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Abstract 
 

The world has a data revolution, which caused a huge volume of data stored in 

documents in different languages. This creates an important demand for developing 

Cross-lingual resources to serve NLP applications, in order to understand, retrieve, 

translate, summarize such large amounts of texts. Thesaurus and WordNet are examples 

for cross-lingual resources, which become core components in modern NLP applications, 

specially to support multilingualism. 

 

Although there are several thesauruses for Arabic, the majority are messy - instead of 

providing accurate sets of synonyms for a given word, they provide "near" synonyms and 

general/specific words. For example, according to the Google's Arabic thesaurus, the 

synonyms of the words " دولة " are {ريف ,الريف ,وطن ,قطر ,بلد}. Here the underlined words 

are wrong, as they are not really synonyms. 

 

In this thesis we build an Arabic thesaurus automatically and map this thesaurus to the 

English WordNet. That is, the result will be a set of Arabic synsets mapped into WordNet 

synsets, as {a1, a2, …, an} := {wn1, wn2, …, wnm}. To do this, we will first implement 

SynsetGenerator algorithm for generating multilingual thesauruses which requires a set of 

Arabic-English bilingual dictionaries as input, then we evaluate our results and link the 

generated results with WordNet using Cosine similarity approach. 
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:ملخص

     

 

ثورة في عالم  ان النمو السريع لمصادر المعلومات المتصلة بالانترنت من قواعد بيانات وغيرها ادى الى حدوث      

حيث اصبحت من . وثائق ونصوص في لغات مختلفة هذا أدى الى وجود كم هائل من البيانات المخزنة في . البيانات

اهم القضايا التي تؤرق العالم، الامر الذي ادى الى زيادة الطلب على التطبيقات البرمجة اللغوية الذكية من فهم 

واسترجاع وترجمة وتلخيص هذه الكميات الكبيرة من النصوص والتي تتطلب دقة في معالجتها، خاصة الجانب 

لمكانز اللغوية من الأمثلة على المصادر اللغوية المهمة ومن المكونات الأساسية للعديد من التطبيقات تعتبر ا. اللغوي

 .الذكية خاصة لدعم تعدد اللغات

على الرغم من وجود العديد من المكانز الخاصة باللغة العربية، الا ان غالبيتها غير دقيقة خاصة وان علاقة 

مثلا قاموس غوغل للعربية، والمرادفات  . لان تكون علاقة عامة بين الكلمات المترادفات فيها تقريبة وهي اقرب

هنا الكلمات التي تحتها خط خاطئة، لأنها ليست مرادفات . {ريف، الريفبلد، قطر، وطن، }هي " دولة"للكلمة 

 .صحيحة

مترادفات في هذا المكنز تهدف هذه الأطروحة الى بناء مكنز للغة العربية بطريقة آلية، ومن ثم ربط مجموعات ال 

بمعنى آخر، نأخذ الكلمات العربية المرادفة  (English WordNet) بمقابلاتها في شبكة الدلالية للكلمات الانجليزية

 =:{ع1ع ،2،...... عب} ، مثلا(English WordNet)  التي تم بناءها من المكنز و من ثم ربطها بالمترافات

لبناء المكنز بطريقة الية ، حيث   SynsetGenerator  قمنا بتطبيق خوارزميةلعمل ذلك، . {ن1ن ،2،......نج}

                 مع  ربط النتائج تمإنجليزي كمُدخل، و - تحتاج الخوارزمية الى مجموعة من القواميس ثنائية اللغة عربي

 English WordNet) )  م ها باستخدم مبدأ تشابه جيب التماوتقيم(Cosine Similarity.) 
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Chapter 1  

1. Introduction 

 

In this chapter we present a brief introduction regarding research conducted and its 

motivation. Then we summarize our research goals, contributions, and an overview of the 

thesis structure. 

1.1.  Scope and motivation 
Arabic language is a Semitic language that most Muslims around the world speak. 

Moreover, it is the official language for more than 300 million in the Arabic world. It is a 

structural and derivational language where morphology has an important role [1]. 

Nowadays, research in Natural Language Processing (NLP) has reached advanced stages, 

which gives computers the ability to understand the way humans learn and use language. 

NLP has three language models: (1) rule based which uses a predefined set of rules 

(knowledge) such as derivational rules, inflectional rules, grammatical rules, etc. (2) 

statistical based which uses and calculates the probabilities of what normally people write 

or say, and (3) hybrid models which combines both rule based and statistical based. 

Most NLP applications (e.g., translation, spelling checkers, question answering, and 

summarization) work by parsing words and sentences based on a language model and 

typically use lexical resources (e.g., thesaurus and WordNet) of the target language, 

which become the core of these applications[2].Arabic Natural Language Processing 

(ANLP) has become a popular area of research, although most of applications developed 

by non-Arabic speakers which focus on tools to enable non-Arabic speakers make sense 

of Arabic texts [2].  

In the last few years, Arabic cross-lingual resources such as Arabic Thesaurus and 

English WordNet (EWN), which became the core of ANLP, are increasing in order to 

give correct and precise answers when using ANLP applications such as translating, 

summarizing, and retrieving information in Arabic for Arab speakers [1].Surprisingly, 
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little has been done in the field of computerized Arabic lexical resources, which made an 

interesting area for many researchers. 

In order to understand what is Arabic thesaurus and EWN let us start from this point; two 

words are said to be synonym if they can be interchanged in a context without changing 

the meaning [3] such as { رتب ،نظم  } in Arabic or {arrange, organize} in English. For 

example, if we can exchange the word نظم with the word رتب in a sentence like: 

مكتبه في مبعثرة كانت التي الاوراق بترتيب الموظف قام

   

 مكتبه في مبعثرة كانت التي الاوراق بتنظيم الموظف قام

Because we were able to change these two words in the same sentence (i.e., context) 

without changing the sentence meaning, then these two words can be considered as 

synonyms. Synonyms are defined in [11] as "two expressions are synonymous if the 

substitution of one for the other never changes the truth value of a sentence in which the 

substitution is made". The semantically similar words can be interchanged in the contexts 

more while the semantically dissimilar words cannot. The relation is said to be 

symmetric: if x is synonym to y, then y is synonym to x [11]. The synonymy is a lexical 

relation between the word forms which are not transitive [11]. 

Synonym Sets (Synsets) are collection of synonym words that can be used 

interchangeably in the same context. 

Notice that one of these words might be used in other sentences/contexts to provide 

different meaning. Other examples of Arabic synonyms are { ةسن  .{منتدى ,نادي} also {عام ,

Notice that there should be at least one context where words can be used interchangeably 

to be called synonyms. 

There is a case where one word can replace the other but not vice versa, as in the 

following sentences, but in such cases these words cannot be called synonyms, as in most 

cases, one is a generalization of the other. 

 ابنه حاملا هنا مر من الذي الرجل رأيت

 ابنه حاملا هنا مر من الذي الانسان رايت
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In this case, the word انسان is not as (arrange, organize) := ( رتب, نظم ) to the word رجل 

although we were able to replace them; because the second sentence is more general than 

the first , as انسان is more general than رجل . 

Thesaurus is defined as a bag of words which is organized to help in finding words 

related to a core concept but having different shades of meaning (connotations)[4]. 

Moreover, Oxford English dictionary defines a thesaurus as a book that lists words in 

groups of synonyms and related concepts\[5]. In Arabic, a thesaurus is normally called " 

 It should be noted that unlike our definition of synonyms described above, the .[6] " مكنز

notion of synonyms used in typical thesauruses is not well defined and thus it merely 

refers to related words. 

WordNet (WN) is defined as a network of lexicalized concepts (synsets a set of 

synonyms) which are sets of word meanings considered being synonymous within a 

context. synsets are connected by several semantic relations (hyponymy, meronymy) [1], 

the hyponymy relation is a semantic relation between word meanings. 

1.2.  Problem statement and thesis goals 
This thesis aims to investigate building Arabic thesaurus automatically - derived from 

existing Arabic-English bilingual dictionaries, then map the derived sets of synonyms to 

WN synsets, as the following: 

{a1, a2, …, an} := {e1, e2, …, ek}:= {wn1, wn2, …, wnm} 

Where an refers to an Arabic word, ek refers to an English word, and wnm is an WN’s 

word. The sign  :=  means that there is semantic equivalency between the two synsets. To 

build the Arabic thesaurus our approach has to accomplish the following goals: 

1. Implement SynsetGenerator algorithm [7]for the purpose of generating the Arabic 

and English synonyms. Then, evaluate whether the implementation presents 

satisfying results (i.e., whether it generates synonyms as expected) using the 

existing Arabic and EWNs resources.  

2. Map the generated Arabic and English synonyms into WN synsets.  
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3. Evaluate the reliability of our approach by finding how much of the generated 

synonyms can be mapped into the EWN.  

 

1.3.  Summary of contributions 
The thesis contributions can be summarized as the following: 

x Implemented the SynsetGenerator algorithm, and used it to derive (given the 

Arabic bilingual dictionaries) a large set of Arabic and English synonyms. 

x Evaluated whether our implementation is working correctly (i.e., whether it 

generates synonyms as expected) using the existing Arabic and EWNs resources.  

x Mapped the generated Arabic words’ synonyms to their equivalent WN synsets. 

This is done by listing all WN synsets which have common English words synsets 

and giving each match a weight. The highest WN synset weight is then mapped to 

the Arabic word synsets. 

x Evaluated the reliability of our approach which is done through finding how much 

of the generated synonyms can be mapped into the EWN. 

 

1.4.  Overview of thesis structure 
In chapter two we will present related work to our research. First, we will give an 

introduction about NLP, and then we will present some important definitions and related 

resources such as thesaurus, WN, ontology, and linguistic ontology. Most of the chapter 

will be dedicated to related work done in Automatic Thesaurus/WN Construction 

methods. We will discuss two methods in building automatic thesaurus.  First method is 

“Building A Cross-lingual Relatedness Thesaurus Using A Graph Similarity Measure”. 

Second method is “Automatic Thesaurus Construction”. We will also discuss five 

approaches for building WN automatically. First approach introduces the AWN Project. 

Second approach called “Semi-Automatic Development of FarsNet; The Persian WN”.  

Third approach called “Combining Multiple Methods for The Automatic Construction of 

Multilingual WNs automatically”. Fourth approach is Building “Polish WordNet PolNet 

project”.  Last approach is about “Building Czech WordNet”. 
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After that in chapter three we will describe the algorithm idea and methodology that we 

followed to achieve thesis goals. Firstly, we introduce the idea and methodology of the 

algorithm to create Arabic thesaurus file (Arabic-English synsets).Secondly, we introduce 

the implementation of the algorithm. 

Then in chapter four we introduce the testing and mapping algorithms’ methodologies. 

Firstly, we describe the testing algorithm methodology and implementation in order to 

find the bugs in our algorithm implementation and evaluate the algorithm performance. 

