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Abstract 

The focus of this study is to evaluate the impact of 
linguistic preprocessing and similarity functions for 
clustering Arabic Twitter tweets. The experiments apply 
an optimized version of the standard K-Means algorithm 
to assign tweets into positive and negative categories. The 
results show that root-based stemming has a significant 
advantage over light stemming in all settings. The 
Averaged Kullback-Leibler Divergence similarity function 
clearly outperforms the Cosine, Pearson Correlation, 
Jaccard Coefficient and Euclidean functions. The 
combination of the Averaged Kullback-Leibler 
Divergence and root-based stemming achieved the highest 
purity of 0.764 while the second-best purity was 0.719. 
These results are of importance as it is contrary to normal-
sized documents where, in many information retrieval 
applications, light stemming performs better than root-
based stemming and the Cosine function is commonly 
used. 

1. Introduction  
Microblogging and short text messages, such as 

Facebook posts and Twitter tweets, have been growing in 
popularity in recent years. Sentiment analysis of this data 
can be used to extract useful knowledge such as public 
views about social issues including political opinions, 
products, services and events. A few examples of 
sentiment analysis categories include; positive, negative, 
neutral, sarcastic and non-sarcastic are discussed in  
[13,15,16]. 

Document clustering and classification algorithms are 
essential components in many information retrieval 
applications [18]. Both algorithms assign a category from 
a predefined set of categories to each document. 
Classification requires a training set which could be a 

challenge for the rapidly changing nature of social media 
microblogs. Alternatively, clustering algorithms have a 
higher computational overhead and produce inferior 
results compared to classification but does not require the 
effort of building a training set. 

Mining short texts is considered to be more challenging 
than mining normal sized documents as they are likely to 
be ambiguous and vague [15,16]. 

As seen in the related works section below, there has 
been recent efforts to explore how linguistic and metadata 
preprocessing can improve the performance of clustering 
and classification algorithms [19,20]. 

The choice of a similarity function is important and  has  
a  crucial  impact  on  the  performance of clustering 
algorithms [21]. The similarity functions evaluated in this 
study are; the Averaged Kullback-Leibler Divergence 
(KLD), Cosine, Pearson Correlation (Pearson), Jaccard 
Coefficient (Jaccard) and Euclidean functions. 

Arabic is a Semitic language spoken by more than 300 
million people. Preprocessing Arabic text is more 
challenging than English, as Arabic is morphologically 
complex and highly inflected [25,26]. In addition to this, 
Arabic has many dialects corresponding to different 
geographical regions across the Middle East and north 
Africa [31]. 

The motivation of this paper is to evaluate which 
combinations of linguistic preprocessing and similarity 
functions are more effective for clustering Arabic tweets. 
The tweets are clustered into positive and negative 
categories for sentiment analysis. 

The K-Means clustering algorithm is the most widely 
used algorithm for clustering as it has less computational 
complexity compared to other hierarchical clustering 
algorithms [22]. 

The results in this study clearly show that the impact of 
selecting a stemmer and the choice of a similarity measure 
noticeably differ from that of normal-sized documents. 
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The root-based stemmer and the KLD similarity function 
clearly outperform other selections. An optimized version 
of the K-means algorithm (OSKM) is used for these 
experiments. 

The paper is organized as follows: Section 2 reviews 
aspects of the literature that are relevant to this study. 
Section 3 provides details of the preprocessing techniques 
and the dataset. Section 4 describes the clustering 
algorithm used for the experiments. Section 5 provides a 
detailed discussion of the results. The final section 
provides a summary and suggestions for future work.  

2. Related Work  
There are numerous studies that explore the impact of 

Arabic preprocessing on the performance of information 
retrieval algorithms. As indicated in the introduction, 
many highlight the challenge presented by the Arabic 
language due to its complex morphological structure. 

