
� 1

ORM to OWL 2 DL Mapping
Rami Hodrob

Arab American University, Jenin, Palestine

Birzeit University, Palestine

rhodrob@aauj.edu

Mustafa Jarrar

Birzeit University, Palestine

mjarrar@birzeit.edu

Abstract: The goal of this article is to map between Object Role
Modeling (ORM) and Ontology Web Language 2 (OWL 2 DL).
This mapping allows one to graphically develop his/her ontology
using the ORM notation, while the ORM is automatically
translated into OWL 2 DL. We map the most commonly used
rules of ORM into OWL 2 DL which have the ability of
decidability. DogmaModeler is extended to perform automatically
this mapping (ORM into OWL 2 DL). Mapping technique is
assessed using desirable reasoning methodology which depends
on RacerPro2 reasoner .

Keywords: Ontology, Object Role Modeling, Web Ontology
Language 2 (OWL 2 DL), SHOIN Description Logic.
�
1. Introduction and Motivation
Ontology is receiving an increasing interest in many application
areas such as data integration, semantic web, knowledge
engineering and enhanced information retrieval, etc [5]. This led
World Wide Web Consortium (W3C) to recommend Ontology
Web Language (Owl) [14]. It is difficult for IT people to build an
ontology .At the other hand building ontology is time consuming.
One who builds ontology needs good knowledge in formal logic.
Building an ontology using graphical notation tool is easier than
other available techniques, even for non-IT specialists such as
Object Role Modeling (ORM). ORM is a conceptual modeling
language used in ontology engineering [13]. It encompasses a
group of constraints that can comprehensively represent an
ontology using rich graphical notation [7,8]. On the other hand,
OWL 2 DL [16] is relatively a non user friendly language to be
used by even IT specialists.
In our research, we map between ORM and OWL 2 DL. In this
way (mapping) we exploit the benefits of both ORM and OWL 2.
The benefits of ORM are i) it is true conceptual modeling
independent of application; ii) it is a very user-friendly
methodology; iii) it is more expressive than other techniques such
as ER and UML [11,2,6]; iv) it is easy to reason about [10]; v) it
is used in ontology standards and for expressing business rules
[1]. In the other hand the benefits of OWL 2 are i) it is the
recommended ontology web language [17]; ii) it is used to publish
and share ontologies on the Web semantically; iii) it is used to
construct a structure to share information standards for both
human and machine consumption; iv) Automatic reasoning can be
done against ontologies represented in OWL 2 to check
consistency and coherency of these ontologies. That is a good
motivation to combine ORM and OWL 2. This way we can build
our ontology in ORM which is very close to natural language and
easy to understand and use. In other words, we can build a system
that uses ORM as interface for OWL 2.
We extend DogmaModeler [4] tool to implement our mapping
(ORM into OWL 2) work. Another goal for the mapping is to
extend ORM to represent notations that are not supported in ORM
and available in OWL 2 like equivalent classes, data types,
transitive closure, intersection and union between relations.

As a related work, the mapping from ORM to SHOIN/OWL
description logic has been implemented [11]. SHOIN is chosen to
compromise both its ability of expressiveness and decidability.
Each rule of ORM which is supported by SHOIN is mapped to
SHOIN. Twenty two cases of ORM constructs are mapped. The
purpose of this research [11] also is to use ORM as a technique
and expressive notation for ontology engineering. Although in
this research [11] mapping ORM into SHOIN is achieved, but
mapping ORM into OWL is not achieved, where in our research
mapping ORM into OWL 2 DL is achieved and is implemented
automatically. Some other related work to our ontology modeling
considered using UML as front-end to visualize and edit
ontologies [2] without semantics as we do in our work, in addition
the mentioned related work does not map to OWL 2 DL or even
to OWL 1.
The rest of the paper is structured as follows. Section 2 briefly
describes ORM background. Section 3 describes OWL 2 DL.
Section 4 describes the mapping between ORM and OWL 2.
Section 5 implements the mapping. Section 6 evaluates the
mapping, and finally Section 7 concludes our work and states
future work.
�
2. ORM Background
ORM is a fact-oriented modeling methodology independent from
implementation-oriented procedures. This independence leads to a
satisfactory modeling process [11]. ORM makes it easy to
simplify the representative schema using either natural language
or graphical notations to represent facts in their simple or
elementary shapes. In addition, we can populate the diagrams by
examples to measure the correctness of the design [7,8]. We have
several tools based on ORM like Microsoft's Visio Modeler™,
DogmaModeler and Norma. The knowledge of using ORM can be
acquired easily and in a short period of time from non-IT
specialists [11,13].
ORM can be fairly used to adopt the conceptual modeling
techniques for building the needed ontology [6,13]. By using a
graphical notation of ORM, we can express and treat many rules
like mandatory, uniqueness, identity, exclusion, implications,
frequency occurrences, subsetting, subtyping, equality, and others
[7]. Many rules of ORM and their graphic representations are
explained (see section 4).