Secondly, we introduce the mapping algorithm methodology and implementation to map 

the generated Arabic words synonyms to their WN equivalent synsets, the highest WN 

synset weight is mapped to the Arabic word synsets.   
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Chapter 2 

2.  Literature Review 
 

2.1. Introduction 
In this chapter, we discuss and distinguish between Thesaurus and WordNet (WN), and 

present related works done on Automatic Thesaurus/WN Construction. In section 2, we 

define and differentiate between thesaurus, WN, ontology, and linguistic ontologies, and 

explain their true value. We review the differences between Thesaurus, WN, and 

Ontology in section 3. In section 4, we review work done on building Thesaurus/WN 

automatically. In section 5, we will discuss the evaluation methods that could be used to 

evaluate our proposed algorithm. Finally, in section 6 we compare between the evaluation 

methods.  

Literature discussed in this chapter has two basic ideas. The first idea is that some 

approaches can be valid for a certain language and not for the others. Arabic language 

was a challenge because of its complexities (morphological and semantic issues). The 

second idea is that the main goal of Arabic Thesaurus/WN automatic construction is to 

find the common base concept between many languages then translate it. The missing 

concepts are added manually. This approach did not give an accurate result and may have 

irrelevant synset. 

Our approach takes a different direction than the earlier mentioned ideas. The strength of 

our approach comes from mapping the Arabic words synsets (the file which we get from 

the bilingual dictionary) to the EWN synsets by listing all WN synsets which have 

common English words with the English synset (the file which we get from the bilingual 

dictionary) and give each one a weight. The weight increases when the number of 

common English words increase. The highest WN synset weight is then mapped to the 

Arabic words. The following sections review other's approaches in and compare them 

with our approach. 
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2.2. The difference between thesaurus, WordNet (WN), ontology and 

linguistic ontologies 

2.2.1. Thesaurus definition 
Thesaurus is defined as a bag of words that groups words  related to a core concept 

together, but may have different meaning[4] as it does not specify the relationship 

between the words. Oxford English Dictionary defines thesaurus as, "A book which lists 

the words in groups of synonyms and related concepts" [5]. In Arabic, a thesaurus is 

commonly called "[6] "مكنز. 

The importance of Thesaurus are as follows [4]: 

x Finding words that you need to express your idea effectively, descriptively and in 

more interesting way. 

x Avoiding the repetition of the same words. 

x Recalling the word that is on the tip of your tongue. 

x Broadening vocabulary through trying out new words and phrases. 

x Communicating with greater confidence. 

x Finding the word that suits the genre (e.g. a letter), purpose, intended audience 

and context of what you are writing. 

x Information retrieval. 

Figure 2.1 shows an online Arabic thesaurus called “المعاني”. We search “منتدى” word and 

obtained its synonyms as shown below [8]: 

 

Figure 2.1:المعاني online Arabic Thesaurus [8] 
 

http://www.businessdictionary.com/definition/word.html
http://www.businessdictionary.com/definition/concept.html
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Figure 2.2 shows English thesaurus called “Collins”. Collins is a desktop application that 

has easy interfaces. We searched synonyms for the word “table” [9].  

 

Figure 2.2: Collins desktop English thesaurus [9] 
 

2.2.2. WordNet definition 
WordNet is a lexical knowledge base for English [10], which is electronically available 

for free. The idea of the WN project was born by the psycholinguistic theory of human 

lexical memory [10]. WN organized the nouns, verbs, adjectives and adverbs into sets of 

synonyms, each set represents a lexical concept. These concepts (synsets) are connected 

by several semantic relations, such as (hyponymy and meronymy) [11]. 

When designing a WordNet for a language, some designers try to be as close as possible 

to the EWN, but they should respect the specific properties of that language [12]. While 

others try to build WordNet from scratch which means that the designer must apply a 

suitable classification criteria to the linguistic material in order to generate formal 

representations of concepts that consist of synsets and relations [12]. 

 

Creating and building WordNet is of importance since it provides a way for word sense 

disambiguation, information retrieval, automatic text classification, summarization, 

machine translation, and others [11]. 
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In this section we will briefly talk about English WordNet (EWN) and Arabic WordNet 

(AWN).  Figure 2.3 shows a desktop application called WordWeb which is a nice 

interface for the EWN. 

s  

Figure 2.3: WordWeb desktop English WordNet [13] 
 

2.2.2.1. EWN definition and structure 

EWN is a large lexical database, which is grouped into synonyms set (synsets), each 

expressing a distinct concept. The synsets are linked by semantic relations between 

concepts [11]. EWN is structured as a set of synsets where each synset has a unique ID 

called SynsetID, and a short gloss that describes the concept. For example: 

SynsetID: 08283156 

Synset: {Table, Tabular Array} 

Gloss for the concept: A set of data arranged in rows and columns. 

 
Figure 2.4: WordNet structure [14] 
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EWN has two properties: polysemy and synonymy, that is, words that appear within a 

single synset are synonymy. If the same word appears in different synsets, then they are 

polysemy [15]. For example:  

{Table} := a piece of furniture having a smooth. 

{Table, Tabular Array} := a set of data arranged in rows and columns. 

 
Figure 2.5: WordNet property [14] 

 

Synsets are connected within semantic relations, which focus on the mapping between 

concepts - forming semantic network. These relations are [15, 16]: 

x Hyponymy or “kind of” relation: a hierarchical semantic structure of about 16 

levels. Each super level (generic concept) inherits all its features to the lower 

levels. 

x Meronymy: or “part of” relation, each super level (generic concept) inherits all 

its features to the lower levels, e.g., Finger is part of hand, hand is part of arm, 

and arm is part of body. 

 

Figure 2.6 : WordNet relations [14] 
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2.2.2.2. AWN definition and structure 

AWN is a lexical (linguistic) resource that shows and discovers the richness of Arabic 

language. The design and the content of AWN are based on EWN [17]. 

The basic idea of AWN is to use the Arabic base concepts that are defined and extended 

through the hyponymy relations to derive the core of the WN. The set of common 

concepts comes from 12 languages in EWN collected as synsets; other language-specific 

concepts that are not in the common base concepts are added and translated manually to 

the closest synsets in Arabic [17].In the literature review, we will go through some details 

on AWN structure. 

Figure 2.7 shows an AWN desktop application [18], we searched the synsets for جلس, and 

we obtained two synsets {جلس،جثم،رقد}،{جلس،قعد}  each synset conveys a concept. Once we 

click on the synset, the gloss of the concept appears. The second synset is selected as 

shown in Figure 2.8. 

 

Figure 2.7: Arabic WordNet [18] 
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Figure 2.8: Arabic WordNet with gloss for a selected synset [18] 
 

AWN will be covered in more details in section 2.5 as we will discuss most resent AWN 

papers. 

 

2.2.3. Ontology definition 
Ontology is a shared understanding (i.e. semantics) of a certain domain, axiomatized and 

represented formally in a computer resource. By sharing an ontology, autonomous and 

distributed applications can meaningfully communicate to exchange data and make 

transactions interoperate independently of their internal technologies [19]. Gruber (1995) 

defines ontology as “An explicit specification (which written in logic) of any model or 

situation) semantic structure, which encodes the implicit rules constraining the structure 

of a piece of reality”[19-22]. 

Ontology as a term consists of two words, which are: Onto that means (exists) + logoy 

which means (knowledge of). In Arabic words, ontology can be defined as ( علم :الأنطولوجيا

 .[24 ,23] (الوجود بما هو موجود 

Ontology is of importance since it can have a shared understanding for both people and 

machines as it provides both specifications of semantics (i.e., meaning) of the terms and 

the structure, whereas XML, e.g., provides only the syntax and the database schema 
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provides only the structure. Moreover, it provides precise and formal meanings for 

common vocabulary terms, but standard vocabularies as an example, do not provide that 

[19].  

2.2.4. Linguistic ontology definition 
Linguistic ontology is one of ontology types that represents the semantics of all words of 

a human language independently of a particular application. EWN and Arabic ontology 

are important examples of linguistic ontology. We will go through it in some details in 

the next section[7]. 

Linguistic ontology has the following properties [7]: (i) each word may have several 

concepts (Polysemy), (ii) represents common sense knowledge for a specified domain 

(lexical semantics), and (iii) is used for general purposes. 

Linguistic Ontology is considered important since it can have a positive impact on 

Information search and retrieval, also word sense disambiguation such as Semantic web 

and web 3.0, as the query result will be improved and become meaningfully and not only 

a string matching. In addition, it affects machine translation performance, as it will find 

the exact mapping of concepts across languages. Moreover, it will enhance on data 

integration and interoperability. Linguistic ontology could be used as a semantic 

reference for many information systems [7, 14, 24]. 

2.2.5. Arabic ontology 
Arabic Ontology can be simply defined as a tree of concepts (i.e., meanings) of all Arabic 

terms in Arabic language that are represented formally. That is, for each Arabic term, a 

set of it concepts (Polysemy) are listed. Then, these concepts are using classified 

semantic relationships such as subtype-of and part-of relations [10, 14, 24]. 

Arabic ontology is one of a long-term project started in 2010 at Sina Institute at Birzeit 

University. As time goes on, improvements increase continuously in both quality and 

quantity. Arabic Ontology defined as [7]: 

 ".الكلمات بين وليس المعاني هذه بين ،والعلاقات العربية اللغة كلمات معاني مجموعة هي العربية الانطولوجيا"
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2.2.5.1. Ontology structure 

The Arabic ontology follows the same structure of WordNet, thus it can be used as an 

Arabic WordNet. Each Arabic word (lexical unit) has a list of glosses (concepts), each 

gloss describes one concept and has an ID called glossID. These concepts are connected 

using semantic relationships. Figure 2.6 shows the Ontology structure [19, 21]: 

 
Figure 2.9:  Ontology structure [23] 

 

Unlike WordNet, semantic relations in the Arabic Ontology include subtype relation ( جنس

 in which subclass inherits all properties from the super class, as every (subset: A ⊆ B) (من

instance in A must also be an instance of B. This relation leads to a path in the tree. In 

addition, instance semantic relation ( ما صدق من)  means it is an instance of the super class; 

such as Nile river class is an instance of rive class. Another semantic relation is part of 

relations (جزء من) which means it is a part of the super class such as صف class with 

GlossID := 2 is part of the class  جدول with GlossID:=6 as in figure 2.6 above. 

As the gloss description follows ontological rules, the most important gloss guidelines are 

to start with super-type class when defining the concept. To verify if it is correct or not, 

just put the gloss definition in the place of the class name. The example below explains 

the process which is followed in figure 2.9[23]. 

 مصفوفة بيانات مكونه من صفوف و اعمدة: جدول 
 واعمدةترتيب بيانات جنبا الي جنب على شكل صفوف : جدول
 .واعمدةتنظيم بيانات بصورة ممنهجة جنبا الي جنب على شكل صفوف : جدول
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2.3. Comparison between thesaurus and WordNet, ontology and 

Arabic ontology 
In this section we will make a brief compression between Thesaurus, WordNet, Ontology 

and  Arabic Ontology. 

2.3.1. Can WordNet act as thesaurus? 
A WN is typically more accurate than a thesaurus; because it allows us to navigate within 

the words due to its semantic relations. That is, related words are connected in specific 

concepts which allow us to measure and quantify the semantic similarity among words 

and concepts [16, 25]. 

