor
We implemented MashQL in two scenarios: a
server-side query and mashup editor, and a
browser-side Firefox plug-in. As Figure 4 shows,
the server-side MashQL editor’s functionality
includes a state machine for dispatching back-
ground queries, translating a formulated MashQL
query into SPARQL, and executing a query and
rendering its results. Users can materialize and
publish MashQL queries if needed. The output

http://www.example1.com

:A1 rdf:Type bibo:Article
:A1 :Title “Data Web”
:A1 :Author :P1
:A1 :Author :P2
:A1 :Year 2007
:A2 rdf:Type bibo:Article
:A2 :Title “Semantic Web”
:A2 :Author :P1
:A2 :Year 2005

:P1 :Name “Tom Lara”
:P1 :Address :d1
:d1 :Country “Malta”
:d1 :City “Valletta”
:P2 :Name “Bob Hacker”
:P2 :Address :d2
:d2 :Country “Cyprus”
:d2 :City “Nicosia”
...

PREFIX S1:<http://fu-berlin.de/dblp/>
SELECT ?ArticleTitle
FROM <http://fu-berlin.de/dblp/>
WHERE {
 ?X rdf:Type :Article.
 ?X S1:Title ?ArticleTitle.
 ?X S1:Author ?X1.
 ?X1 S1:Address ?X2.
 ?X2 S1:Country ?X3.
 ?Article S1:Year ?X4.
 FILTER regex(?X3, “Malta”)
 FILTER (?X4 > 2000)}

Figure 2. Query paths (/subtrees) in MashQL. Here, we’re trying to retrieve recent articles from
Malta.

Mashups

34 www.computer.org/internet/ IEEE INTERNET COMPUTING

of each published query receives a URL and is
seen as a concrete RDF source — that is, materi-
alized and stored physically. Cyclic queries aren’t
allowed, meaning a query’s input can’t also be
its output, directly or through a chain.1

When a user speci!es a data source as
input, the editor bulk loads it into Oracle 11g.
Subsequently, the MashQL editor uses AJAX to
dispatch background queries and the SPARQL
translation for Oracle 11g execution. We chose

Oracle 11g for its native RDF support and
database management system (DBMS) func-
tionalities, such as materialization, indexing,
and partitioning.

For the MashQL GUI, we adopted the Yahoo
Pipes style for visualizing Web feed mashups
and used Yahoo’s open source JavaScript librar-
ies. Hence, a data mashup becomes a query over
multiple data sources, and its setup follows the
simple paradigm of Web feed !lters and mash-
ups. It’s worth noting that the examples we
describe in this article can’t be built via Yahoo
Pipes: Yahoo allows a limited support of XML
mashups, but this is neither graphical nor intui-
tive because you have to write complex scripts
in YQL, the Yahoo Pipes query language.

Our second implementation (Firefox plug-
in) has the same functionality as the online
editor, but it doesn’t use databases in the back
end. Queries are executed inside the browser,
using the Jena SPARQL query libraries to allow
querying and fusing of websites that embed
RDFa.1,2 In this way, the browser serves as a
Web composer rather than simply a navigator.

Implementation Issues
To further improve MashQL’s elegance and intu-
itiveness, we present some technical important
challenges and how we resolve them.

SELECT ?SongTitle, AlbumTitle
WHERE {
 ?X :Title ?SongTitle.
 ?X :Artist :Shakera.
 Optional{?X :Album ?AlbumTitle}
 Optional{?X :Copyright ?X1}
 FILTER !Bound(?X1)}

Figure 3. A MashQL query and its mapping into SPARQL. The
query retrieves everything that has a title and artist, maybe has an
album, and doesn’t have a copyright.

Def. 1 (query): A query Q with a subject S, Q(S), is a set of conjunctive restrictions on S. Q(S) := R1 ∧ … ∧ Rn.
Def. 2 (subject): A subject S ∈ I ∪ V, where I is an identi"er, and V is a variable.
Def. 3 (restriction): A restriction R := <Rx , P, Of>, where Rx is a modal operator, Rx ∈ {empty, maybe, without}; P is a predicate; P ∈ I
∪ V; and Of is an object "lter.
Def. 4 (object !lter): An object "lter Of := <O, f>, where O is an object, and f is a "ltering function; f can have one of the following nine forms:
1. Of := <O>, where O is an object, O ∈ V ∪ I.
2. Of := <O, Equals(X, T, Lt)>, where X can be a variable or a constant, T a data type, and Lt a language tag.
3. Of := <O, Contains(X, T, Lt)>.
4. Of := <O, MoreThan(X, T)>.
5. Of := <O, LessThan(X, T)>.
6. Of := <O, Between(X, Y, T)>.
7. Of := <O, OneOf(V)>, where V is a set of values {v1 ... vn}.
8. Of := <O, Not(f)>, where f is one of the functions de"ned previously.
9. Of := <O, Qi(O)>, where O is an object O ∈ V ∪ I, and Qi(O) is a subquery, with O being the query subject.

Def. 5 (union): A union operator can be de"ned as the following:
1. On = <O1\O2 \ . . . \On>, unions between objects, Oi ∈ I.
2. Pn = <P1\P2 \ . . . \Pn>, unions between predicates, Pi ∈ I.
3. Sn = <S1\S2 \ . . . \Sn>, unions between subjects, where Si ∈ I.
4. Qn = <Q1\Q2 \ . . . \Qn>, unions between queries,

Def. 6 (types): A subject (S ∈ I) or an object (O ∈ I) can be pre"xed with “Any” to mean the instances of this subject/object type.
Def. 7 (reverse): <~P> the reverse of the predicate P. Let R1 be a restriction on S such that <S P O>, and R2 be <O ~ P S>, then R1 = R2.

De!nition 1. The formal de!nition of MashQL. Here, we also see its main constructs.

MAY/JUNE 2010 35

Querying the Data Web

URI Normalization
Because RDF can contain unwieldy URIs, que-
ries might be inelegant. Thus, the MashQL editor
normalizes URIs and displays that normaliza-
tion instead — for example, Type instead of www.
w3.org/1999/02/22-rdf-syntax-ns#type. If
the user mouses over type, its full URI is dis-
played as tip. In case of different URIs leading
to the same normalization, the editor distin-
guishes them by a gray pre!x (1:type, 2:type).
This normalization is based on a repository we
built for the common namespace pre!xes (such
as rdf, owl, and foaf), which the user can also
edit and extend. The MashQL editor uses heu-
ristics for other cases — for example, taking
the last part of a URI, after “#” (if “#” doesn’t
exist, the part after “/”). The result should be
at least three characters and start with a let-
ter; otherwise, it takes the last two parts of the
URI, and so on. Our experiments on many data
sets showed that this works in most cases, but
there’s no guarantee of always producing ele-
gant normalization.

Verbalization
To further improve MashQL’s elegance, we
implemented a verbalization mode. After edit-
ing a restriction, the editor verbalizes all con-
trol boxes and lists in this restriction, meaning
it converts their content into friendly text, and
displays the verbalization instead. If the user
returns to edit a restriction by clicking on it,
the editor switches this restriction to edit mode
(control boxes and lists are made visible again)
and all other restrictions switch to verbaliza-
tion mode — that is, only one restriction will
have the edit mode at a time. This makes the
query representation closer to natural language
and facilitates query validation by users.

Scalable Lists
When querying large data sets, the usual drop-
down list demonstrates its lack of scalability.
We developed a scalable and friendly list that
supports search, auto-complete, and sorting
tasks based on rank and asc/desc (for ascending/
descending). If the user selects rank, the edi-
tor orders items and nodes based on how many
nodes point to them. Our list also supports scal-
able scrolling: the !rst 50 results are displayed
!rst, but users can scroll to get the next, arbi-
trarily middle, or last 50. Furthermore, our list
lets users select either instances (that is, any

URI in the data set) or types of instances (that
is, instances that have the predicate rdf:type,
such as Author, Person, University).