3. OWL 2 DL

Ontology Web Language (OWL) is a knowledge representation
language [20] used to publish and share ontologies on the Web
and is endorsed by the W3C Consortium.
OWL 2 Web Ontology Language, is an ontology language for the
semantic web (extended of OWL 1, empowered by new features
and supported by several semantic reasoners such as RacerPro 2
and FaCT++). This ontology language includes formally defined
meaning. On 27 October 2009, OWL 2 was recommended by
W3C Consortium as a standard of ontology representation on the
Web [17].Classes, properties, individuals, and data values are

mjarrar
Published As: Rami Hodrob, Mustafa Jarrar: ORM to OWL 2 DL Mapping.. In proceedings of the International Conference on Intelligent Semantic Web – Applications and Services. Pages 131-137. ACM ISBN 9781450304757. June 2010.

� 2

provided by OWL 2 and stored semantically on the WEB. OWL 2
ontologies are primary exchanged as RDF documents, where
these ontologies can be used with information written in RDF.
OWL 2 elements are identified by Internationalized Resource
Identifiers (IRIs). It extends OWL 1 which uses Uniform
Resource Identifiers (URIs) [16,20]. Every IRI must be absolute
to be published internationally. OWL 2 increases expressive
language power for properties.
 The new features of OWL 2 are i) syntactic sugar to make some
statements easier. ii) new constructs that increase expressivity. iii)
extended support for datatypes; iv) simple metamodeling
capabilities; v) extended annotation capabilities. OWL 2 is
serialized by XML to structurally specify it.

4. Mapping between ORM and OWL 2

Since we concentrate on the ability of expressivity and
decidability for our mapping results(SHOIN achieves this Ability
[11]), we will use SHOIN Description Logic (which is the most
common in ontology engineering [11]) as a reference to map from
ORM into OWL 2 DL. First, we formally formalize the ORM
construct into SHOIN Description Logic and then we represent
this model in OWL 2. Our scope of conversion is every construct
of ORM .

4.1 Use Case
In order to recognize the ORM graphical notations, and Mapping
between ORM, SHOIN and OWL 2 refer to Figure 1, and the
explanation that follows.

�
Figure 1. Example of an ORM Schema

 In Figure 1, object-types are represented as ellipses, and relations
as rectangles, where one or more role form each ORM relation.
Binary relation (Drives/DrivenBy) in SHOIN is as (Person Ն
�Drives.Vehicle, Vehicle Ն �DrivenBy.Person, DrivenBy Ն
Drives¯). This relation is represented in OWL 2 DL as shown in
the OWL/XML syntax below. Object-type in ORM is declared as

Class (Person and Vehicle) construct in OWL 2. Each role of the
relation in ORM is declared as objectProperty (Drives and
DrivenBy) construct in OWL 2.

 In the following we explain each rule in ORM, its formalization
in SHOIN and its representation in OWL 2 (rules represented in
figure 1):
a. Subsumption is represented in SHOIN as (VanCar Ն Vehicle,
PrivateCar Ն Vehicle). In OWL 2 subClassOf construct is used to
represent this rule as

 <SubClassOf>

 <Class IRI="#PrivateCar"/>

 <Class IRI="#Vehicle"/>

 </SubClassOf>

 <SubClassOf>

 <Class IRI="#VanCar"/>

 <Class IRI="#Vehicle"/>

 </SubClassOf>

b. Mandatory is depicted as a dot x on the line. In SHOIN is
(Person�Ն �Has.Country).� In OWL 2 ObjectSomeValuesFrom
construct which is equivalent to the extensional quantifier(�) is
used to represent Mandatory in ORM which is more elegant than
using minCardinality construct to restrict the population of Person
to at least have one Country as
 <ObjectPropertyRange>

 <ObjectProperty IRI="#Has"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty abbreviatedIRI="owl:topObjectProperty"/>