Many papers investigated the impact of stemming and 
removing stop words when classifying normal-sized 
Arabic documents and there are relatively few papers that 
discuss clustering. At the time of writing this paper, the 
authors could not find any published papers that discuss 
clustering Arabic short-text documents such as tweets. In 
this section, we present a brief survey of papers that 
closely relate to our study. 

Many information retrieval applications [9,10,26] 
found that preprocessing with light stemming produced 
better results than Khoja root-based stemming [23]. 

Al-Shammari and Lin [27] and Froud et. al. [5] 
indicated that Arabic stemmers suffer from high error 
ratio. Al-Shammari and Lin [28] suggested a better 
alternative to stemming called lemmatization. 

There is a lot of literature on the classification of Arabic 
short text [2,4,12] and normal sized documents [14]. Many 
authors focus on the effect of pre-processing such as; 
stemming, N-gram, prior polarity, part-of- speech (POS) 
tagging, tokenization, normalization and the removal of 
URLs, hashtags, twitter targets, repeated words, 
emoticons, special Twitter words and stop words. A 
popular algorithm used for document classification is 
Support Vector Machine (SVM) as it was applied by 
Shoukry and Rafea [4] and Duwari [2]. 

For English tweets, Zangerle et al. [3] compares several 
similarity functions on hashtag recommendations. The 
Cosine, Dice, Jaccard and Levenshtein functions were 
included. The Cosine function was found to be superior in 
this study. 

As mentioned above, there are a relatively few papers 
that investigate the clustering of normal-sized Arabic 
documents. Ghanem and Ashour [9] focused more on the 
effect of stemming in this context and found light 
stemming to be superior to root-based stemming and no 
preprocessing (stemming). 

The work of Froud et al. [5]; Bsoul and Mohd [8] and 
Froud et al. [6] assess the performance of different 
similarity functions used for clustering normal-sized 
Arabic documents. Froud et al. [5] and Froud et al. [6] 
found that the Cosine, Jaccard and Euclidean functions 
were more effective than KLD and Pearson functions. 
Bsoul and Mohd [8] used a different method of root-based 
stemming (Information Science Research Institute) which 
was observed to be better than no stemming. They found 
that the Cosine and Jaccard functions superior to Pearson. 
It appears that the KLD function is comparable to the 
Cosine and Jaccard functions but decreases in accuracy as 
the number of categories increase. 

For the English language, Sandhya et al. [11] studied 
the impact of stemming on four different similarity 
functions   as   well. It is interesting to note that these 
authors found that the Jaccard and Pearson functions were 
more effective than the Cosine function and that the 
Euclidean function had a poor performance. 

The focus of Abuaiadah [7] was the performance of 
Standard K-Means and Bisect K- Means. Preprocessing 
and similarity functions were also investigated for normal-
sized Arabic documents. It was found that stemming 
produced minor improvements, but deteriorated with the 
combination of KLD and the root-based stemmer. Without 
preprocessing (stemming and removing stop words), KLD 
outperformed other similarity functions. 

This study compares the effectiveness of preprocessing 
and different similarity functions in clustering Arabic 
short text documents. 

3. Dataset and Preprocessing  
The dataset used is discussed in Abdulla et al. [24] and 

is freely available for downloading. This dataset contains 
2000 tweets where each one is manually labeled as 
positive or negative. Each tweet is put into a separate text 
file. Positive and negative tweets are placed in separate 
directories. This dataset without any processing is referred 
to as Raw. Figure 1 highlights the main steps for creating 
an additional three  versions  of  the  dataset    NoSW, 
Light10 and Root. 

 
 
 
 
 
 
 
 
 
 
 
 
 Figure  1: Crea ting the  ne w three  vers ions  of the  

da tase t 
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NoSW is created by removing stop words from the 
Raw. Stop words are commonly used terms and likely to 
be spread evenly between all documents in a collection. 
Consequently, removing stop words speeds up the running 
time as less memory is required to store documents. 
Furthermore, many papers argue that removing stop words 
improve the quality of results for many Arabic information 
retrieval algorithms for normal-sized documents. Certain 
stop words could be very useful for sentiment analysis as 
they explicitly point to a positive or negative sentiment. 
For example the words ‘no’ and ‘not’ indicates a negative 
sentiment. The list of stop words in this study were built 
manually. 