Performance Considerations
When formulating a MashQL query, the editor
queries the data set in the background to gener-
ate the list of next choices. In such an interac-
tive setting, the response time should be small,3
preferably less than 100 ms. However, as our ini-
tial evaluations showed,1 such a short response
time can’t be achieved through existing SQL-
backed RDF querying technologies4,5 over large
graphs that can’t !t in memory. This is because
querying a graph stored in a relational table
(S, P, O) involves many self-joins, which are
expensive even if the table is well indexed.
For large data stores, we suggest constructing
the graph signature, a graph index designed to
enhance the MashQL editor’s interactivity. The
idea (similar to XML summaries6) is to generate
a small summary of an RDF graph, so that this
summary can answer the editor’s background
queries more quickly than querying the origi-
nal graph. The graph signature groups into the
same category all RDF nodes with the same set
of outgoing paths. A category is the set of all
subjects that have exactly the same property
labels, and the objects of each of their proper-
ties belong to the same categories. De!nition 2
lists the formal de!nitions.

Figure 5 shows an RDF graph and its graph
signature, also represented in a table for-

Figure 4. Screenshot of the server-side MashQL editor. The editor
follows the same visualization that Yahoo Pipes uses, showing
that we can use MashQL to query and mash up the data Web as
simply as !ltering and piping Web feeds.

Mashups

36 www.computer.org/internet/ IEEE INTERNET COMPUTING

mat. The SubjectCat table indexes the extent
of the categories. Notice that P1 and P2 are
both assigned category 3 because they share
the same set of property labels {Affilia-

tion, Name}. P3 is assigned another category 4
because its properties aren’t the same as P1 and
P2. Finally, A1, A2, and A3 have the same prop-
erties, but A3 is assigned a different category

Def. 8: Two RDF subjects S1 and S2 have the same category Ci, if and only if
1. They share the same property labels: there exist (S1 P1 O1,1) … (S1 Pm O1,m), m > 0, and (S2 P’1 O2,1) … (S2 P’n O2,n), n > 0, such

that the set {P1, ..., Pm} of properties of S1 is equal to the set of properties of S2{P’1, …, P’n}.
2. The objects of each property of S1 and S2 belong to the same category: for each property Pi of S1 and S2, its corresponding

objects O1,i and O2,i belong to a same category Cj.
Def. 9: A Category Signature is a set of triples of the form <SC, P, OC>, where SC is a category of some subjects, P is a property label, and OC is a
category of some objects.
Def. 10: Graph Signature is the set of all category signatures. A Graph Signature is also a directed labeled graph as RDF.

De!nition 2. The formal de!nition of graph signature. We present it here in RDF terms.1

Name

Name

University of Cyprus

NameName TomTomTom
University of Malta

Graph signature
SC Predicate OC
 1 Author 3
 1 Year -
 2 Author 4
 2 Year -
 3 Name -
 3 Af!liation 5
 4 email -
 4 Af!liation 5
 4 WorksFor 5
 5 Country 6
 5 Name -
 6 Name -
 6 Capital -

Name

Capital

SubjectCat
 S C
A1 1
A2 1
A3 2
P1 3
P2 3
P3 4
UoM 5
UoC 5
mt 6
cy 6

2000
Author

Year

Year

Af!liation

Employs

Country

BobName

UoM

Malta

A1 mt

Valletta

Name

Capital

2005

Tom

Author

Author

Af!liation

Employs

Af!liation
Works for

CountryP2 UoC

email p3@uoc

Cyprus

A2

Year 2007

AuthorA3

cy

Nicosia

P1

Name

Capital
Author

Year

Af!liation

Employs

County
5

Name

1 63

P3

Af!liation
Works for

emailYear

Author2 4

Figure 5. Graph signature index. This example data graph and its graph signature index show both
graph and table formulas.

MAY/JUNE 2010 37

Querying the Data Web

(see Def. 8.2) because the object of its author
has another category. That is, the category of
A1.Author and A2.Author is 3, whereas the
category of A3.Author is 4.

Querying the graph signature is similar to
querying an RDF graph. Our query model is
much simpler than SPARQL — it is, On|Pn:{O1 P1
O2 P2 . . . Pn On}, where Oi is a node, Pi is a pred-
icate, and each can be a constant or a variable.
Notice we only retrieve/project the last node or
predicate label (On|Pn), which is suf!cient for
our query formulation purposes. We can illus-
trate how to evaluate such a query with the
following example: suppose we need to know,
“What are the properties of the countries of the
af!liations of the authors of A3?” To answer
this query, we must !rst look up the category
of A3, which is 2, and then generate the SPARQL
query: SELECT P WHERE {:2 :Author ?O1)
(?O1 :Affiliation ?O2)(?O2 :Country
?O3)(?O3 ?P ?O5)}. Answering such queries
from the graph signature is fast because its size
is typically small.

Given an RDF graph with size n, where n is
the number of the triples, we can summarize this
graph by m triples, where 1 ≤ m ≤ n. If a graph is
heterogeneous — that is, there are no similar sub-
jects (Def. 8) — its summary size is the same as its
original size. In practice, RDF graphs tend to be
structurally homogenous. To reduce the size of
the graph signature, we can exclude some irrel-
evant annotation triples (such as Label, Com-
ments) and normalize the triples that indicate
equivalence (such as SameAs, Redirect) before
computing the graph signature. Our full report
has more details and also explains that the graph
signature follows an opposite approach to XML
summaries, which are based on incoming (rather
than outgoing) paths.1

Evaluation
Our evaluation is based on DBPedia, the RDF
version of Wikipedia, which includes 32 million
RDF triples (6.7 Gbytes). From this, we extracted
four subgraphs: B32 contains 32 million triples,
B16 contains 16 million triples from B32, B8
contains 8 million, and B4 contains 4 million
(see Table 1). We didn’t use any sorting before
partitioning (such as Create B16 As select
* from B32 where rownum <16000001). We
loaded each partition into a table in Oracle 11g,
which is installed on a 2-GHz server with 2
Gbytes of RAM.

As Table 1 shows, the time cost of building a
graph signature is linear with data size: 4 mil-
lion triples cost 285 seconds, and 8 million cost
528 seconds. The behavior of the index with
regard to the number of triples is scalable — for
example, 165,000 triples summarize 32 million
triples, and 56,000 summarize 4 million. Notice
that B16 and B8 generated bigger summaries
than B32. This is because we found more simi-
larities when all the data is put together.

We aren’t interested in evaluating the !nal
query’s execution — rather, we want the queries
MashQL performs in the background to gener-
ate the “next” drop-down list (that is, MashQL’s
response time during user interaction). To for-
mulate the query in Figure 6 over DBPedia, the
user !rst selects the subject from a list. The
query producing this list is annotated with a
circled number 1. The user then selects a prop-
erty of this subject from a list, produced by that
query, and so on. A table in the !gure shows
the cost.

As this experiment shows, the cost for all
queries remains within a few milliseconds,
regardless of the data size or the length of the
join-path expressions. This is because the graph

Table 1. Statistics about DBPedia and the graph signatures.
Number of B32 B16 B8 B4

Original data Unique triples 32 million 16 million 8 million 4 million

Unique subjects 9.4 million 6 million 4 million 2.6 million

Unique predicates 35 35 34 34

Unique objects 16 million 8.7 million 4.7 million 2.5 million

Data size 6.7 Gbytes 3.1 Gbytes 1.4 Gbytes 550 Mbytes

Graph signatures Indexing time
(seconds)

2,378 1,177 528 285

Unique categories 6,000 32,000 16,000 6,000

Triples in graph
signature

165,000 486,000 185,000 56,000

Mashups

38 www.computer.org/internet/ IEEE INTERNET COMPUTING

signature’s size is small compared to the origi-
nal graph. More data sets, experiments, and
comparisons with Oracle’s Semantic Technology
appear in the full report.1

W e plan to extend this work in several direc-
tions. We will introduce a search box on

top of MashQL to allow keyword search and
then use MashQL to !lter the retrieved results.
To let people use MashQL in a typical data
integration scenario, we’ll support several rea-
soning services, including subtype, sub-prop-
erty, and part-of. We’re also collaborating
with colleagues to use MashQL as a business
rules language, which will let us include several
reaction and production operators and aggrega-
tion functions. Last but not least, we’re extend-

ing the graph signature for general-purpose
query optimization.