 <Class IRI="#Country"/>

 </ObjectSomeValuesFrom>

 </ObjectPropertyRange>

c. Total constraint is depicted as a dot (x) between the two
subtypes. In SHOIN it is� (Vehicle ՆVanCartPrivateCar).OWL2,
ObjectUnionOf construct is used to represent this rule.
d. Exclusive Constraint is depicted as � between the two
subtypes. In SHOIN it is (VanCar � PrivateCar {A). In OWL 2
DisjointClasses expressions is used. We use DisjointUnion
construct to map both Total Constraint and Exclusive as�� �

 </DisjointUnion>

 <Class IRI="#Vehicle"/>

 <Class IRI="#PrivateCar"/>

 <Class IRI="#VanCar"/>

 </DisjointUnion>

e. Subset Constraint is depicted as an arrow ĺ between the roles
Drives and AuthorizedWith; which means that the object role
Drives is a subset of object role AuthorizedWith.
(Drives.VehicleՆAuthorizedWith.DrivingLicence). In OWL 2, to
represent this rule we consider Drives. Person as a class using
equivelentClass construct in OWL2. This construct is subClassOf
the equivelantClass (AuthorizedWith.Person) as shown below

<Declaration>

 <Class IRI="#Person"/>

…

<Declaration>

 <ObjectPropertyIRI="#DrivenBy"/>

 </Declaration>

<InverseObjectProperties>

 <ObjectProperty IRI="#DrivenBy"/>

 <ObjectProperty IRI="#Drives"/>

</InverseObjectProperties>

<ObjectPropertyDomain>

 <ObjectProperty IRI="#Drives"/>

 <Class IRI="#Person"/>

 /ObjectPropertyDomain>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#Drives"/>

 <Class IRI="#Vehicle"/>

 </ObjectPropertyRange>

� 3

f. EqualityConstraint is depicted as a double-headed arrowļ
(Owns{Drives).�Representation in OWL 2 is done using
EquivalentObjectProperties as��

 <EquivalentObjectProperties>

 <ObjectProperty IRI="#Drives"/>

 <ObjectProperty IRI="#Owns"/>

 </EquivalentObjectProperties>

g. Role uniqueness is depicted by an arrow ļ spanning along
single role of binary relation. In SHOIN� (Person� Ն

�1Has.Country). In OWL 2 we use FunctionalObjectProperty (
range is exactly one (for domain population of property)) which is
more elegant than using maxCardinality (restricted by integer 1)
construct. It is represented as
�������������<FunctionalObjectProperty>

 <ObjectProperty IRI="#Has"/>

 </FunctionalObjectProperty>

Verbalization of ORM rules
 ORM diagrams can be read easily by domain experts, and rules
can be automatically verbalized into pseudo natural language
sentences as the following:
¾ Each Person Has at least one Country. (Mandatory)
¾ Each Vehicle can not be a VanCar and a PrivateCar at the same

time. (Exclusive)
¾ Each Vehicle must be, at least, VanCar or PrivateCar. (Totality)
¾ If a Person Drives a Vehicle then that Person AuthorizedWith a

DrivingLicence. (Subset)
¾ If a Person Owns a Vehicle this Person is also Drives that

Vehicle, and vice versa. (Equality)
¾ Each Person must Has at most one Country. (External

uniqueness)

This verbalization simplifies the communication with non-IT
specialists and allows them to better recognize, validate, or build
ORM diagrams.
A complete list of ORM rules and mapping work in general cases
is explained in the following.

4.2 Object-Types and relations:
4.2.1 Unary relationship
See the first column in Table 1.

4.2.2 Binary relationship
The mapping is as stated in the example in section 4.1 (general
case is shown in Table 1 right side).

4.2.3 N-ary relationships where n>2
It is not considered (not supported by SHOIN).

Table 1. Relationships (Unary and Binary) are represented in ORM, SHOIN and OWL 2 DL

ORM �
SHOIN A Ն �r1.Bolean� A1 Ն �r1.A2, A2 Ն �r2.A1, r2 Ն �r1¯�

OWL 2

 <Declaration>

 <Class IRI="#A"/>

 </Declaration>

 <Declaration>

 <DataProperty IRI="#r1"/> </Declaration>

 <SubDataPropertyOf>

 <DataProperty IRI="#r1"/>

 <DataProperty

abbreviatedIRI="owl:topDataProperty"/>

 </SubDataPropertyOf>

<DataPropertyDomain>

 <DataProperty IRI="#r1"/>

 <Class IRI="#A"/>

</DataPropertyDomain>

 <DataPropertyRange>

 <DataProperty IRI="#r1"/>

 <Datatype abbreviatedIRI="xsd:boolean"/>

 </DataPropertyRange>

…

<InverseObjectProperties>

 <ObjectProperty IRI="#r2"/>

 <ObjectProperty IRI="#r1"/>

 </InverseObjectProperties>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="#r1"/>