As detailed in the related works section, the light10 
stemmer [10] is considered by many as the best Arabic 
stemmer for information retrieval applications. It has a 
predefined set of prefixes and suffixes. This set is used to 
strip off leading and trailing characters from each term. 
The aim of light stemming is to apply minimal changes to 
the original term. Other light stemmers aim to improve the 
quality of the associated algorithms by modifying the 
predefined sets of prefixes and suffixes. 

Many experiments show that light10 stemmer 
consistently outperforms the others [9, 26]. In this study, 
the light10 stemmer is applied to the terms in NoSW to 
create the light10 version of the dataset.  

Kohja’s root-based stemmer [23] extracts the root of a 
term using morphological analysis. Stems extracted by 
this stemmer are close to (but not necessary the same as) 
linguistic roots, and they suffers from over stemming and 
may conflate terms with different concepts to the same 
root. This stemmer is also applied to the terms in the 
NoSW dataset to create the KRoot dataset.  

Table 1 presents the four versions of one tweet in the 
corresponding datasets. It is obvious that there are several 
stemming and preprocessing errors from an Arabic 
linguistic perspective. For example, in the term النار 
(English equivalent: ‘the fire’), the word ‘the’ is 
considered to be a stop word in English but not in Arabic 
as it is not a separate word in Arabic. An example of a stop 
that has been removed is اذا (English equivalent: ‘if’). 
When applying the light10 stemmer to the term النار the 
leading characters ‘ال’ are removed and it becomes نار 
(English equivalent: ‘fire’). When applying the root-based 
stemmer, the resulting term is نور (English equivalent: 
‘light’). A detailed discussion of these errors is beyond the 
scope of this study.  

An in-house Java program is used to create the new 
three versions of the dataset. Removing stop words is 
simply scanning each document term by term and 
removing terms (stop words) appear in the predefined list 
of stop words. The implementation of the light10 stemmer 
is also straightforward as the two sets of prefixes and 
suffixes are predefined. The root-based stemmer is more 
complex as it involves morphological analysis. We took 

the Java implementation from the home page of the 
inventor of this algorithm [1].  

The in-house implementation also gathers basic 
information about the datasets as shown in Table 2. 

 
Table  1: An e xample  of a  twee t in the  four corresponding 

da tase ts . 

Dataset Tweet 

Raw من اهل النار اذا بتعيد  الله يجعل ابوك وامك
 هالحركه مره ثانيه

 NoSW  الله يجعل ابوك وامك اهل النار بتعيد
 هالحركه مره ثاني

Light10  له يجعل ابوك وامك اهل نار بتعيد الحرك
 مر ثاني

KRoot  له جعل بوأ وامك أهل نورعود هالحركه
 مرر ثن

 
The first row of Table 2 captures the total number of 

terms. The second row indicates the total number of 
different terms. The third row displays the average length 
(in characters) of a term. It is worth noting that total 
number of different terms and the average length of a term 
for the root based stemmer is conspicuously less than that 
of light10.  

 
Table  2: bas ic information for the  four vers ions  of the  

da tase ts . 

Attributes Raw NoSW Light10 KRoot 

# terms 18381 14702 14324 14677 

# diff terms 7392 7008 5988 2486 

# Av length 4.26 4.74 3.96 3.19 

At the time of writing this paper, no other Arabic short 
text datasets were publicly available. 

 

4. Clustering Algorithm 
The standard K-means algorithm (SKM) is popular and 

effective for clustering documents. An overview of the 
algorithm is presented by Jain [29]. The algorithm receives 
the number of clusters, K, as an input. It starts by randomly 
selecting K documents as the centroids of the associated 
clusters. The algorithm then iterates by assigning each 
document to the closest centroid using a similarity 
function. At the end of each iteration, the centroid of each 
cluster is recalculated based on all the documents it 
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contains. A centroid of a cluster is a representation of all 
documents assigned to this cluster. It is calculated using 
the term frequencies (tfidf values) as described in Section 
4.2. The algorithm halts when all clusters contain the same 
documents as the previous iteration i.e. there is no change 
to any document assignment. 

The Bisect K-means algorithm (BKM) [22] starts with 
all documents in one cluster. The algorithm then uses 
SKM to bisect a cluster. Typically, the cluster with the 
maximum number of documents is selected for bisecting 
but other criteria could be employed. When bisecting a 
cluster, this bisect is repeated several times. The bisect that 
appears to produce better results is selected. In many 
published papers the number of repetitions, ITER, is set to 
five and the bisect that produces the maximum similarities 
between documents and the associated centroids is 
selected [30]. The algorithm continues to select and bisect 
a cluster until the designated number of clusters (K) is 
reached. A more detailed and formal description of both 
algorithms appear in many papers. 

When clustering documents into two clusters (positive 
and negative), as in this paper, SKM and BKM are 
practically the same algorithm with one exception: BKM 
repeats the bisect several times and selects the bisect that 
appears to produce better results. Since BKM repeats the 
bisection several times, it is considered to be an 
optimization of SKM (OSKM) in this particular scenario. 
When OSKM is used in these experiments, ITER is set to 
5 and the bisect that produces maximum similarities 
between documents and the associated two centroids is 
selected. 

Obviously OSKM and SKM have the same theoretical 
running time (using Big O notation) as OSKM simply 
repeats SKM a fixed (five) number of times. However, in 
practical application this could be an important issue 
depending on the trade-off between improving the 
clustering results and the run time.  

The subsections below presents the quality measures 
used to evaluate the performance of SKM and OSKM, 
document representation (TFIDF) and the five similarity 
functions. Also a brief description of the implementation 
details is provided. 

4.1. Quality Measures 

Purity and entropy measures are commonly used to 
calculate the quality of clustering algorithms. The 
assignment of documents to clusters by the algorithm is 
compared to the ground truth. The ground truth is where 
all the tweets have been labelled by a human expert. 

The purity calculation used is defined in Manning et al. 
[31] and is commonly used to measure the quality of 
clustering algorithms. In our dataset, there is an equal 
number of positive and negative tweets and only two 
clusters are considered. This simplifies the calculation of 

purity. The outcome of a clustering algorithm will have 
one cluster with a majority of positive tweets (when 
compared to the ground truth) and the other cluster will 
have a majority of negative tweets. Let correct assignment 
indicate that the clustering algorithm assigned a positive 
(negative) tweet to the cluster dominated by positive 
(negative) tweets. In this scenario, purity is the total 
number of the correct assignments divided by the total 
number of tweets.  

For example, suppose the clustering algorithm assigned 
1200 tweets to the first cluster and 800 tweets to the 
second cluster (2000 documents in total). Suppose 750 
tweets in the first cluster are positive based on the ground 
truth. Obviously the positive tweets are dominant in the 
first cluster and the negative tweets are dominant for the 
second cluster (the second cluster must have 800 tweets 
in total where 450 tweets are negative). The purity in this 
scenario is calculated as follow: 

750+450
1200

= 0.6.  
It is obvious that the purity values will always be above 

0.5 and a purity of 1.0 indicates perfect clustering. 
The term Entropy specifies how positive and negative 

tweets are distributed within a given cluster. Lower values 
indicate better clustering where zero indicates perfect 
clustering and higher values indicate poor clustering and 
could be more than one. This measure is calculated as 
described in [22]. 

4.2. Document Representation 

The bag of words, BOW, representation which is often 
referred to as tfidf (term frequency inverse document 
frequency), is used to represent documents [17] in most 
information retrieval applications. In this representation 
the positions of terms within a text are ignored. Let  
𝑡𝑓(𝑎, 𝑡) represents the frequency of the term 𝑡 in 
document 𝑎 ∈ 𝐷. The frequencies are normalized by the 
size of the document. The inverse document frequency 
aims to reduce the impact of terms which appear in most 
documents and are not useful to clustering and many other 
algorithms. It is calculated as  𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔 |𝐷|

𝑑𝑓(𝑡)
, where 

|𝐷| is the total number of documents in the collection and 
𝑑𝑓(𝑡) is the number of documents containing the term 𝑡. 
Each document is represented by 𝑡𝑓𝑖𝑑𝑓(𝑎, 𝑡) = 𝑡𝑓(𝑎, 𝑡) ∗
𝑖𝑑𝑓(𝑡) values. 

Let 𝑇 = {𝑡1, … , 𝑡𝑚}, be the set of all terms in the 
collection D and let 𝑤𝑡𝑖,𝑎 = 𝑡𝑓𝑖𝑑𝑓(𝑎, 𝑡𝑖), 1 ≤ 𝑖 ≤ 𝑚, be 
the tfidf value of the term 𝑡𝑖  in the document a. 

 For example, for a selected tweet, the tfidf values for 
the term السماء (“the sky”) in the four versions of the 
dataset are as follow: 0.166, 0.214, 0.230 and 0.152 for 
Raw, NoSW, Light10 and Root respectively. 
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4.3. Similarity Functions 

There is extensive literature that investigates the impact 
of similarity functions in all dimensions of information 
retrieval for documents [21]. However not many published 
papers compared these functions in the context of short 
text analysis. 

The experiments in this paper included the five widely 
used similarity functions mentioned in the abstract. A 
centroid for a cluster is calculated by adding all tfidf values 
of all the documents belong to this cluster and normalizing 
(divided) by the number of documents in the cluster. Let b 
be a centroid of a cluster. The similarity is calculated 
between each document ‘a’ and a centroid of a cluster ‘b’ 
as follow: 

 

1. Cosine(𝑎, 𝑏) =
∑ 𝑤𝑡𝑖,𝑎𝑋𝑤𝑡𝑖,𝑏

𝑚
𝑖=1

√∑ (𝑤𝑡𝑖,𝑎)2𝑚
𝑖=1 𝑋√∑ (𝑤𝑡𝑖,𝑏)2𝑚

𝑖=1

 

2. Pearson(a, b) =

 
𝑚 ∑ 𝑤𝑡𝑖,𝑎𝑋𝑤𝑡𝑖,𝑏

𝑚
𝑖=1 −𝑇𝐹𝑎𝑋𝑇𝐹𝑏

√𝑚 ∑ (𝑤𝑡𝑖,𝑎)2−𝑇𝐹𝑎2
𝑚
𝑖=1 𝑋√𝑚 ∑ (𝑤𝑡𝑖,𝑏)2−𝑇𝐹𝑏

2𝑚
𝑖=1

,  

where 𝑇𝐹𝑎 = ∑ 𝑤𝑡𝑖,𝑎
𝑚
𝑖=1  and 𝑇𝐹𝑏 =

∑ 𝑤𝑡𝑖,𝑏
𝑚
𝑖=1  

3. Jaccard(a, b) =

 
∑ 𝑤𝑡𝑖,𝑎𝑋𝑤𝑡𝑖,𝑏

𝑚
𝑖=1

∑ (𝑤𝑡𝑖,𝑎)2𝑚
𝑖=1 +∑ (𝑤𝑡𝑖,𝑏)2𝑚

𝑖=1 −∑ 𝑤𝑡𝑖,𝑎𝑋𝑤𝑡𝑖,𝑏
𝑚
𝑖=1

 

4. Euclidean(a, b) = 1 −

√(∑ |𝑤𝑡𝑖,𝑎 − 𝑤𝑡𝑖,𝑏|2)𝑚
𝑖=1   

5. KLD(a, b) =  ∑ (𝜋1𝑋𝐷(𝑤𝑡𝑖,𝑎||𝑤𝑡) +𝑚
𝑖=1

𝜋2𝑋𝐷(𝑤𝑡𝑖,𝑏||𝑤𝑡)), 

 where 𝜋1 =
𝑤𝑡𝑖,𝑎

𝑤𝑡𝑖,𝑎+𝑤𝑡𝑖,𝑏
, 𝜋2 =

𝑤𝑡𝑖,𝑏

𝑤𝑡𝑖,𝑎+𝑤𝑡𝑖,𝑏
 , 

𝑤𝑡 = 𝜋1𝑋𝑤𝑡𝑖,𝑎 + 𝜋2𝑋𝑤𝑡𝑖,𝑏 and 𝐷(𝑎||𝑏) =
𝑎 log 𝑎

𝑏
. 

4.4. Implementation Details 

An in-house Java program implements SKM and 
OSKM. This program also converts documents from the 
datasets to corresponding TFIDF representations, 

implement the five similarity functions and calculates 
purities and entropies. 

For testing purposes the implementation applied SKM 
to the well-known 20news dataset and achieved purities 
and entropies for the five similarity functions that are 
comparable to that of Huang [21]. This validates the 
implementation of TFIDF, SKM, the five similarity 
functions and the calculation of purities and entropies. Our 
implementation of OSKM was also applied to the eight 
datasets appearing in [22] and achieved comparable purity 
results. 

5. Experiments, Results and Discussion 
The performance of SKM and OSKM is affected by the 

initial random selection of documents (centroids). From   
looking   at   the results, two consecutive runs may produce 
a difference in purities with a margin exceeding 0.15. 
Therefore, we repeat each run 50 times and calculate the 
average. In addition to this, we report the standard 
deviation of purities as well. 

Higher standard deviation values show that the 
algorithm has converged to a different local minimum. 
This also indicates that the performance is strongly 
dependent on the initial random selection of centroids. On 
the other hand, lower values show less dependency.  

The results are presented in three parts. The first and 
second parts discuss the purities and standard deviations 
of SKM and OSKM respectively. The third part reports the 
entropies of SKM and OSKM. The Euclidean distance 
used as a similarity function produced inferior results in 
all settings and the   results   are   omitted   from   the   
figures  and discussion to improve readability. 

5.1. Purities of SKM 

Figure 2 shows the purities of SKM. The first 
noticeable result is the root-based stemmer is significantly 
better than the light10 stemmer, removing stop words 
(NoSW) and without preprocessing (Raw). The second 
noticeable result is that KLD and Jaccard clearly 
outperform Cosine and Pearson. 

The third noticeable result is that the light10 stemmer 
does not provide any clear improvement when compared 
to NoSW and Raw versions of the dataset. In fact, when 
the light10 stemmer is applied with the Jaccard and 
Pearson functions, the purity results slightly deteriorated 
compared to that of NoSW. 
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Figure  2: P urities  for SKM. 

Figure 3 shows the standard deviation of purities 
corresponding to the 50 consecutive runs. The standard 
deviations associated with the root based stemmer are 
higher than the other versions of the dataset. This is worth 
noting as it indicates there are more opportunities for 
improving the purity by selecting certain runs. 

 

 
Figure  3: S ta ndard de via tions  for the  purities  of SKM. 

 
For Raw, NoSW and Light10, the KLD function has a 

higher standard deviation compared to the other three 
functions. 

Figures 2 and 3 show that when the Cosine function is 
applied to the dataset without preprocessing (Raw), there 
is a very low standard deviation which indicates the purity 
results are consistently poor. 

5.2. Purities of OSKM 

Figure 4 presents the purities of OSKM. The root- 
based stemmer significantly outperformed the light10 
stemmer and the other two versions of the dataset for all 
four functions. In particular, the root based stemmer  
increased the  purity by  more than 0.1 compared to that of 
the light10 stemmer and no preprocessing for all functions. 

 

 
Figure  4: P urities  of OSKM. 

 
KLD marginally outperformed the other three 

functions. In particular, the purity of KLD was higher than 
the Cosine function by at least 0.07 for all four versions of 
the dataset. 

The combination of KLD and the root-based stemmer 
achieved the highest purity overall (0.764). The second-
best combination (Jaccard and the root- based stemmer) 
had a purity of 0.719. 

OSKM increased the purities for KLD, Cosine and 
Pearson compared to that of the SKM for all versions of 
the dataset. For the Jaccard function, it is worth noting that 
OSKM increased the purity for the root-based stemmer by 
more than 0.11 and deteriorated the purities for the 
Light10 stemmer by more than 0.03. This means that 
repeating the runs and selecting runs with maximum 
similarities deteriorate the performance. The purities of 
the Raw and NoSW versions of the datasets were 
comparable. 

Figure 5 shows the standard deviations of the purities 
for OSKM. The standard deviations of the root-based 
stemmer are noticeably lower than SKM. This indicates 
that repeating the runs and selecting the maximum 
similarities improve and stabilize the results. 

 

 
Figure  5: S ta ndard de via tions  of purities  for OSKM. 
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The standard deviation of Pearson and light10 stemmer 
changed from 0.0443 (SKM) to 0.0576 (OSKM) but the 
associated average purities are comparable. 

 

5.3. Entropies of SKM and OSKM 

Figures 6 and 7 show the entropies of SKM and OSKM 
respectively. It is shown that improvements in purities 
leads to an improvement in entropies i.e. lower entropies 
indicate better clustering. The lowest entropy achieved is 
0.234 for the root-based stemmer and the KLD function. 
This is also the combination that lead to the best purity. 

 

 
Figure  6: Entropies  for SKM. 

 

 
Figure 7: Entropies for OSKM. 

For SKM, the entropies corresponding to the root-
based stemmer are better than the entropies of the other 
three versions of the dataset. This is the case for all four 
similarity functions. This indicates that root-based 
stemming results have a better distribution. 

OSKM does not improve the entropies when compared 
to SKM in all settings. However, when using the root-
based stemmer there are consistent improvements for all 
similarity functions. 
 

6. Conclusion and Future Work 
The experiments in this study clustered Arabic short 

texts into positive and negative categories for sentiment 
analysis. Contrary to many published papers on 
information retrieval applications for normal-sized 
documents, it is shown that root-based stemming is 
superior to light10 stemming. 

In the same context, KLD outperformed all other 
similarity functions. The combination of KLD and root-
based stemming achieved the highest purity of 0.764 by a 
margin of at least 0.04. 

Although Cosine similarity is used in many products and 
published papers, we found that Cosine produced inferior 
purity results to the KLD, Jaccard and Pearson functions in 
all settings. The best results for the Cosine function occurred 
when it is combined with root-based stemming but these 
results are at least 0.09 less than the highest purity. 

The results in this paper are of further interest as root-
based stemming requires less memory usage and reduces 
the run time of the associated applications. 

It would be interesting to repeat the experiments using 
more datasets. Unfortunately, the authors were not able to 
attain access to more datasets at the time of writing this 
paper. Other interesting avenues for further investigations 
are lemmatization and distant clustering technique. 
As the dataset used in this study contains some dialectal 
words, which might not be correctly stemmed by Light10 
and Kohja’s stemmers, some noise might be generated. We 
plan to extend our work to study how much dialectal words 
may affect stemmers performance in this application 
scenario of clustering-based Sentiment Analysis.  
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