The hypernymy relations, for example, are useful for integration into information 

extraction and browsing/search systems which makes it easier to find synonyms. WN 

becomes the base for creating multilingual WNs; this means WN becomes the base for 

representing the lexical knowledge between different languages [25]. 

However, Thesaurus is just a “bag of words” without relations between them, it just lists 

the related words that are synonymous within the context, and sometime there are words 

linked in WN that appear in the synset, but they do not appear in the same thesaurus 

entry. WN can be used as Thesaurus, but it is more comprehensive. By contrast, 

Thesaurus cannot act as WN [16]. 

2.3.2. Is WordNet an ontology? 
Ontologies define the meaning formally, thus they are typically more accurate if 

compared with a WordNet. The differences between the two explained as [7, 14]: (i) 

meaning: WN depends on native speakers to build the relations, but Ontology depends on 

Scientific and philosophical findings, so it's more accurate, (ii) classification: an 

Ontology uses distinguishing properties when classifying a concept such as student IsA 

role, all types/classes are rigid, etc. and (ii) formal Specification: WN does not use formal 

form but Ontology is strictly formal. Arabic Ontology can be used as AWN, but its 

content is more accurate. 
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2.4. Automatic thesaurus / WordNet construction approaches 
In this section, we will present two Thesaurus Construction approaches and three WN 

Construction approaches. 

2.4.1. Building a cross-lingual relatedness thesaurus using a graph similarity 

measure approach  
This approach  [26]  aims to build a German thesaurus. The main goal is to suggest words 

that are semantically related in a second language. For example, for a given word in one 

language, the German word L¨owe (lion), the method suggests ten related words: 

cheetah, panther, rhino (ceros), tiger, jaguar, leopard, hyena, and cub as well as the actual 

translation, all of which are wild animals. 

This approach requires two monolingual corpora and one bilingual dictionary. Two 

graphs are built from the two monolingual corpora. The nodes representing words, and 

edges representing linguistic relations between these words. The bilingual dictionary 

provides seed translations which connects the nodes in both graphs. 

An inter-graph node-similarity algorithm is used to discover related words. This 

algorithm is based on SimRank. SimRank is a recursive algorithm that is based on the 

idea that two nodes in a graph are similar when they are neighbors, when they have 

related neighboring words, or when belong to a set of correspondences between the two 

graphs. 

Correspondences are translations (”seed translations”) provided by a dictionary. These 

pairs have the similarity value that is equal to one (maximum similarity). The figure 

below summarizes the idea. 

 

Figure  2.10 : Similarity through seed translations [26] 
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The double lines indicate seed translations. Let us start with the nodes duck and Ente 

occur in coordination's with the same nouns in the two languages; one of these swan –

Schwan is a seed translation. This coordination relationship brings the similarity of duck 

–Ente.  

This method is evaluated by three human judges, which found that this method discovers 

49% of the English and 57% of the German words that are semantically related to the 

target words. 

2.4.2. Automatic thesaurus construction approach 
This approach [27] suggested a method to automatically build a thesauri using 

syntactically constrained distributional similarity.  

The main goal is to find the distributional similarity, which is calculated through high 

vector space model (VSM). The dimensionality of a word with respect to the base 

element of the VSM is either syntactically conditioned or unconditioned i.e., if it has 

grammatical relation or not. 

The calculations are based on the hypothesis that similar words share similar grammatical 

relationships and semantic contents that are done in three steps: 

x Complete parsing of the sentences in corpora. 

x Extract the syntactic dependencies into distinctive subsets according to head-

modifier 

x Determine the distributional similarity using similarity measures such as the 

Jaccard coefficient. 

This approach relies on putting the terms into categories according to the grammatical 

relations, and on making an overlap between the top n similar words. 

Similarity of words depends on how they can be interchangeable in different contexts 

provided that the alternation of meaning in discourse is acceptable With 

interchangeability of synonyms or near-synonyms in contexts. The heuristic of deriving 

automatic thesauri can be expressed as: 

x Nouns: Ui,j (Si∩ Sj) 
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x Verbs: Ui,j (Si∩ Sj) 

Where i and j are any two types of the dependency sets: Adjective-Noun (AN), Subject-

Verb (SV) and Verb-Object (VO). 

The first step of automating the Thesaurus is to build the syntactically constrained VSM. 

This is done using an English syntactic parser based on Link Grammar. The word space 

then will contain four dependency sets: Adjective-Noun (AN), Subject-Verb (SV), Verb-

Object (VO) and Prepositional Phrase to Verb (RV). This step produces the latent 

semantic representation of words through which distributional similarity can be 

measured. 

The Syntactic dependencies can follow a word meaning in context. The semantic 

requirements are mainly: determination or selector which emphasizes the semantic traits 

main role in the construction, dependency or dependent which add some additional trait 

in order to formulate the integrity of the construction [28]. 

A Link Grammar based parser is used to capture the main dependency categories 

mentioned before (RV, AN, SV and VO). Each word is equipped with one or two 

connectors: left-pointing and/or right pointing connectors. The dependency relation 

between two words can be reflected by their link. The method evaluation shows that this 

approach can be used to build automatic thesauri with higher precision than the other 

traditional methods. 

2.4.3. Arabic WordNet construction approach  
The main goal of this approach [29] is to build an AWN based on WN. AWN will then 

be mapped onto WN 2.0 and EuroWN (EWN), and enable the translation to English and 

other languages. Arabic Base Concepts are the core of the WN which are extracted from 

the hyponymy relations.  

The first step of AWN construction is to find the Common Base Concepts from 12 

languages in WN and BalkaNet, which are translated as synsets. The missing concept are 

added manually. The AWN database structure has four principal tables: item, word, form 

and link. Item table holds information about synsets, for both English and Arabic synsets. 
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Word table holds information about words within synsets, for both English and Arabic 

words. Form table holds information about different forms of Arabic words. Link table 

holds the links between different synsets or words within a particular language. The 

following criteria is used to select the synsets in the AWN: 

x Connectivity: that is, AWN should have hyperonymy/hyponymy relations as 

AWN synsets should match to English WN synsets . 

x Relevance: that is, the most frequent concepts and lexical items are selected 

(from both Arabic and English). 

x Generality: that is, the synsets of the generic levels of WN have high priority. 

The processing within this criteria is done first from English to Arabic where for a given 

English synset, select all Arabic corresponding, and second, from Arabic to English 

where for a given Arabic word, find its senses then select English synsets corresponding 

for each one of these senses. 

The steps of AWN contraction are: 

1. The first step is to find Base Concept (BC) set from EWN and BalkaNet’s CBCs 

manually. They focus on the most relevant terms for obtaining about 1,000 

nominal and 500 verbal synsets. 

2. The second step is to add two preprocessing tasks: preparation and extension. 

3. In Preparation task, the bilingual resources are processed to create a homogeneous 

bilingual dictionary (HBIL), and then apply the morphological rules. 

4. All methods used to EWN will be applied to HBIL in order to map the Arabic 

words/English synsets. 

5. All Arabic words in bilingual resources must be normalized and lemmatized but 

the vowels and diacritics must be maintained. 

6. Now Arabic/English synset pairs ready to be an input to the manual validation 

step.  

7. Finally, AWN will be completed by finding all the gaps in its structure. 
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2.4.4. Semi automatic development of FarsNet; The Persian English 

WordNet approach  
The main goal of this approach [30] is to build a WordNet for the Persian language called 

FarsNet, using a semi-automatic technique. FarsNet will include the following: (i) 

concepts, which have language independent base concepts extracted from BalkaNet. This 

makes it compatible with other WN. In addition, they have Persian base concepts 

extracted from the most frequent words of Peykreh and PLDB corpora, and (ii) relations, 

FarsNet does not cover inter-POS relations, it has inner language relationships such as 

synonymy, hypernymy and hyponymy, different types of meronymy, antonymy and 

cause which are between different synset and FarsNet synsets. Also, inter language 

relationships, equal-to and near-equal-to relations. 

This approach requires two bilingual dictionaries, Persian-English and English-Persian 

and one monolingual Persian-Persian dictionary, Persian thesaurus and EWN as 

resources. The general methodology for this approach can be summarized as following: 

x Construction of a Core-WordNet for a set of common base concepts through 

translating BalkaNet concepts sets BCS1 and BCS2. The most frequent and 

language specific concepts will be added in the next phases using electronic 

Persian corpora. 

x Adding relational links and mix their direct semantic contexts to the common base 

concepts. 

x Top-down extension of this core-WN by new concepts and relations. 

The core of the Persian WN is constructed by adding first level hyponyms to the Base 

Concepts, which are more than 15,000 Persian words, and organized in 10,000 synsets of 

nouns, adjectives and verbs. Then this core can be semi-automatically expanded using 

some dictionaries, lexicons, corpora, etc. 

There are two categories of conceptual relations: Taxonomic and Non-taxonomic. Both 

are extracted from either raw or tagged texts using the following approaches. 
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1. Pattern based approach 

This approach is used to extract taxonomic relations which is in high precision but low 

recall in a corpus. Steps of this approach are summarized as the following: 

x Find the top 1000 frequent Persian Nouns. 

x Find the Wikipedia articles related to these nouns. 

x Apply the Post-Processing such as eliminating the stop word, eliminating 

prepositional phrases for taxonomic relations, etc. 

2. Structure based approach 

This approach is used to extract both taxonomic and non-taxonomic relations. It is used 

for Wikipedia for the most 1,000 frequent nouns. The types of the extracted relations are 

not known in this method but they can be mostly found by using some extra searches on 

the web. 

3. Statistical based approach 

This approach is used to extract co-occurrence relations. Look for the co-occurrence 

words of the 500 most frequent Persian nouns in 100,000 word subset of Bijankhan 

corpus. By experiment, the co-occurrence threshold found to be 19. 

The method evaluation shows that this approach has 72% precision in mapping Persian 

words to English synsets and 69% precision in mapping Persian synsets to English 

synsets. 

 

2.4.5. Combining multiple methods for the automatic construction of 

multilingual WordNets approach  
The main goal of this approach [31] is to attach Spanish word meanings to the existing 

WN1.5 concepts. This method requires two bilingual dictionaries Spanish/English and 

English/Spanish to generate a homogeneous bilingual (HBil) by merging them, a large 

Spanish monolingual dictionary and EWN WN1.5. In order to link the Spanish words to 

WN synsets, three methods are applied. 
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1. Class methods 

These methods are used as knowledge sources coming from bilinguals and WN synsets. 

Hbil has 2 groups monosemous or polysemous relative to WN1.5, each has 4 different 

cases: 

x Monosemic Criteria: These criteria apply only to monosemous English Word 

(EW) with respect to WN1.5. 

o Monosemic 1: A Spanish Word (SW) has only one English translation. 

o Monosemic 2: A SW has more than one English translation.  

o Monosemic 3: Several SWs have the same English translation. 

o Monosemic 4: Several SWs have different English translations. 

x Polysemic Criteria: This criteria follow the four groups described in 

Monosemic Criteria but for polysemous English words according to WN1.5 

x Variant criterion: if two or more of the EW have only one Spanish translation, 

then a link is between the SW and WN synset is produced.  