 <Class IRI="#A1"/>

 </ObjectPropertyDomain>

 <ObjectPropertyDomain>

 <ObjectProperty IRI="#r2"/>

 <Class IRI="#A2"/>

</ObjectPropertyDomain>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#r1"/>

 <Class IRI="#A2"/>

</ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#r2"/>

 <Class IRI="#A1"/>

</ObjectPropertyRange>

…

4.3 Subtypes

ORM uses proper subtype [8,11]. See the example in section 4.1
and Table 2 (first column).

<EquivalentClasses>

 <Class IRI="#AutorizedWith.Person"/>

<ObjectAllValuesFrom>

 <ObjectProperty IRI="#AuthorizedWith"/>

 <Class IRI="#Person"/>

</ObjectAllValuesFrom>

 </EquivalentClasses>

<EquivalentClasses>

 <Class IRI="#Drives.Person"/>

 <ObjectAllValuesFrom>

 <ObjectProperty IRI="#Drives"/>

 <Class IRI="#Person"/>

 </ObjectAllValuesFrom>

 </EquivalentClasses>

 <SubClassOf>

 <Class IRI="#Drives.Person"/>

 <Class IRI="#AutorizedWith.Pers>

</SubClassOf>

� 4

4.4 Total constraint
General case of mapping is shown in Table 2 (middle column).

4.5 Exclusive constraint
The general case of mapping is in Table 2 (last column).

Table 2. Subtype, Total Constraint and Exclusive Constraint (declaration of classes is not included)

ORM

SHOIN B Ն A� A v�A1�t�A2�…�t�An� (Ai u Aj { A) for each iĶ{1…n-1},jĶ{i+1…n}�

OWL 2

…

 <SubClassOf>

 <Class IRI="#B"/>

 <Class IRI="#A"/>

 </SubClassOf>

…

<SubClassOf>

 <ObjectUnionOf>

 <Class IRI="#A1"/>

 <Class IRI="#An"/>

 </ObjectUnionOf>

 <Class IRI="#A"/>

 </SubClassOf>

…

 <DisjointClasses>

 <Class IRI="#A1"/>

 <Class IRI="#A2"/>

 …

 <Class IRI="#An"/>

 </DisjointClasses>

4.6 Mandatory Constraints
4.6.1 Role mandatory
The mapping is as stated in the example in section 4.1 (see the
first column in Table 3).

4.6.2 Disjunctive Mandatory
The disjunctive mandatory constraint is as stated in middle
column of table 3, means that each instance of object-type A must
play the role of at least one of the constraints role r1….rn. The
representation of this in OWL2 is shown in Table 3 (middle
column).

Table 3 Mandatory Constraints and Role Frequency Constraint (Classes and ObjectProperties are not declared)

ORM
�

�
�

SHOIN A1 Ն �r1.A2� A v��r1.A1 �…�t��rn.An� A1 v�� n, � m r1.A2 t�A

OWL 2

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#r1"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty

IRI="#r1"/>

 <Class IRI="#A2"/>

 </ObjectSomeValuesFrom>

 </ObjectPropertyRange>

 <ObjectPropertyRange>

 <ObjectProperty IRI="#r1"/>

 <ObjectSomeValuesFrom>

 <ObjectProperty IRI="#r1"/>

 <Class IRI="#A1"/>

 </ObjectSomeValuesFrom>

 </ObjectPropertyRange>

 …

<ObjectPropertyRange>

 <ObjectProperty IRI="#r1"/>

 <ObjectMinCardinality cardinality="n">

 <ObjectProperty IRI="#r1"/>

 <Class IRI="#A2"/>

 </ObjectMinCardinality>

…

 <ObjectMaxCardinality cardinality="m">

…

4.7 Role Uniqueness
Refer to Subsection 4.1.

4.8 Frequency Constraints
4.8.1 Role Frequency Constraint
Role Frequency in ORM means that role r1 is played by the
object A2 number of occurrences (see Table 3 last column).

4.8.2 Multiple-role Frequency Constraint

Can not be formalized in description logic [4] and so it is not
considered in OWL 2.

4.9 Value Constraints
The value constraint in ORM points to the possible set of values
that an object-type can be populated with (Table 4 last column).