Acknowledgments
The SEARCHiN project (FP6-042467, Marie Curie Actions)
partially supported this research.

References
1. M. Jarrar and M. Dikaiakos, Querying the Data Web,

tech. report TR-08-04, Dept. Computer Science, Univ.
of Cyprus, Nov. 2008; www.cs.ucy.ac.cy/~mjarrar/
TAR200904.pdf.

2. M. Jarrar and M. Dikaiakos, “A Data Mashup Language
for the Data Web,” Proc. Linked Data on the Web Work-
shop (LDOW2009), CEUR Workshop Proceedings, 2009;
http://ceur-ws.org/Vol-538/ldow2009_paper14.pdf.

3. R. Miller, “Response Time in Man-Computer Conver-
sational Transactions,” Proc. December 9-11, 1968,

? O:(?S Type ?O)
? P:(?S Type Album)(?S ?P ?O1)
? O:(?S Type Article)(?S Genre ?O)
? P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 ?P ? O2)
? P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 PreviousAlbum? O2)(?O2 ?P ?O3)
? P:(?S Type Album)(?S PreviousAlbum ?O1)(?O1 PreviousAlbum? O2)
 (?O2 Artist ?O3)(?O3 ?P ?O4)
? O:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)
 (?O2 Artist ?O3)(?O3 CurrentMember ?O4)
? P:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)
 (?O2 Artist ?O3)(?O3 CurrentMember The_Furious_Five)(The_Furious_Five ?P ?O5)
? O:(?S Type Album)(?S PreviousAlbum ?O1) (?O1 PreviousAlbum? O2)
 (?O2 Artist ?O3)(?O3 CurrentMember The_Furious_Five)(The_Furious_Five Genre ?O5)

Query (B32) 32 M (B16) 16 M (B8) 8 M (B4) 4M
 Q1 0.003 0.003 0.003 0.003
 Q2 0.002 0.002 0.002 0.002
 Q3 0.005 0.004 0.003 0.003
 Q4 0.005 0.004 0.004 0.004
 Q5 0.005 0.004 0.004 0.004
 Q6 0.005 0.005 0.005 0.005
 Q7 0.007 0.007 0.007 0.007
 Q8 0.005 0.005 0.005 0.005
 Q9 0.007 0.007 0.007 0.006

1
2
3
4
5
6

7

8

9

Figure 6. Experimental queries and the cost in milliseconds. Here, we present a MashQL query over
DBpedia, the nine background queries, and their time cost in milliseconds over different portions of
the data set.

MAY/JUNE 2010 39

Querying the Data Web

Fall Joint Computer Conf., Part I, ACM Press, 1968, pp.
267–277.

4. E.I. Chong et al., “An Ef!cient SQL-Based RDF Que-
rying Scheme,” Proc. 31st Int’l Conf. Very Large Data
Bases, VLDB Endowment, 2005, pp. 1216–1227.

5. T. Neumann and G. Weikum, “The RDF-3X Engine for
Scalable Management of RDF Data,” VLDB J., vol. 19,
no. 1, 2010, pp. 91–113.

6. S. Nestorov et al., “Representative Objects: Concise
Representations of Semistructured, Hierarchical Data,”
Proc. 13th Int’l Conf. Data Eng., IEEE CS Press, 1997,
pp. 79–90.

Mustafa Jarrar is an assistant professor at the University of
Birzeit in Palestine. His research interests include the
Semantic Web, ontology engineering, databases, Web
2.0, and data mashups. Jarrar has a PhD in computer
science from Vrije Universiteit Brussel in Belgium.
Contact him at mjarrar@birzeit.edu.

Marios D. Dikaiakos is an associate professor of computer
science at the University of Cyprus. His research inter-
ests include network-centric computing systems and
Web technologies. Dikaiakos has a PhD in computer
science from Princeton University. He’s a senior mem-
ber of the ACM and a member of the IEEE Computer
Society and the Technical Chamber of Greece. Contact
him at mdd@cs.ucy.ac.cy.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