2.  Structural methods 

These methods take profit of the structure of WN. it generates all combinations of 

English words translation from HBil in order to find the common information between 

the corresponding EWs in WN1.5. 

x Intersection criterion: if there is at least one common synset between the WN 

and all EW, then a connection between SW to all common synsets.  

x Parent criterion: If there is an EW synset that is a parent to the e rest of 

English words then a link between SW to all parent synsets. 

x Brother criterion: If all EWs have synsets which are brothers respecting to a 

common parent then a link between SW to all cohyponym synsets. 

The results of the above criteria will follow the structure: Spanish Word {list of EW} 

{list of synsets} 
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3. Conceptual distance methods 

Conceptual distance provides a basis for determining closeness in meaning among word. 

Conceptual distance between two words depends on the length of the shortest path that 

connects the concepts.  
 

4. Combining methods 

The main goal for this approach is the combination of methods and sources in a way that 

the accuracy of the data obtained from the combined methods overcomes the accuracy 

obtained from the individual ones. By collecting those synsets produced by all methods 

described above it gives an accuracy greater than 85%. 

The approach seems to be extremely promising attaching up to 75% of reachable Spanish 

nouns and 55% of reachable WN synsets. As a result, the Spanish WN containing 10,982 

connections among 7,131synsets. 

 

2.4.6. Building  Polish WordNet ( PolNet project)  
The main goal in this paper [32] is to build a Polish WordNet from the scratch. They use 

a monolingual lexicon which has a well word senses and a semantic coverage. 

The language independent algorithm is used to create the synsets. DebVisDic tool is used 

to create the relation between the synsets. WQuery tool is a system based on an artificial 

language designed to query WordNet as if it was a databases, and it is used to validate the 

PolNet data. 

PolNet has 10,700 synsets. This result was obtained form 10,000 words that has been 

extracted from IPI PAN Corpus, Polish Lexicon of Verbs (Polański, 1992), and Corpora 

of text for the domain of homeland security terminology (1360 words), emergency 

situations dialogue corpus (630 words). 
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2.4.7. Building Czech WordNet 
The core of Czech WordNet [33] has a good quality covering the most frequent Czech 

word and close as possible to the Princeton WordNet (WN) and the EuroWordNet 

(EWN), and it can be a good starting point for future testing and validation or building 

applications. 

This method requires monolingual Czech dictionary, bilingual Czech-English dictionary, 

dictionary of Czech Synonyms, Czech Synonymic dictionary and Thesaurus I, II, III, 

fully tagged and disambiguated corpus DESAM, corpus from newspaper and magazine 

texts, Czech national corpus. 

Developers use many tools and programs in order to build the Czech WordNet, such as, 

processing the dictionaries using a sorting program, analyze the dictionaries entries using 

a parsing program, process the bilingual dictionaries using translating program, a 

program able to compute mutual information, VisDic which is a WordNet editor and 

browser. 

When building Czech synsets, some problems appear due to the translation to get the 

equivalent corresponding, which presents a gap between Czech and English. First 

problem would be the differences in lexical and concepts between Czech and English, 

which made it difficult to find their equivalents in Princeton WordNet but can find the 

English correspondence in general. Second problem is that some Czech synsets cannot 

find their equivalents in English at all, as there are some typologically and derivational 

morphology differences, such as, reflexive verbs, verb prefixation (single, double), 

diminutives (noun derivation by suffixation).  

 

2.5. Background about evaluation methods that use similarity 

measures or distance measures 
This section gives a background about some evaluation methods which use similarity or 

distance measures. Some of these methods will be used later in this thesis. One way of 

comparing distance measures is to study their retrieval performance in terms of precision 
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and recall in a  particular application area, such as content-based image retrieval where 

Euclidean distance is often used as a distance measure. 

Similarity measures increase the system performance [28], it can be used in WordNet and 

thesaurus to find the similarity percentage [29] and to find the degree of lexical 

overlapping between the files which we want to compare [30]. Hence, understanding the 

distance measures approaches can be helpful to choose the proper approach for a 

particular application [42].  

2.5.1. Precision and Recall 
Precision and recall are common measures to evaluate information retrieval systems. 

They are based on the comparison between the expected and the relevant results which 

we get to evaluate system [34]. Before we go into more details let us determine some 

definitions to give a better understand for precision and recall [35]. 

True positive: it is the number of correct labeled items that belong to the selected class. 

False positive: it is the numbers of incorrect labeled items, which belong to the selected 

class. 

True negative:  it is the number of items that are not labeled to the selected class but 

should be labeled. 

Precision or confidence [36] measures the ratio of the correct correspondences (true 

positives) to the total number of all return correspondences [35] (true positives and false 

positives). Precision can be seen as a measure of exactness or quality. 

Recall or sensitivity [36] measures the ratio of correct correspondences (true positives) to 

the total number of all expected correspondences that must be retrieved [35] (true 

positives and true negatives). Recall is a measurement of completeness.  

Precision formula is given by: 

P(A,R)=        
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Recall is given by: 

                
   

 

Where R: is the relevant data and A: is the retrieved data. 

Precision and recall depend on an understanding and measuring of relevant data. For 

some algorithm, high precision indicates that the retrieved results are more relevant than 

irrelevant one's, while high recall indicates the most retrieved results are relevant. 

Precision and recall have opposite direction, when precision increases recall decreases 

and vice versa [35]. 

2.5.2. F-Measure 
We cannot consider F- measure without precision and recall; therefore, the F-measure 

formula is combined from the two metrics precision and recall. 

F-measure or F-score [34] is used commonly to measure the standard performance 

measures in information retrieval especially in the tasks which the elements of class 

should be retrieved correctly without retrieving elements from other classes or when the 

relevant elements are rare. F-measure is also common in information extraction tasks 

such as the name entity recognition where most of the elements do not belong to a named 

class [37]. 

F-score reaches the best value at 1 and worst value at 0. Figure 2.12 shows the F-measure 

percentage value and its indication. When the percentage increases, the F-measure 

increases. Top value when its 100% which is equal to 1 [38]. 

 

Figure 2.11: F-measure percentage value and its indication [38] 

F-measure formula [39]: 

   
                       

                       
 

http://en.wikipedia.org/wiki/Relevance
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ß controllers if we want to weight either precision or recall more heavily, then we choose 

the suitable ß number, when ß = 1, then precision and recall are balanced. In most 

experiments, the researchers use ß = 1 as there is no reason to give precision or recall 

more weight. 

One way of comparing distance measures is to study their retrieval performance in terms 

of precision and recall [42]. 

2.5.3. Euclidean distance 
Euclidean distance [40] calculates the distance which is used in geometrical problems 

such as clustering problems, including clustering text. It measures the distance between 

two points in two or three-dimensional space. 

The Euclidean distance between two documents da and db is represented by their vectors 

ta and tb is defined as: 

 

Where the term  wt,a , wt,b  are two points. 

 

2.5.4. Cosine similarity 
Similarity relation is a mathematical notion that provides a way to manage alternative 

instances of an entity that can be considered “equal” to other entities with a given degree 

[41]. 

Cosine similarity is a measure of similarity between two vectors in order to measure 

the cosine angle between them but not their magnitudes [42]. The cosine value can vary 

between 0 and 1, the bigger the value the more similar the two vector are[43]. 

Cosine similarity converts the string to a vector. This method uses a map data structure to 

represent string in vector to associate each word with its frequency value in the string 

[44]. 

http://en.wikipedia.org/wiki/Cosine
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In order to form a vector from two strings, firstly, for each string, we list the distinct 

words. Secondly, we count the frequency of each word in the list, the counter of each 

word is incremented by one each time it found the original string. These counters are then 

saved in an array. Thirdly, the process will be repeated for the second string. Finally, by 

formatting the two vectors, we can substitute these vectors in the cosine similarity 

equation that is represented below [44]. 

 

 

 

 

2.5.5. Jaccard coefficient  
The Jaccard coefficient often used to compare the similarity, the dissimilarity, and 

distance between finite sets of objects by finding the intersection of objects divided by 

their union [47]: 

       
    
      

The formal definition is[40]: 

Sij =  
 

     
 

where,  a  is the number of attributes positive for both objects ,b  is the number of 

attributes 1 for i and 0 for j  and c is the number of attributes 1 for i and 0 for j. The 

Jaccard coefficient ranges between 0 and 1. It is 1 when the two objects are the same, and 

its 0 when are disjoint which means they are completely different. 

 

2.6. Comparison between the evaluation methods 
Our main goal of using an evaluation method is measure the similarity between two sets 

of words. A suitable evaluation method, for our research, should take into account small 

sets specially that a set in our research can be one to max 14 words.  
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Euclidean distance is dependent of the vector length. Vectors of different lengths will 

have a large Euclidean distance. Figure 2.13 shows a number of documents, the 

Euclidean distance between q and d2 is large even q and d2 are very similar and have a 

close distribution [45]. 

 
Figure 2.12: The Euclidean distance between q and d2[45] 

 

Cosine similarity is one of the most similarity measurements applied to text documents, 

as it is independent of the document length. Suppose we have a document d and its 

identical copy d′, the cosine similarity between d and d′ is 1, which means that these two 

documents are identical [40]. 

Jaccard similarity is particularly suited when dealing with data objects that have 

asymmetric binary attributes which defined as the number of common attributes is 

divided by the number of attributes that exists in at least one of the two objects. The most 

important question is to know if the extra bit of information can reflect or hurt or do 

nothing [46]. "Jaccard and Cosine similarity both depends on common terms, but cosine 

similarity are weighted " [48]. These weights are larger for words that are rare in the 

collection of data sets. 

Jaccard similarity was used to build fuzzy thesaurus (Miyamoto, 1990; Ogawa et al., 

1991), and Cosine similarity were used to build automatic thesaurus construction (Frakes 

& Yates, 1992) [46]. Both cosine similarity and Jaccard seem to be good choices to 

measure the distance between sets of words for our research. 
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Chapter 3 

3. Automatic Generation of Synonyms 

 

This chapter presents the SynsetGenerator algorithm [7] and its implementation. 

First, section 3.1 formalizes the problem and the goals we want to achieve. The 

algorithm will be presented and illustrated with a running example in section 

3.2.Section 3.3 will present the implementation of the algorithm and technical issues 

faced during this research. 

3.1. Formulation of the problem and goals 
As mentioned earlier, the importance of the Arabic cross-lingual resources such as Arabic 

thesauruses and EWN, and Arabic ontologies is increasing rapidly, especially as they are 

being used as core components in ANLP such as text translating, text summarizing, and 

information retrieval. 

The main objective of this research is to build synonyms automatically. In order to 

achieve this we divided the thesis into two phases. First phase is building Arabic 

thesaurus (i.e., sets of synonyms) automatically generated from existing Arabic bilingual 

dictionaries. The second phase is to evaluate the accuracy of generated synonyms by 

mapping them to WordNet synonyms. That is, given a set of synonyms {a1, a2, …, an} := 

{e1, e2, …, ek} that we generate and given WordNet synonyms, we will map both into 

each other i.e., {e1, e2, …, en} := {wn1, wn2, …, wnm}, where an refers to an Arabic word, 

ek refers to an English word, and wnm is an WN’s word. This part (mapping into 

WordNet) will be presented in chapter 4. 

In the first phase, for a given bilingual dictionary (e.g. Arabic-English) we generate the 

possible Arabic synonyms for a certain Arabic word, for example [7]: 

نهر، قناة ماء: جدول  

ة، قائمةمصفوف: جدول  
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Such sets of Arabic synonyms (called synset) are obtained by converting the bilingual 

dictionary into a graph where the first level is an Arabic word, the 2nd level is the 

English translations of the 1st level words, the 3rd level is the translation of 2nd Level, 

and so on, until no translation is found or a word is repeated (i.e., cycle).Then synonyms 

are the words in cyclic paths. 

3.2. The SynsetGenerator algorithm 
In this section we illustrate the steps followed to automatically generate all possible 

synonyms of this form: {a1, a2, …, an} := {e1, e2, …, ek}. As mentioned earlier we 

decided to implement and use the SynsetGenerator Algorithm proposed by [7]. In the 

following we describe this algorithm, and in the next subsection we illustrate it using a 

running example. 

Given a bilingual dictionary (i.e., one table with two columns Arabic Word and 

EnglishWord), the algorithm converts this dictionary into a graph, where each node is a 

word (which can be Arabic or English word). A link between words denotes translation 

of this word based on the given bilingual dictionary. The following steps demonstrate 

how the algorithm generates synonyms. Note that Lemmas of words are used in the 

algorithm instead of the words themselves. 

Given a bilingual dictionary as a set of tuples of the form <an,ek>, where an is word in a 

language (e.g., Arabic) and its translation into another language is ek (e.g., English), do 

the following[7]: 

Step-1: Lemmatize words in both languages. Each word ai will be replaced with its 

Lemma  lai, and each ej will be replaced with its lej. This step is essential in 

order to avoid possible problems that might arise when comparing words 

against each other. As will be discussed later, there are several available 

Lemmatizes for most languages that one can use in this step. 

Step-2: For each Arabic Lemma (lai), find the corresponding English lemmas 

{le1,le2…lei}, which are the translations found in the input bilingual 

dictionaries.  
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Sept-3: For each English Lemma {le1… len} found in step-2, find the corresponding 

Arabic lemma, which are also the translations found in the input bilingual 

dictionary.  

Step-4: Repeat step-2 and step-3 until either: (i) no translations are found, or until (ii) 

the resulted Arabic/English was generated earlier, or (iii) reach the Arabic 

lemma that we started from (i.e., a cycle detected). In other words, this step 

aims to build a graph of the possible translations by finding the translation of 

the Arabic lemma, then its English translations, then the Arabic translations of 

each English lemma, and so on. As described earlier, each lemma is seen as a 

node and the translation is seen as a link between two nodes. The algorithm 

stops either when no translations are found or a cycle is detected (i.e., when the 

retrieved lemma appeared in the path earlier). 

Step-5: Convert all cyclic paths detected in step-3 into synonyms. If a path was found, 

for example (a1o e1o a2o e2o a3o e5o a7o e9oa1) where the loop was 

caused because the first and the last nodes are the same, it means that all words 

in this loop are synonyms, thus such loops can be converted into synonyms as  

{a1, a2, a3, a7} := {e1, e2, e5, e9}. 

Step-6: Consolidate paths: this step is applied on all converted paths in step-4. That is, 

this step aims to consolidate the Arabic and English synsets such that: 

x If two sets of synonymy in English are the same, we consolidate their Arabic 

equivalence, such as: 

{a1, a2, a3}:= {e1, e2, e3} 

{a3, a5, a6}:= {e1, e2, e3} 

We merge the Arabic synsets to get one synset like:  

{e1, e2, e3} := {a1, a2, a3, a5, a6}    

x If two sets of synonymy in Arabic are the same, we consolidate their English 

equivalence, such as: 

{a1, a2, a3}:= {e1, e2, e3} 

{a1, a2, a3}:= {e4, e5, e6} 
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We merge the English synsets to get one synset like:  

  {a1, a2, a3}:= {e1, e2, e3, e4, e5, e6} 

x We repeat this step-6 until no consolidation in Arabic and English set of 

synonymy is needed; that is, we merge the paths generated in step-5 based on 

matches of sets of synonymy. 

Figure 3.1 shows the pseudo code of the SynsetGenerator algorithm : 

 
                                        Figure 3.1: SynsetGenerator algorithm pseudo code 

As we shall explain in details later in chapter four, our algorithm is designed with three 

assumptions in mind, which we suppose that they are true for any synset. The algorithm 
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works ideally when they are true, if these assumptions are not met then the accuracy of 

our generated results might be affected: 

x Each synset is unique and has a unique synset ID. 

x No synset can be a subset of another synset. For example: It's not allowed to 

have synset1 has the following elements {A,B,C,D,E} and synset2 has the 

following {A,B,C}. 

x The linked AWN-ENW synsets are all one to one, i.e., there is only one English 

synset in EWN mapped to only one Arabic synset AWN, and vice versa. No 

different Arabic synsets have the same English synset or English synsets have 

the same Arabic synset, such that:  

 

 

 
 

3.2.1. Example 
This example is taken from [7]. It illustrates all steps of the SynsetGenerator algorithm 

explained above. Suppose we have the Arabic English bilingual dictionary presented in 

Figure 3.1, which is a table of two columns (English, Arabic) translations.  
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Figure 3.2: Arabic English bilingual dictionary[7] 
 

Step-1: Lemmatizing of Arabic and English words. Here we find that the Arabic lemmas 

for the Arabic words are the same, and the English lemmas for the English words  

             are the same. 

Step-2: For each Arabic Lemma such as (رتب), find the corresponding English lemmas 

{sort, arrange, shape, order, clean, pack, tidy, set}, which are the translations 

found in the input bilingual dictionaries. Figure 3.2 shows the graph of the first 

level that resulted from the algorithm: 

 

Figure 3.3: First level [7] 

sort رتب tidy أنيق
arrange رتب tidy ضخم
order رتب tidy نظيف
set رتب tidy منهجي
tidy رتب tidy منظم
pack رتب tidy مهندم
shape رتب pack حزمة
form رتب pack رزمة
sort نوع pack وضب
sort شكل pack تكوم
sort ضرب pack حشا
sort هذا النوع shape شكل
sort صنف shape حالة
sort طريقة shape هيئة
arrange نظم shape مظهر
arrange اتخذ shape تجسد
arrange سوى الخلاف form شكل
arrange عدل form استمارة
order النظام form صورة
order ترتيب form نوع
order أمر form هيئة
set مجموعة form صيغة
set وضع tune رتب
set ضبط form ضرب
set بدأ organize رتب



36 
 

 

Sept-3: For each English Lemma such as {arrange}found in step-1, we find the 

corresponding Arabic lemmas, which are also the translations found in the 

input bilingual dictionary. Figure 3.3 shows the graph of the second level that 

resulted from the algorithm. 

 

Figure 3.4: Second level [7] 
Step-4: Repeat step-1 and step-2 until either (i) no translations are found, or until (ii) 

the resulted Arabic/English was generated earlier, or (iii) reach to the Arabic 

lemma which we started from. 

Figure 3.4 shows the graph of the fourth level that will be resulted from the graph. 

 

Figure 3.5: Fourth level [7] 
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Step-5: Convert all loops into synonyms. If a path was found, then the loops can be 

converted into synonyms. In figure 3.4 the yellow lines mark discovered paths. 

For example, each path started from the root node"رتب" and ends with the same 

word "رتب" presents a single path (رتبoarrangeoنظمo organizeoرتب), 

which means that all words in this loop are synonyms, thus {رتب، نظم } 

:={arrange , organize} are synonyms . Figure 3.4 presents four paths for the 

word “رتب":  

     {arrange , organize} =: {رتب، نظم}

{عدلرتب، }  :={arrange، regulate{ 

{رتب،ضبط } :={set, tune} 

{أنقرتب، }  := {tidy، neat} 

Step-6:Synonyms consolidation step is applied for all converted paths; In this example 

there are no consolidations needed as there are no two sets of synonymy in 

English or Arabic which are the same. 

 

3.3. SynsetGenerator algorithm implementation 
The previously presented algorithm has been fully implement and tested. Figure 3.4 

shows the graphical interface to present results. Through this interface, we can generate 

the synonym set for a given Arabic word. In addition, we can generate synonymy for set 

of Arabic words by choosing the first number (n) of words as listed in the database. 

Moreover, we can generate synonymy for all Arabic words.    
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Figure 3.6: The interface of the SynsetGenerator algorithm 

 

The algorithm default-state is to keep generating the nodes until no new nodes are added 

to the tree, however, if we want to choose a certain level, we can select the level number 

as shown in figure 3.4. The level number must be even (2,4,6,8, ...) as even level 

indicates that the path ends with Arabic word, odd level number indicates that the path 

ends with English word. The tree path stops when one of these conditions happens: (1) If 

we reach the Arabic lemma that we started with i.e., cycle is detected, (2) If we reach a 

node that is already in the path no matter this node is an Arabic or an English node i.e., 

cycle is detected, or (3) If we reach the wanted level, or no new nodes are added. 

The algorithm uses the Arabic and English lemmas instead of the words themselves, so as 

a first step we need to find the lemmas of the Arabic the English words. For each of 

the Arabic and English words from Bilingual Arabic English dictionary, we need to find  

the lemma for these words, and then store them into a database. This is an important step 

as several words that have the same meaning (e.g., “الإجازة“ ,”إجازة”, and “الإجازات”), have 

the same lemma (“إجازة”), thus it is important to use the lemmas of the words instead of 

using the words themselves which will increase the algorithm accuracy, improves the 

performance  and avoids repeating of the words within a path. In our implementation, we 
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used MADA morphological analyzer to lemmatize our Arabic words and we used 

language tool desktop application  to lemmatize the English words.  

Figure 3.6 shows the database schema we have, which includes Words table, Arabic 

lemma Table, and English lemma Table. 

 
Figure 3.7: Database schema for SynsetGenerator algorithm 

 

The second step in the algorithm is to find the corresponding English lemmas for each 

Arabic Lemma, which are the translations found in the input bilingual dictionaries. The 

third step is to find the corresponding Arabic lemmas for each English lemma found in 

the first step, which are also the translations found in the input bilingual dictionaries. The 

fourth step of the algorithm is to repeat the first step and second steps until no new 

nodes are added to the tree or a node is repeated in the path. 

The fifth step in the algorithm is to convert all loops into synonyms. When an Arabic 

node is created in the path, the algorithm will check whether this node represents a 

synonym where it checks if the first and the last node in the path are the same, then it 

divides the path nodes by two, i.e., separates the Arabic and English nodes into two sets, 

if the mod is equal to zero, then it's an Arabic node, else it is an English node. Once the 

algorithm determines they are synonyms, it will write the original words instead of their 

lemmas in the synsets which are written in the interface grad as shown in figure 3.5.  

When the application builds all the synsets, these synsets are sorted through the sort 

button as shown in the interface (figure 3.5) to prepare the synsets for the next step. We 

sort the words of both Arabic and English sets. 
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Last step of the algorithm performs synonyms consolidation where for the same English 

synset we find all Arabic synsets that corresponds to this English synset, for example:  

 {discharge, eject, order} =:{اطلق، أخرج، أمر}

 {discharge, eject, order} =:{اطلق، أخرج، أدار}

Then we merge these Arabic synset to get one synset as shown below: 

 {discharge, eject, order} =:{اطلق، أخرج، أدار، امر}

This step is done through the consolidate English synsets button included in the interface. 

The same procedure is performed for Arabic synsets where if we have same Arabic 

synset for different English synsets, such as: 

{ أذى، اصاب،أهان ،الم }:= {infect,  insult, inflict, insult} 

{ أذى، اصاب،أهان، الم }:=  {hurt, inflect, insult, offend} 

We merge the English synset to get one synset as shown below:  

{ أذى، اصاب،أهان، الم }:=   {infect,  insult, inflict, insult , hurt, offend} 

This step is done through the consolidate Arabic synsets button included in the interface. 

When all the above steps are applied the automatic Arabic thesaurus is created by 

exporting the resulted synsets into a text file. The resulted synset accuracy for of the 

automatic Arabic thesaurus (the output file) depends on the accuracy of the Bilingual 

dictionary (the input file). 

The technology which we use to develop the algorithm is Visual Basic .Net which is 

connected to SQL server as a database. We import the excel sheet bilingual dictionary to 

the SQL Server database to be able to execute SQL statements. 

Once we execute the application, all needed data are imported to a temporary location in 

the memory, this step guarantees a high speed execution of the select statements which is 

called  ADO. Net ( Active X Data Object). 
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The reason why we use .Net technology as it provides many controls and a good user 

interface GUI (Graphical user interface) which made the data presentation easier and 

more efficient. The main two controls which we use are:  

1. The tree view : In our implementation, we use a tree structure control as it has a 

collection of ordered levels of nodes and each node is an object, and each object 

has a set of methods and properties. In our case we used the properties to give it 

the shape whether it is an Arabic node or an English one, and we use the methods 

to separate Arabic nodes apart from the English ones; also to create the paths that 

represent the synonym. 

The depth of the tree structure implies the number of levels which is far from the 

original node that we start from ( the root node). The depth of the tree depends on 

the number of word synonyms. For example, if the tree depth is 10, then this 

implies that the root has 5 distinct Arabic synonyms and 5 distinct English 

synonyms. 

The tree hierarchy guarantees the processing of the nodes by the inner loops 

which help us to know: 

1. Whether the node is an Arabic node ( if we have an even node) or English  

node ( if we have an odd node). 

2. The value of the node. 

3. Comparing the node with the previous nodes in order to continue or stop 

the node propagation. The propagation is stopped when we reach the node 

which we created in a previous levels, or when we reach a node that is 

equal to the node we start from. 

After having all the nodes processed through the inner loops, the output will be 

reflected into a data grid. 

 

2. The data grid view: in our implementation, we also use a data grid view which is 

a table. This table let the user see the synonyms creation process which applied in 

user interface. 

After finishing the synonyms creation process, .Net supports the exporting to a 

format such as xml format for the data backup. That is, if the application is 
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suddenly stopped without finishing all synonyms creation, then the next execution 

of  the application will continue from the point which was stopped from, we also 

use the txt format to export the final synonyms. 

 

Visual basic .Net has many built in functions which we use, such as the split function 

to know the number of words inside each path.  
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Chapter 4 

4. Evaluation 
 

In this chapter we evaluate the  algorithm accuracy, mainly, the generated sets of 

synonyms, which is considered the second core part of our research. Sections 4.1 

and 4.2 explain the experiment idea and describe the steps followed to test the 

SynsetGenerator algorithm implementation. We describe the steps followed to 

test some assumptions in section 4.3. Section 4.4 presents mapping algorithm 

implementation used to map the Arabic synsets that resulted from the automatic 

Arabic thesaurus algorithm to the EWN concepts, and the percentage of the 

mapped synsets. Finally,  section 4.5 presents the methodology through which we 

can use the mapping algorithm to find the number and percentage of exact WN 

synsets that are generated by the SynsetGenerator algorithm compared to the 

original linked WN synsets. 

 

4.1. Experiment idea 
The correctness of synonyms generated by our implementation clearly depends on the 

correctness of the input bilingual dictionary i.e., if the bilingual dictionary we used in the 

initial phase contains incorrect or weak translations, then our algorithm will generate 

incorrect results. Thus, the better the quality of translations in the input dictionary, the 

better the quality of our results. To test this claim, we conducted the following 

experiment: We took the Arabic WordNet (contains Arabic synsets mapped with their 

equivalent synsets in the English WordNet) and extracted an Arabic–English bilingual 

dictionary from it. Then we used our implementation to generate Arabic and English 

synsets, and then we compared these generated synsets with the original synsets. Our 

evolution will be: How much our implementation is able to generate the same original 

synsets. We shall use cosine similarity as a mathematical tool to compare synsets.  
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4.2. Experiment setup 
This section describes the steps needed to conduct the evaluation. First we downloaded 

both the Arabic WordNet and the English WordNet (version 3.1), with their Arabic-

English mappings. Then we stored them in a relational database, the number of AWN is 

10426 synsets and the EWN is 117791 synsets. We then performed the following step: 

Step-1: Generate the Arabic and English linked synsets by developing WN synset 

application. The result of the application will be presented as: {a1, a2, a3} := {e1,e2} where 

a is an Arabic word from AWN, and e is an English word from EWN. 

Step-2: Convert the generated linked synsets into output table with three fields( Ar, Syns 

ID, En). The conversion process was done by joining the tables in step-1 by Syns ID. The 

output table entries that are presented as {a1, a2, a3} := {e1, e2} will be converted into 

{a1,e1}, {a1, e2}, {a2, e1}, {a2, e2}, {a3, e1}, {a3, e2} sets. 

Step-3: Connect the output table to SynsetGenerator implemented algorithm as an input, 

and generate the WN synsets again {a1, a2, a3} := {e1,e2} as output. 

Step-4: Compare the results from step 1 and step3, If same synsets are produced, then the 

program implementation draws the graph correctly. 

 

4.2.1. Testing our implementation 
Figure 4.1 shows our application, which generates linked synsets from both AWN and 

EWN. 
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Figure 4.1: WN synset application code 
 

In this application we merge the WN’s tables to get one table as an output that has 3 

fields (Ar, SynsID, En) which build the link synset within the en_synsetid  field. In this 

step we find that there is no need to convert the linked synsets {a1, a2, a3}:={e1,e2} to 

{a1,e1},{a1,e2},{a2,e1}, {a2,e2},{a3,e1},{a3,e2}, as this step is already done by merging the 

WN tables.  When the application is executed a table will appear as shown in figure 4.2: 

 
                                Figure 4.2: The interface of the WN synset application 



46 
 

Once we click on Generate button a text file with a linked synsets from both WNs tables 

is generated which contains 8,799 synsets, with distinct synsets of 8,660. After that, we 

connect the output table to SynsetGenerator implemented algorithm as input trying to 

generate the WN synsets {a1, a2, a3} := {e1, e2} as output again. By comparing the 

synsets, which are generated by linked WN Synset application in the testing part and WN 

synsets, which are generated by SynsetGenerator application, we obtained the results 

shown below: 

x The SynsetGenerator built(10752 generated synsets). This number is 

greater than the WN synsets; which means that more synsets were created 

generated. 

x These synsets will be evaluated to find the percentage of the exact match 

synsets using the mapping algorithm( section 4.4.1). 

 

4.3. Testing WN assumptions 
In order to find the reasons that caused our algorithm to not create the other synsets, we 

test the assumptions which we suppose about the WordNet in the next subsections. 

4.3.1. Assumption one 
Is each set of synonyms grouped into a synset is given a unique ID or 

there are same sets of synonyms given different IDs, in each of AWN and 

WN? Does a synset in AWN and EWN has a unique synset ID? 

In order to check this assumption for both AWN and EWN, a Synset application is built. 

This application is applied once for AWN to build the AWN synsets, and then applied to 

EWN to build the EWN synsets. The application functions by putting all the words that 

have the same SynsetID together into the same synset, after that it puts the SynsetID 

beside the Synset. Figure 4.5 shows the A_WN_A1 table, which stores the AWN words 

and their SynsetID, and figure 4.6 shows the view which stores the EWN words and their 

SynsetID. This view has two tables; the first table is the E-word which contains the word 

and the wordID, the second table E_word_syns_ids which contains the word id and the 

synset id. This view joins the two tables to get the word and its SynsetID. 
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Figure 4.3: AWN words table 

 

 
                      Figure 4.4: EWN  words view  

 

AWN Synset application builds the Arabic synsets, and EWN Synset application builds 

the English synsets. These applications write the results to a text file. The number of 

AWN synsets was 10426 synsets and the EWN synsets are 117791 synsets, after the 

synsets are built, the results are put in an excel sheet to find if we have a synsets with two 

SynsetIDs. The results obtained are shown below: 
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For the AWN: 1528 synsets from10426 synsets have more than one SynsetID, which is 

about 15% of the synsets. See appendix 1, and here is an example of the result obtained is 

shown below:  

 

The synset {توَْحِيد،اتِِّحَاد}  has two synset IDs where each ID has a different gloss: 

x {حَاد {تَوْحِيد،اِتِّ  {107388403}: =an occurrence that results in things being united. 

x {توَْحِيد،اتِِّحَاد}  {114441799}:= there is strength in union. 

The synset {عَزْم،عَظْم،إرَِادَة} has two synset IDs where each ID has a different gloss: 

x {عَزْم،عَظْم،إرَِادَة}   {105277400{:= Rigid connective tissue that makes up the 

skeleton of vertebrates. 

x {عَزْم،عَظْم،إرَِادَة} {104871431}:= The trait of resoluteness as evidenced by 

firmness of character or purpose. 

The table 4.1 shows the number of AWN synsets that have more than one SynsetID and 

contain one word, two words, three words and more than three words. 

Num Num of words in AWN synsets that 

has more than one SynsetID 

Num of  AWN synsets that has 

more than one SynsetID 

1. One word / Arabic synset 416 

2. Two words / Arabic synset 736 

3. Three words / Arabic synset 272 

4. Four words/ Arabic synset 84 

5. More than four words/ Arabic synset 20 

Table 4.1: The number of  words in AWN synsets that have more than one SynsetID 
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Figure 4.7 shows the AWN synset application, which is used to build the AWN synsets. 

Figure 4.8 shows the execution of AWN application. The application is also used to build  

the EWN synsets but it uses the EWN data to do so. 

 
Figure 4.5: AWN Synset application 

 

For the EWN: 42284 synsets over 117791 synsets has more than one SynsetID which is 

about 13 % of the synsets. See appendix 2, here is an example of the result obtained:  

 
The synset {Battle of the Somme, Somme River} has two synset IDs where each ID has a 

different gloss: 

x {Battle of the Somme, Somme River} {101297864}: =Battle in World War I (1916). 

x {Battle of the Somme, Somme River}{101298019}: =Battle of World War II (1944). 

The synset {Cabalist, Kabbalist} has two synset ID where each ID has a different gloss: 

x {Cabalist, Kabbalist,} {109904868}:= A student of the Jewish Kabbalah. 

x {Cabalist, Kabbalist,} {109904986}:= An expert who is highly skilled in obscure, 

difficult, or esoteric matters. 
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The table below shows the number of EWN synsets that have more than one SynsetID 

and contain one word, two words, three words and more than three words. 

Num No. of words in EWN synsets that has 
more than one SynsetID 

No. of  EWN synsets that has 
more than one SynsetID 

1. One word / English synset 27418 

2. Two words / English synset 11660 

3. Three words / English synset 2385 

4. Four words / English synset  615 

5. More than four words/ English synset 209 

Table 4.2: The number of  words in EWN synsets that have more than one SynsetID 

4.3.2. Assumption two 
Are there any subsets in the AWN and EWN such that, synset1 has {A, 

B, C, D, E} elements and synset2 has {A, B, C} elements? 

In order to check this assumption for both AWN and EWN separately, a compare synsets 

application is built. This application is applied to the AWN synsets that resulted from 

AWN synset application and EWN synsets that resulted from EWN synset application in 

the previous assumption. We compare each AWN Synset with all AWN Synset, then the 

application counts the number of subsets in the AWN. The same is done for EWN 

synsets. Figure 4.9 shows the Compare Synset application. Figure 4.10 shows the 

execution of Compare AWN Synset application. And figure 4.11 shows the execution of 

Compare EWN Synset application. 
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Figure 4.6: Compare synset application  

 

 
Figure 4.7: The execution of compare AWN synset application  

The results of the Compare AWN synset application: 948 synsets of the 10426 synsets 

are subsets of other synsets, which is about 9% of the synsets. See appendix 3, here is an 

example of the result obtained is shown below.  
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The table 4.3 shows the number of AWN synsets that have subsets and contain one word, 

two words, three words and more than three words. 

Num Num of words in AWN synsets that 
has subsets 

Num of  AWN synsets that has 
subsets 

1. One word / Arabic synset 756 

2. Two words / Arabic synset 155 

3. Three words / Arabic synset 32 

4. Four words / Arabic synset 4 

5. More than Four words/ Arabic synset 1 

Table 4.3: The number of words in AWN synsets that have subsets 

 

 
Figure 4.8: The execution of Compare EWN Synset application  

The results of the Compare EWN synset application:1,998 synsets of 117791synsets are 

subsets, which constitute about 2% of the synsets. See appendix 4, here is an example of 

the result is shown below. 
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The table below shows the number of EWN synsets that have subsets and contain one 

word, two words, three words and more than three words. 

Num Num of words in EWN synsets that 
has subsets 

Num of  EWN synsets that has 
subsets 

1. One word / English synset 1880 

2. two words / English synset 109 

3. three words / English synset 6 

4. Four words / English synset 1 

5. More than four word /English synset 2 

Table 4.4: The number of words in EWN synsets that have subsets 

 

4.3.3. Assumption three 
Is the relation one-to-one between the linked AWN and EWN synsets? Is 

each English Synset mapped to one Arabic synset and vice versa?  

In order to check this assumption for both AWN and EWN, we use the result file from 

the Synset application, which builds the linked AWN and EWN synsets. We found that 

not all the 8,799 WN linked synsets has a relation of one to one. Some synsets have one 

to many relations (1 →n) such as: 

x For the linked synsets: 106 synsets out of 8,799 have one English Synset 

which is mapped to many Arabic synsets. This means that the relation is         

(1 →n) and these synsets constitute about 1.2% of the synsets. Figure 4.12 

shows a screenshot which applied mapped synsets to get the result (1 →n) . 

The query used to find the number of English synsets that are mapped to many Arabic 

synsets is the following: 

Select en_synsetid, count(distinct synsetid) as arabic_synset_count  from 
dbo.a3  group by en_synsetid having  count(distinct synsetid) > 1 
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   Figure 4.9: 106 synsets has (1 →∞) relation between English synset and Arabic synset 
 

For examples: 

x For the English synset {body; consistence; consistency; substance} which has an 

ID {104941723}, its linked with two different Arabic synsets:  

o {body; consistence; consistency; substance} := { ترََابطُ; تنَاَسُق; تمََاسُك; اتِِّسَاق }  

o {body; consistence; consistency; substance} := { بدََن  }  

x For the English synset {circumstance; condition; consideration }which has an ID 

{105831106}, its linked with two different Arabic synsets:  

o {circumstance; condition; consideration}:= { مُرَاعَاة; اعِْتبِاَر; شَرْط }  

o {circumstance; condition; consideration}:= {شَرْط} 

x For the English synset {measure; measurement; measuring; mensuration} 

o which has an ID {100998911}, its linked with two different Arabic 

synsets: 

o {measure; measurement; measuring; mensuration}:={ ; تدَْبيِر; اعِْدَاد; إجِْرَاء

  {خُطْوَة

o {measure; measurement; measuring; mensuration}:={ قيِاَس  } 
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0 synsets out of 8,799 have one Arabic synset, which is mapped to many English synsets 

i.e., the relation is (1 →1) for this part. Figure 4.13 shows the query screenshot which 

applied mapped synsets to get the result (1 →1). 

The query to find the number of Arabic Synset which is mapped to many English synset: 
Select synsetid as arabic_synsetid, count(distinct en_synsetid) as english_synset_count 

from dbo.a3 group by synsetid having count(distinct en_synsetid) >1 
 

 

Figure 4.10: 0 synsets has (1 →1) relation between Arabic synset and English synset 
 

4.4. Mapping the Arabic synsets to the EWN concepts automatically 
In this section, we describe the steps followed to automatically map the Arabic synsets 

that resulted from the Automatic Arabic thesaurus algorithm SynsetGenerator application 

to the existing EWN concepts. In what follows, we describe the Mapping algorithm and 

then we demonstrate our implementation of this algorithm.  

4.4.1. Mapping the Arabic synsets to the EWN concepts algorithm 
Given an Arabic thesaurus file which contains Arabic synsets and their equivalent 

English synsets such that {a1, a2, …, an} := {e1, e2, …, ek}where an refers to an Arabic 

words, ek refers to an English words, the mapping algorithm will map the Arabic synsets 

to the existing EWN concepts through the English synset.  

The mapping process is done by using cosine similarity measurement, which measures 

the similarity between two vectors (English synset and EWN synset) by measuring 
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the cosine of the angle between them. If the ratio is high, then similarity is high. The 

highest similarity ratio is 1, which means they are the same. 

Cosine similarity converts the string to a vector to find the similarity ratio between the 

two synsets. The mapping process done by listing the distinct words then counting the 

frequency of each word in the list. The counter of each word is incremented by one each 

time it found in the original string. These counters are then saved in an array. The process 

will be repeated for the second string. Finally, by formatting the two vectors, we can 

substitute these vectors in the cosine similarity equation that is represented below [44]: 

 

 

 

To understand how cosine similarity builds the vectors, suppose the following example 

[48] which has text1 and text 2 as shown below: 

                                  Text 1: Jana loves me more than Jeni loves me 

                                  Text 2: Jwana likes me more than Jine loves me 

The first step is to list the distinct words from both texts (the word order is not 

important): 

                                    me Julie loves Linda than more likes Jane 

Then count the number of times each of these words appears in each text to build two 

vertical vectors of counts as in table 4.5: 

Num Distinct Words Counts  in Text 1 Counts in Text 2 
1. Me 2 2 
2. Jana 1 1 
3. Likes 0 1 
4. Loves 2 1 
5. Jwana 0 1 
6. Jeni 1 0 
7. Than 1 1 
8. More 1 1 

Table 4.5: Counter of words 

http://en.wikipedia.org/wiki/Cosine
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We are not interested in the words themselves though. We are interested only in two 

vertical vectors of counts. The two vectors are: 

A: [2, 1, 0, 2, 0, 1, 1, 1] 

B: [2, 1, 1, 1, 1, 0, 1, 1] 

By applying the two vectors in the cosine similarity equation to find the similarity, we 

can find that the angle between the two vectors is 0.822.Thus, we can conclude that the 

similarity between the two texts is 0.822. 

The mapping of the Arabic synsets to the EWN synsets is done by listing all EWN 

synsets (from the EWN) which have common English words with the English synset 

(from the Arabic Thesaurus) and then giving each one a weight which computed using 

the cosine similarity measurement. The highest EWN synset weight is then mapped to the 

Arabic synset. To be more familiar, suppose we have the following example, which has 

synsets from Arabic Thesaurus resulted file, Arabic synsets and English synsets: 

{a1, a2, …, an} := {e1, e2, …, ek} 

Where an refers to an Arabic word and ek refers to an English word. 

The following steps summarize the Mapping algorithm: 

Step-1: For each English synset{e1, e2, …ek}, find and list of all EWN synsets{wn1, wn2, 

…, wnm}which are similar to English synsets using cosine similarity. 

Step-2: Map the English synset to the highest EWN synset similarity ratio. 

Step-3: Map the Arabic synset, which is equivalent to the English synset in the Arabic 

thesaurus file, to the mapped EWN synset in step-2. 

Step-4: Repeat step-1, step-2 and step-3 for all English synsets in the Arabic thesaurus 

file, which resulted from SynsetGenerator application.   

To further illustrate the Mapping algorithm suppose we have {e 1, e 2,e 3,e 4}English 

synset from the Arabic thesaurus file. Cosine similarity lists all EWN synsets which have 

a similarity to the selected English synset. In this example, four EWN synsets are found, 
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each synset has a cosine similarity value. The highest value is then mapped to the English 

synset part {e 1, e 2,e 3,e 4}. 

 

The fourth EWN synset {wn1, wn2, wn3, wn4} has the highest cosine similarity value 

which is equal to one.  This EWN synset will be mapped to the English synset: 

{e1, e2, e3, e4}:= {wn1, wn2, wn3, wn4} 

Then the Arabic synset is mapped to the EWN synset: 

{a1, a2, a3, a4, a5} := {e1, e2, e3, e4}:= { wn1, wn2, wn3, wn4} 

The process will be repeated for all Arabic Thesaurus file that resulted from 

SynsetGenerator application.  

 

4.4.2. Mapping the Arabic synsets to the EWN concepts implementation 
Figure 4.1 shows the graphical interface for the Mapping application. The similarity 

value should be applied in order to map the Arabic synsets to the highest EWN synsets. 

This is accomplished by mapping the English synsets to the highest EWN synsets 

similarity ratio. This ratio will be greater or equal to the selected similarity value. If the 

EWN synset has a similarity ratio less than the similarity selected value, then it will not 

be listed in the EWN synsets. If we have two EWN synsets, which have the same 

similarity ratio with the English synset, then any of them will be mapped to Arabic 

synset. After that, the mapping synsets are exported to a text file. 
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Figure 4.12: Mapping application interface 

 

Through this interface, we put the similarity value equal to, e.g., 0.5, only the EWN with 

similarity value greater than or equal to 0.5 will be listed. The EWN with a value less 

than 0.5 will be ignored. 

Once we press the cosine similarity button, the similarity computation (depends on cosine 

similarity measurement) between each English synsets from the left block (these synsets 

come from the execution of the SynsetGenerator application) and all EWN synsets in 

the right block (these synsets are from the linked WN application) will be started. Cosine 

similarity builds two count vectors for the two synsets, these vectors are constructed by 

the string matching between the two synsets, i.e., it measures the similarity between two 

vectors by measuring the cosine angle between them [44]. 

In the third block, each dictionary synset with all EWN synsets that have a similarity 

value more than the similarity value which we entered will be listed. The map button will 

map Arabic synset to the highest EWN synset similarity value, then export the result 

{a1,a2, a3, a4, a5} := { wn1, wn2, wn3, wn4} synsets to a text file. 

 

http://en.wikipedia.org/wiki/Cosine
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The percentage of mapped synsets is affected by two factors: 

x The selection of similarity value, the maximum value is 1, which means exact 

match, and the minimum value is equal to 0, which means no similarity. 

x The type of bilingual dictionary, which we want to map. For example, if we 

have Musical bilingual dictionary, then, for sure, the percentage of mapped 

synsets will be small. 

4.5. Evaluating SynsetGenerator algorithm and WN synsets using 

mapping algorithm 
As we presented in the previous section, the Mapping application  maps the Arabic 

synsets to their equivalent EWN concepts through the similarity computation between the 

English synsets and the EWN synsets. 

This section presents how we can use the mapping algorithm to find the number and 

percentage of exact WN synset that are generated by the SynsetGenerator 

algorithm)As we presented in the previous section, the Mapping application maps the 

Arabic synsets to their equivalent EWN concepts through the similarity computation 

between the English synsets and the EWN synsets. 

This section presents how we can use the mapping algorithm to find the number and 

percentage of exact synset that are generated by the SynsetGenerator algorithm)10752 

synsets) compared to the original linked WN synsets (8660 synsets). 

The similarity computation in the mapping algorithm compares WN synsets, which are 

generated by WN synset application and WN synsets, which are generated by 

SynsetGenerator application. Putting the similarity value equal to 1 will list only the 

exact matched synsets, which means only the WN synsets that are generated by 

SynsetGenerator implantation and exactly the same as WN synsets that are generated by 

the WN application will be listed as seen in figure 4.15 which shows the exact WN synset 

match. 
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Figure 4.13: Finding the exact WN synset match using mapped algorithm 

 

 
Figure 4.14: The percentage of exact WN synset matching using mapping algorithm 

 

Table 4.6 shows the number of WN synsets used in the experiment (8660 synsets), and 

the number of synsets that our algorithm generated 10752 synsets. From these synsets the 

correctly generated synsets are 7272 synsets. This means that the correctly mapped 

synsets ratios is 7272/8660 = 84 %. 
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Number of WN synsets used in the experiment  8660 synsets 

Number of synsets generated by the SynsetGenerator 10752synsets 
The number of correctly generated synsets 7272 synsets 

Mapped synsets ratio 7272/8660 = 84 % 
Table 4.6:The number of the exacted match WN synsets ,and their mapped synsets ratio 

Table 4.7 shows the percentages for mapped WN synsets for different values of cosine 

similarity (1.0, 0.9, 0.8, 0.7, 0.6). We can infer from the table that decreasing the value of 

cosine similarity will increase the percentages mentioned earlier i.e., decreasing 

similarity will give tolerance to the application and also the returned synsets.  

Cosine 
Similarity 

Number of Generated Correct 
Synsets Mapped synsets ratio  

1.0 7272 synsets 7272/8660 =  
84% 

0.9 7644 synsets 7644/8660 = 
88% 

0.8 8015 synsets 8015/8660= 
93% 

0.7 8197  synsets 8197/8860= 
95% 

0.6 8689 synsets 8689/8660= 
100.3% 

Table 4.7: Mapped synsets ratios with different cosine similarities 

 

The major issue affecting the mapped synsets ratio in the above table is that the 

SynsetGenerator generated more results than expected (10,752 – 7,272 = 3,480). When 

the cosine similarity is equal to 0.6 the mapped synsets ratio was 100.3% which means 

that we mapped all WN synsets in addition to “extra” synsets (3,480 synsets).These extra 

synsets can be incorrect synsets that we can ignore and drop or could be right and our 

algorithm missed them, or this can be caused by the quality of AWN itself as explained 

earlier in this thesis. In what follows, we provide two evaluations to further investigate 

these extra generated synsets. Table 4.8 provides statistics regarding the 3,480 extra 

generated synsets, and whether their length is one word, two, three, four, or more words. 

In Table 4.9, we show results after repeating the same procedure we did in table 4.7, but 

now we removed each synset that is a subset of another synset and removed synsets with 

length equal to one like {a1}:={wn1}, {a1}:={e1} from both WN synsets and 
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SynsetGenerator synsets. We removed 2,993 synsets from WN synsets and about 3,871 

synsets from SynsetGenerator synsets. The remainder 5,667 synsets (8,660 – 

2,993=5,667) and 6,881 synsets (10,768 – 3,871 = 6,881) are evaluated again. 

 

Num of words in the extra generated synsets  

One word / English synset 7 

two words / English synset 1177 

three words / English synset 1814 

Four words / English synset 77 

More than four word /English synset 405 

Table 4.8: Statistics about the extra-generated synsets 

 

Cosine 
Similarity 

Number of Generated 
Correct Synsets Mapped synsets ratio 

1.0    5173 synsets 5173/5667=  
91.2% 

0.9 5175 synsets 5175/5667=  
91.3% 

0.8 5366 synsets 5366/5667=  
95% 

0.7 5415 synsets 5415/5667=  
96% 

0.6 5747 synsets 5747/5667=  
101% 

Table 4.9: Mapped synsets ratios with different cosine similarities ratios after removing 

subsets and synsets with one word length 

Discussion: 
In this part we discuss and explain the results that we obtained in table 4.7.The 

SynsetGenerator algorithm generates 10,752 synsets which exceeds the number of 

original WN synsets (8,660 synsets) in about3,480 synsets. The exact matched synsets 

number is 7,272 synsets. The reasons that affect our results and caused the algorithm not 

to regenerate the other synsets (1,388 synsets) are: Firstly, our SynsetGenerator synsets 

builds the synsets in a systematic way while WN synsets are built manually, hence we are 
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comparing synsets that are produced by different approaches. Secondly, the WN synsets 

have many synsets that are subsets from each other such as {  catch, find } =:{ رَأىَ،أدَْرَكَ  

out } which is a subset from {  Thirdly, there are .{catch, find out,  get }=:{ رَأىَ،أمْسَكَ ،أدَْرَكَ  

synsets in WN has only one word in Arabic and English such as {  which {active}=:{  نشَِط

may require a special treatment. Finally, the cosine similarity approach may drop some 

exact WN synsets as a result of the cosine similarity calculations. The cosine similarity 

approach compares the two strings in terms of word by word, while programmatically we 

compare the two strings character by character, so if we have a synset that has a cosine 

similarity equal to 0.99999 it will not be listed as an exact WN synset.  

In addition, the cosine similarity ratio depends on the number of words inside the two 

compared synsets i.e., if we have a synset that has four words such as {carry on, continue, 

go on, proceed} and one word is missed from the compared synset such as {carry on, 

continue, go on} the cosine similarity ratio will be 0.866, while if we have a synset with 

seven words such as {cloud, befog, becloud, obscure, obnubilate, haze over, mist} and 

one word is missed from the compared synset such as {befog, becloud, obscure, 

obnubilate, haze over, mist } the cosine similarity ratio will be different from the synset 

with four words and it will be 0.926. 

In order to resolve these problems we remove the subsets and the synsets with one word 

length {a1} := { wn1}from both SynsetGenerator synsets and the original WN synsets, 

then evaluate again, These two steps improve the mapping algorithm as the Mapped 

synsets ratio becomes 91.2% instead of 84% as seen in table 4.9. 
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Chapter 5 

5. Conclusions and Future work 
 

In this chapter we summarize our idea, work, and results obtained. Moreover, we discuss 

future work that can be added to the algorithm to further improve results and expand the 

idea. 

 

5.1. Conclusions 
Our contributions in this thesis can be summarized as follows: firstly, we implemented 

the SynsetGenerator algorithm which builds an Arabic thesaurus file automatically as  

{a1, a2,....an} := {e1, e2, .....ek} from the Arabic-English bilingual dictionary, where a1,a2, 

…, an, are the Arabic synonyms that has the same meaning ande1, e2, …, ek are the 

English synonyms that has the same meaning and equivalence to the Arabic synonyms. 

Secondly, we evaluated  the SynsetGenerator algorithm through conducting an 

experiment that aim at building the WN synsets using the algorithm. We used the cosine 

similarity approach to compare the generated synsets with the WN. The results were 

promising as the algorithm built about 84% of the WN synsets. In order to find the 

reasons that caused our algorithm to not create the other synsets, we tested the WN three 

assumptions which we supposed that they are valid for the WN, we found that the WN 

has some problems since the three assumptions are not fulfilled by WN. For example, 

each set of synonyms grouped into a synset in both AWN and EWN may have different 

IDs, there are subsets in the AWN and EWN that have relation which is not one-to-one 

between the linked AWN and EWN synsets that explains the reason why we did not 

regenerated all the WN synsets. The Final step in the thesis is to map the Arabic 

thesaurus file to the English WN. That is, the result will be a set of Arabic synsets 

mapped into WN synsets as {a1, a2, …, an} := {wn1, wn2, …, wnm}, we use the cosine 

similarity approach for this purpose. 
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5.2. Future work 
The current results we obtained from the conducted experiment with different values of 

cosine similarity provides a promising value of the algorithm to be used as a synonyms 

generator. To further improve the performance and accuracy of the algorithm proposed in 

this thesis we suggest the use of artificial intelligent methods and techniques such as 

machine learning tools to make the algorithm smarter and enable it to scale and adapt to 

different situations.  

Moreover, we can test the algorithm to see if it can be applied to other languages other 

than Arabic and English. An evaluation of the algorithm using other languages is an 

interesting topic to pursue and to investigate. In addition, the algorithm can be exploited 

for the purpose of evaluating Arabic-English dictionaries by comparing it with respect to 

WordNet using the Mapping algorithm mentioned in section 4.4. Furthermore, building a 

website that contains the different functionalities provided by the developed application 

in this thesis such as the synonyms generation and synsets mapping would be of a great 

assist to other researchers who desire to exploit these functionalities and also it would 

useful to interested individuals from different fields. Try to build again the Mapping 

algorithm using Jaccard similarity approach, then compare the performance and the 

mapping percentage which we got from both different approaches   . 
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