4.10 Subset Constraints
Stated in the example in section 4.1 (Table 4 (first two
columns)).

Table 4 Subset Constraint (Role and Binary) and Value Constraint (String Type)

� 5

ORM

SHOIN s.C Ն r.B� s Ն r A1 Ն STRING A { {x1,…,xn}

OWL 2

<EquivalentClasses>

 <Class IRI="#r.A"/>

 <ObjectAllValuesFrom>

 <ObjectProperty IRI="#r"/>

 <Class IRI="#A"/>

 </ObjectAllValuesFrom>

</EquivalentClasses>

 <EquivalentClasses>

 <Class IRI="#s.A"/>

 <ObjectAllValuesFrom>

 <ObjectProperty IRI="#s"/>

 <Class IRI="#A"/>

 </ObjectAllValuesFrom>

 </EquivalentClasses>

<SubClassOf>

 <Class IRI="#s.A"/>

 <Class IRI="#r.A"/>

 </SubClassOf>

…

 <SubObjectPropertyOf>

 <ObjectProperty IRI="#s"/>

 <ObjectProperty IRI="#r"/>

</SubObjectPropertyOf>

…

<EquivalentClasses>

 <Class IRI="#A"/>

 <DataAllValuesFrom>

 <DataProperty

abbreviatedIRI="owl:topDataProperty"/>

 <Datatype abbreviatedIRI="xsd:string"/>

 </DataAllValuesFrom>

 </EquivalentClasses>

<EquivalentClasses>

 <Class IRI="#A"/>

 <ObjectOneOf>

 <NamedIndividual IRI="#X1"/>

 …

 <NamedIndividual IRI="#Xn"/>

 </ObjectOneOf>

 </EquivalentClasses>

4.11 Equality Constraint
It is similar to subset constraint. In OWL 2, we use
(EquivalentObjectProperties) construct to represent it.

4.12 Exclusion Constraint
It is similar to subset constraint. In OWL 2, we use
(DisjointObjectProperties) construct to represent it.

 4.13 Ring Constraints
OWL 2 supports Reflexive, Irreflexive, and Asymmetric object
properties as new features in addition to Symmetric and
Transitive that are supported by OWL 1 (equivalent constructs
are used in ORM).

5. Implementation

We implement our mapping using DogmaModeler.
DogmaModeler is a modeling tool used to represent and reason
for ontology and other related applications based on ORM. We
have extend DogmaModeler (Java is used as a programming
language for coding) to automatically map ORM into OWL 2
DL constructs depending on ORM markup language [3,12]
(which is automatically generated according to equivalent ORM
graphical notations). Figure 2 shows a snap shot of
DogmaModeler outputs, where the left screen shows the ORM
graphical notation containing subtypes and exclusive constraint.
The right screen shows a complete OWL 2 file output that
represents the ORM graphical notation.

�
Figure 2. Implemented example using DogmaModeler (ORM graphical notation and OWL 2 DL).

� 6

�
 Figure 3. RacerPro 2 outputs for consistent, coherent, and instance retrieval checks.

6. Evaluation
For the evaluation part, every construct of OWL 2 mapped from
ORM is loaded as a complete file to the RacerPro 2 [18] that
supports OWL 2. We have many checks (such as consistency and
coherent checks) concerning reasoning techniques [15] used to
validate the ontology represented in OWL 2. RacerPro 2 checks
the coherence of TBos. If it is coherent, it will give t (which
means true). If not, it will give NIL. Another check done by
RacerPro is the consistency of ABox to check if it is as a model
consistent with TBox. If so, the reasoner will give t (true).
Another way of reasoning using RacerPro2 is creating queries
using the New RacerPro Query Language-nRQL[19], by
populating the TBox of knowledge base. Then, we check the
consistency of knowledge base. We load the OWL 2 file (shown
in Figure 2 left side) into the RacerPro 2. When we check the
coherence of TBox, it gives us NIL (see Figure 3 left side)
because of the contradiction between Exclusive constraint and
PhDStudent subtype Class. When we insert individuals into the
knowledge base for classes Student, Employee and PhD_Student,
and checked the consistency of ABox with TBox, it gives us NIL
because of the contradiction mentioned above. After populating
the classes Student, Employee and PhD Student and applying
nRQL for individual retrieval, RacerPro 2 gives us that the
knowledge base was incoherent and there is no valid model for
the class Person (Fig 3 middle screen). Where we exclude the
exclusive constraint and check the consistency of ABox, it gives
us a valid model for Person, and ABox is consistent (see figure 3
right side) with the TBox (axioms represented in OWL 2 (see
figure 2 right side)). This output of check (instance retrieval)
proves the correctness of mapping Exclusive construct of ORM
(represented in graphical notation (figure 2 left side) into OWL 2
construct (DisjointClasses which is represented in Figure 2 right
side).

7. Conclusion and Future Work
The mapping and automation of this mapping from ORM into
OWL 2 are the main theme of this paper. We do map twenty two
(out of twenty nine) ORM constructs. Where these 22 constructs
represent the most commonly used constructs in ORM. At the
same time, those constructs are supported by SHOIN Description
Logic; which means the OWL 2 output we have mapped
characterized by its ability of decidability. Through the
evaluation process, we illustrated the correctness of our mapping.
The importance is not in the mapping itself, but in the outcome
because of the existence of a large number of applications that
depend on it. OWL 2 new features inspired the mapping of some
ORM constructs that were not supported by OWL 1 such as

DisjointUnion, Ring Constraints (Reflexive, Irreflexive, and
Asymmetric Object Properties) and others.
Some of the OWL 2 constructs are not supported by ORM such as
equivalent class, etc. We plan to work on that in the future.

References:

[1] Cuyler D., and Halpin T. 2005. Two Meta-Models for
Object-Role Modeling, Information Modeling Methods and
Methodologies, eds . Idea Publishing Group, Hershey PA,
USA , 17-42.

[2] Cranefield P. S., Hart L., Dutra M., Baclawski K., Kokar M.,
and Smith J. 2002. Uml for ontology development. Knowl.
Eng. Rev., 17(1):61–64,

[3] Demey J., Jarrar M., and Meersman R. June, 2002. A
Markup Language for ORM Business Rules. (RuleML
2002). Volume 60 of CEUR Workshop Proceedings, 107-
128, CEUR-WS.org..

[4] DogmaModeler:www.starlab.vub.ac.be/research/dogma/dog
mamodeler/dm.ht.

[5] Guarino N. 1998. Formal ontologies and information
systems. Proceedings of FOIS.. Amsterdam, IOS Press (June,
1998), 3-15.

[6] Guizzardi G., and Halpin T. A. 2008. Ontological
foundations for conceptual modelling. Applied Ontology
3(1-2): 1-12.

[7] Halpin T. 2004. Object-Role Modeling: an overview.
Microsoft Corporation.

[8] Halpin T. 2001. Information Modeling and Relational
Databases From Conceptual Analysis to Logical Design.
Morgan Kufmann. www.w3.org/2009/pdf/REC-owl2-
overview-20091027.pdf

[9] Halpin T. 2004. Business Rule Verbalization, Information
Systems Technology and its Applications. Proceedings of
ISTA-2004, vol. P-48, 39-52.

[10] Jarrar M. 2007. Towards automated reasoning on orm
schemes. In Proceedings of the 26th International Conference
on Conceptual Modeling (ER 2007). Springer,

[11] Jarrar M. 2007. Mapping ORM into the SHOIN/OWL
Description Logic – Towards a Methodological and
Expressive Graphical Notation for Ontology Engineering.
OTM Workshops(ORM’07),LNCS480 Springer.
http://www.jarrar.info/Publications/.

[12] Jarrar M. May, 2005. Towards Methodological Principles for
Ontology Engineering. PhD thesis,Vrije Universiteit Brussel,
Brussels, Belgium.

[13] Jarrar M., Demey J., and Meersman R. 2003. On using
conceptual data modeling for ontology engineering. Journal
on Data Semantics (October, 2003).

� 7

[14] McGuinness D. L. McGuinness, and Harmelen F. V. 2004.
OWL Web Ontology Language Overview. W3C
Recommendation.(Feb.,2004).http://www.w3.org/TR/2004/R
EC-owl-features-20040210.

[15] Nardi D., and Brachman R. J. An Introduction to Description
Logics. In the Description Logic Handbook, edited by F.
Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F.
Patel-Schneider, Cambridge University Press, 2002.
http://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-01.pdf

[16] http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/
[17] (www.w3.org/TR/owl2-profiles/)
[18] http://www.racersystems.com/products/racerpro/preview/ove

rview.phtml
[19] http://www.racersystems.com/products/racerpro/users-guide-

1-9-2-beta.pdf
[20] Smith M. K., Welty C., and McGuinness D. L. February,

2004. OWL Web Ontology Language Guide.
�

