
2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE
DOI 10.1109/AICCSA.2017.162

499

Clustering Arabic Tweets for Sentiment Analysis

Diab Abuaiadah Dileep Rajendran Mustafa Jarrar
Centre for Business, Information

Technology and Enterprise
Centre for Business, Information

Technology and Enterprise
Computer Science Department

Waikato Institute of Technology Waikato Institute of Technology Birzeit University
New Zealand New Zealand Palestine

Diab.Abuaiadah@Wintec.ac.nz Dileep.Rajendran@Wintec.ac.nz mjarrar@birzeit.edu

Abstract

The focus of this study is to evaluate the impact of
linguistic preprocessing and similarity functions for
clustering Arabic Twitter tweets. The experiments apply
an optimized version of the standard K-Means algorithm
to assign tweets into positive and negative categories. The
results show that root-based stemming has a significant
advantage over light stemming in all settings. The
Averaged Kullback-Leibler Divergence similarity function
clearly outperforms the Cosine, Pearson Correlation,
Jaccard Coefficient and Euclidean functions. The
combination of the Averaged Kullback-Leibler
Divergence and root-based stemming achieved the highest
purity of 0.764 while the second-best purity was 0.719.
These results are of importance as it is contrary to normal-
sized documents where, in many information retrieval
applications, light stemming performs better than root-
based stemming and the Cosine function is commonly
used.

1. Introduction
Microblogging and short text messages, such as

Facebook posts and Twitter tweets, have been growing in
popularity in recent years. Sentiment analysis of this data
can be used to extract useful knowledge such as public
views about social issues including political opinions,
products, services and events. A few examples of
sentiment analysis categories include; positive, negative,
neutral, sarcastic and non-sarcastic are discussed in
[13,15,16].

Document clustering and classification algorithms are
essential components in many information retrieval
applications [18]. Both algorithms assign a category from
a predefined set of categories to each document.
Classification requires a training set which could be a

challenge for the rapidly changing nature of social media
microblogs. Alternatively, clustering algorithms have a
higher computational overhead and produce inferior
results compared to classification but does not require the
effort of building a training set.

Mining short texts is considered to be more challenging
than mining normal sized documents as they are likely to
be ambiguous and vague [15,16].

As seen in the related works section below, there has
been recent efforts to explore how linguistic and metadata
preprocessing can improve the performance of clustering
and classification algorithms [19,20].

The choice of a similarity function is important and has
a crucial impact on the performance of clustering
algorithms [21]. The similarity functions evaluated in this
study are; the Averaged Kullback-Leibler Divergence
(KLD), Cosine, Pearson Correlation (Pearson), Jaccard
Coefficient (Jaccard) and Euclidean functions.

Arabic is a Semitic language spoken by more than 300
million people. Preprocessing Arabic text is more
challenging than English, as Arabic is morphologically
complex and highly inflected [25,26]. In addition to this,
Arabic has many dialects corresponding to different
geographical regions across the Middle East and north
Africa [31].

The motivation of this paper is to evaluate which
combinations of linguistic preprocessing and similarity
functions are more effective for clustering Arabic tweets.
The tweets are clustered into positive and negative
categories for sentiment analysis.

The K-Means clustering algorithm is the most widely
used algorithm for clustering as it has less computational
complexity compared to other hierarchical clustering
algorithms [22].

The results in this study clearly show that the impact of
selecting a stemmer and the choice of a similarity measure
noticeably differ from that of normal-sized documents.

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE
DOI 10.1109/AICCSA.2017.162

500

The root-based stemmer and the KLD similarity function
clearly outperform other selections. An optimized version
of the K-means algorithm (OSKM) is used for these
experiments.

The paper is organized as follows: Section 2 reviews
aspects of the literature that are relevant to this study.
Section 3 provides details of the preprocessing techniques
and the dataset. Section 4 describes the clustering
algorithm used for the experiments. Section 5 provides a
detailed discussion of the results. The final section
provides a summary and suggestions for future work.

2. Related Work
There are numerous studies that explore the impact of

Arabic preprocessing on the performance of information
retrieval algorithms. As indicated in the introduction,
many highlight the challenge presented by the Arabic
language due to its complex morphological structure.

Many papers investigated the impact of stemming and
removing stop words when classifying normal-sized
Arabic documents and there are relatively few papers that
discuss clustering. At the time of writing this paper, the
authors could not find any published papers that discuss
clustering Arabic short-text documents such as tweets. In
this section, we present a brief survey of papers that
closely relate to our study.

Many information retrieval applications [9,10,26]
found that preprocessing with light stemming produced
better results than Khoja root-based stemming [23].

Al-Shammari and Lin [27] and Froud et. al. [5]
indicated that Arabic stemmers suffer from high error
ratio. Al-Shammari and Lin [28] suggested a better
alternative to stemming called lemmatization.

There is a lot of literature on the classification of Arabic
short text [2,4,12] and normal sized documents [14]. Many
authors focus on the effect of pre-processing such as;
stemming, N-gram, prior polarity, part-of- speech (POS)
tagging, tokenization, normalization and the removal of
URLs, hashtags, twitter targets, repeated words,
emoticons, special Twitter words and stop words. A
popular algorithm used for document classification is
Support Vector Machine (SVM) as it was applied by
Shoukry and Rafea [4] and Duwari [2].

For English tweets, Zangerle et al. [3] compares several
similarity functions on hashtag recommendations. The
Cosine, Dice, Jaccard and Levenshtein functions were
included. The Cosine function was found to be superior in
this study.

As mentioned above, there are a relatively few papers
that investigate the clustering of normal-sized Arabic
documents. Ghanem and Ashour [9] focused more on the
effect of stemming in this context and found light
stemming to be superior to root-based stemming and no
preprocessing (stemming).

The work of Froud et al. [5]; Bsoul and Mohd [8] and
Froud et al. [6] assess the performance of different
similarity functions used for clustering normal-sized
Arabic documents. Froud et al. [5] and Froud et al. [6]
found that the Cosine, Jaccard and Euclidean functions
were more effective than KLD and Pearson functions.
Bsoul and Mohd [8] used a different method of root-based
stemming (Information Science Research Institute) which
was observed to be better than no stemming. They found
that the Cosine and Jaccard functions superior to Pearson.
It appears that the KLD function is comparable to the
Cosine and Jaccard functions but decreases in accuracy as
the number of categories increase.

For the English language, Sandhya et al. [11] studied
the impact of stemming on four different similarity
functions as well. It is interesting to note that these
authors found that the Jaccard and Pearson functions were
more effective than the Cosine function and that the
Euclidean function had a poor performance.

The focus of Abuaiadah [7] was the performance of
Standard K-Means and Bisect K- Means. Preprocessing
and similarity functions were also investigated for normal-
sized Arabic documents. It was found that stemming
produced minor improvements, but deteriorated with the
combination of KLD and the root-based stemmer. Without
preprocessing (stemming and removing stop words), KLD
outperformed other similarity functions.

This study compares the effectiveness of preprocessing
and different similarity functions in clustering Arabic
short text documents.

3. Dataset and Preprocessing
The dataset used is discussed in Abdulla et al. [24] and

is freely available for downloading. This dataset contains
2000 tweets where each one is manually labeled as
positive or negative. Each tweet is put into a separate text
file. Positive and negative tweets are placed in separate
directories. This dataset without any processing is referred
to as Raw. Figure 1 highlights the main steps for creating
an additional three versions of the dataset NoSW,
Light10 and Root.

 Figure 1: Crea ting the ne w three vers ions of the

da tase t

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE
DOI 10.1109/AICCSA.2017.162

501

NoSW is created by removing stop words from the
Raw. Stop words are commonly used terms and likely to
be spread evenly between all documents in a collection.
Consequently, removing stop words speeds up the running
time as less memory is required to store documents.
Furthermore, many papers argue that removing stop words
improve the quality of results for many Arabic information
retrieval algorithms for normal-sized documents. Certain
stop words could be very useful for sentiment analysis as
they explicitly point to a positive or negative sentiment.
For example the words ‘no’ and ‘not’ indicates a negative
sentiment. The list of stop words in this study were built
manually.

As detailed in the related works section, the light10
stemmer [10] is considered by many as the best Arabic
stemmer for information retrieval applications. It has a
predefined set of prefixes and suffixes. This set is used to
strip off leading and trailing characters from each term.
The aim of light stemming is to apply minimal changes to
the original term. Other light stemmers aim to improve the
quality of the associated algorithms by modifying the
predefined sets of prefixes and suffixes.

Many experiments show that light10 stemmer
consistently outperforms the others [9, 26]. In this study,
the light10 stemmer is applied to the terms in NoSW to
create the light10 version of the dataset.

Kohja’s root-based stemmer [23] extracts the root of a
term using morphological analysis. Stems extracted by
this stemmer are close to (but not necessary the same as)
linguistic roots, and they suffers from over stemming and
may conflate terms with different concepts to the same
root. This stemmer is also applied to the terms in the
NoSW dataset to create the KRoot dataset.

Table 1 presents the four versions of one tweet in the
corresponding datasets. It is obvious that there are several
stemming and preprocessing errors from an Arabic
linguistic perspective. For example, in the term النار
(English equivalent: ‘the fire’), the word ‘the’ is
considered to be a stop word in English but not in Arabic
as it is not a separate word in Arabic. An example of a stop
that has been removed is اذا (English equivalent: ‘if’).
When applying the light10 stemmer to the term النار the
leading characters ‘ال’ are removed and it becomes نار
(English equivalent: ‘fire’). When applying the root-based
stemmer, the resulting term is نور (English equivalent:
‘light’). A detailed discussion of these errors is beyond the
scope of this study.

An in-house Java program is used to create the new
three versions of the dataset. Removing stop words is
simply scanning each document term by term and
removing terms (stop words) appear in the predefined list
of stop words. The implementation of the light10 stemmer
is also straightforward as the two sets of prefixes and
suffixes are predefined. The root-based stemmer is more
complex as it involves morphological analysis. We took

the Java implementation from the home page of the
inventor of this algorithm [1].

The in-house implementation also gathers basic
information about the datasets as shown in Table 2.

Table 1: An e xample of a twee t in the four corresponding

da tase ts .

Dataset Tweet

Raw من اهل النار اذا بتعيد الله يجعل ابوك وامك
 هالحركه مره ثانيه

 NoSW الله يجعل ابوك وامك اهل النار بتعيد
 هالحركه مره ثاني

Light10 له يجعل ابوك وامك اهل نار بتعيد الحرك
 مر ثاني

KRoot له جعل بوأ وامك أهل نورعود هالحركه
 مرر ثن

The first row of Table 2 captures the total number of

terms. The second row indicates the total number of
different terms. The third row displays the average length
(in characters) of a term. It is worth noting that total
number of different terms and the average length of a term
for the root based stemmer is conspicuously less than that
of light10.

Table 2: bas ic information for the four vers ions of the

da tase ts .

Attributes Raw NoSW Light10 KRoot

terms 18381 14702 14324 14677

diff terms 7392 7008 5988 2486

Av length 4.26 4.74 3.96 3.19

At the time of writing this paper, no other Arabic short
text datasets were publicly available.

4. Clustering Algorithm
The standard K-means algorithm (SKM) is popular and

effective for clustering documents. An overview of the
algorithm is presented by Jain [29]. The algorithm receives
the number of clusters, K, as an input. It starts by randomly
selecting K documents as the centroids of the associated
clusters. The algorithm then iterates by assigning each
document to the closest centroid using a similarity
function. At the end of each iteration, the centroid of each
cluster is recalculated based on all the documents it

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE
DOI 10.1109/AICCSA.2017.162

502

contains. A centroid of a cluster is a representation of all
documents assigned to this cluster. It is calculated using
the term frequencies (tfidf values) as described in Section
4.2. The algorithm halts when all clusters contain the same
documents as the previous iteration i.e. there is no change
to any document assignment.

The Bisect K-means algorithm (BKM) [22] starts with
all documents in one cluster. The algorithm then uses
SKM to bisect a cluster. Typically, the cluster with the
maximum number of documents is selected for bisecting
but other criteria could be employed. When bisecting a
cluster, this bisect is repeated several times. The bisect that
appears to produce better results is selected. In many
published papers the number of repetitions, ITER, is set to
five and the bisect that produces the maximum similarities
between documents and the associated centroids is
selected [30]. The algorithm continues to select and bisect
a cluster until the designated number of clusters (K) is
reached. A more detailed and formal description of both
algorithms appear in many papers.

When clustering documents into two clusters (positive
and negative), as in this paper, SKM and BKM are
practically the same algorithm with one exception: BKM
repeats the bisect several times and selects the bisect that
appears to produce better results. Since BKM repeats the
bisection several times, it is considered to be an
optimization of SKM (OSKM) in this particular scenario.
When OSKM is used in these experiments, ITER is set to
5 and the bisect that produces maximum similarities
between documents and the associated two centroids is
selected.

Obviously OSKM and SKM have the same theoretical
running time (using Big O notation) as OSKM simply
repeats SKM a fixed (five) number of times. However, in
practical application this could be an important issue
depending on the trade-off between improving the
clustering results and the run time.

The subsections below presents the quality measures
used to evaluate the performance of SKM and OSKM,
document representation (TFIDF) and the five similarity
functions. Also a brief description of the implementation
details is provided.

4.1. Quality Measures

Purity and entropy measures are commonly used to
calculate the quality of clustering algorithms. The
assignment of documents to clusters by the algorithm is
compared to the ground truth. The ground truth is where
all the tweets have been labelled by a human expert.

The purity calculation used is defined in Manning et al.
[31] and is commonly used to measure the quality of
clustering algorithms. In our dataset, there is an equal
number of positive and negative tweets and only two
clusters are considered. This simplifies the calculation of

purity. The outcome of a clustering algorithm will have
one cluster with a majority of positive tweets (when
compared to the ground truth) and the other cluster will
have a majority of negative tweets. Let correct assignment
indicate that the clustering algorithm assigned a positive
(negative) tweet to the cluster dominated by positive
(negative) tweets. In this scenario, purity is the total
number of the correct assignments divided by the total
number of tweets.

For example, suppose the clustering algorithm assigned
1200 tweets to the first cluster and 800 tweets to the
second cluster (2000 documents in total). Suppose 750
tweets in the first cluster are positive based on the ground
truth. Obviously the positive tweets are dominant in the
first cluster and the negative tweets are dominant for the
second cluster (the second cluster must have 800 tweets
in total where 450 tweets are negative). The purity in this
scenario is calculated as follow:

750+450
1200

= 0.6.
It is obvious that the purity values will always be above

0.5 and a purity of 1.0 indicates perfect clustering.
The term Entropy specifies how positive and negative

tweets are distributed within a given cluster. Lower values
indicate better clustering where zero indicates perfect
clustering and higher values indicate poor clustering and
could be more than one. This measure is calculated as
described in [22].

4.2. Document Representation

The bag of words, BOW, representation which is often
referred to as tfidf (term frequency inverse document
frequency), is used to represent documents [17] in most
information retrieval applications. In this representation
the positions of terms within a text are ignored. Let
𝑡𝑓(𝑎, 𝑡) represents the frequency of the term 𝑡 in
document 𝑎 ∈ 𝐷. The frequencies are normalized by the
size of the document. The inverse document frequency
aims to reduce the impact of terms which appear in most
documents and are not useful to clustering and many other
algorithms. It is calculated as 𝑖𝑑𝑓(𝑡) = 𝑙𝑜𝑔 |𝐷|

𝑑𝑓(𝑡)
, where

|𝐷| is the total number of documents in the collection and
𝑑𝑓(𝑡) is the number of documents containing the term 𝑡.
Each document is represented by 𝑡𝑓𝑖𝑑𝑓(𝑎, 𝑡) = 𝑡𝑓(𝑎, 𝑡) ∗
𝑖𝑑𝑓(𝑡) values.

Let 𝑇 = {𝑡1, … , 𝑡𝑚}, be the set of all terms in the
collection D and let 𝑤𝑡𝑖,𝑎 = 𝑡𝑓𝑖𝑑𝑓(𝑎, 𝑡𝑖), 1 ≤ 𝑖 ≤ 𝑚, be
the tfidf value of the term 𝑡𝑖 in the document a.

 For example, for a selected tweet, the tfidf values for
the term السماء (“the sky”) in the four versions of the
dataset are as follow: 0.166, 0.214, 0.230 and 0.152 for
Raw, NoSW, Light10 and Root respectively.

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE
DOI 10.1109/AICCSA.2017.162

503

4.3. Similarity Functions

There is extensive literature that investigates the impact
of similarity functions in all dimensions of information
retrieval for documents [21]. However not many published
papers compared these functions in the context of short
text analysis.

The experiments in this paper included the five widely
used similarity functions mentioned in the abstract. A
centroid for a cluster is calculated by adding all tfidf values
of all the documents belong to this cluster and normalizing
(divided) by the number of documents in the cluster. Let b
be a centroid of a cluster. The similarity is calculated
between each document ‘a’ and a centroid of a cluster ‘b’
as follow:

1. Cosine(𝑎, 𝑏) =
∑ 𝑤𝑡𝑖,𝑎𝑋𝑤𝑡𝑖,𝑏

𝑚
𝑖=1

√∑ (𝑤𝑡𝑖,𝑎)2𝑚
𝑖=1 𝑋√∑ (𝑤𝑡𝑖,𝑏)2𝑚

𝑖=1

2. Pearson(a, b) =

𝑚 ∑ 𝑤𝑡𝑖,𝑎𝑋𝑤𝑡𝑖,𝑏

𝑚
𝑖=1 −𝑇𝐹𝑎𝑋𝑇𝐹𝑏

√𝑚 ∑ (𝑤𝑡𝑖,𝑎)2−𝑇𝐹𝑎2
𝑚
𝑖=1 𝑋√𝑚 ∑ (𝑤𝑡𝑖,𝑏)2−𝑇𝐹𝑏

2𝑚
𝑖=1

,

where 𝑇𝐹𝑎 = ∑ 𝑤𝑡𝑖,𝑎
𝑚
𝑖=1 and 𝑇𝐹𝑏 =

∑ 𝑤𝑡𝑖,𝑏
𝑚
𝑖=1

3. Jaccard(a, b) =

∑ 𝑤𝑡𝑖,𝑎𝑋𝑤𝑡𝑖,𝑏

𝑚
𝑖=1

∑ (𝑤𝑡𝑖,𝑎)2𝑚
𝑖=1 +∑ (𝑤𝑡𝑖,𝑏)2𝑚

𝑖=1 −∑ 𝑤𝑡𝑖,𝑎𝑋𝑤𝑡𝑖,𝑏
𝑚
𝑖=1

4. Euclidean(a, b) = 1 −

√(∑ |𝑤𝑡𝑖,𝑎 − 𝑤𝑡𝑖,𝑏|2)𝑚
𝑖=1

5. KLD(a, b) = ∑ (𝜋1𝑋𝐷(𝑤𝑡𝑖,𝑎||𝑤𝑡) +𝑚
𝑖=1

𝜋2𝑋𝐷(𝑤𝑡𝑖,𝑏||𝑤𝑡)),

 where 𝜋1 =
𝑤𝑡𝑖,𝑎

𝑤𝑡𝑖,𝑎+𝑤𝑡𝑖,𝑏
, 𝜋2 =

𝑤𝑡𝑖,𝑏

𝑤𝑡𝑖,𝑎+𝑤𝑡𝑖,𝑏
 ,

𝑤𝑡 = 𝜋1𝑋𝑤𝑡𝑖,𝑎 + 𝜋2𝑋𝑤𝑡𝑖,𝑏 and 𝐷(𝑎||𝑏) =
𝑎 log 𝑎

𝑏
.

4.4. Implementation Details

An in-house Java program implements SKM and
OSKM. This program also converts documents from the
datasets to corresponding TFIDF representations,

implement the five similarity functions and calculates
purities and entropies.

For testing purposes the implementation applied SKM
to the well-known 20news dataset and achieved purities
and entropies for the five similarity functions that are
comparable to that of Huang [21]. This validates the
implementation of TFIDF, SKM, the five similarity
functions and the calculation of purities and entropies. Our
implementation of OSKM was also applied to the eight
datasets appearing in [22] and achieved comparable purity
results.

5. Experiments, Results and Discussion
The performance of SKM and OSKM is affected by the

initial random selection of documents (centroids). From
looking at the results, two consecutive runs may produce
a difference in purities with a margin exceeding 0.15.
Therefore, we repeat each run 50 times and calculate the
average. In addition to this, we report the standard
deviation of purities as well.

Higher standard deviation values show that the
algorithm has converged to a different local minimum.
This also indicates that the performance is strongly
dependent on the initial random selection of centroids. On
the other hand, lower values show less dependency.

The results are presented in three parts. The first and
second parts discuss the purities and standard deviations
of SKM and OSKM respectively. The third part reports the
entropies of SKM and OSKM. The Euclidean distance
used as a similarity function produced inferior results in
all settings and the results are omitted from the
figures and discussion to improve readability.

5.1. Purities of SKM

Figure 2 shows the purities of SKM. The first
noticeable result is the root-based stemmer is significantly
better than the light10 stemmer, removing stop words
(NoSW) and without preprocessing (Raw). The second
noticeable result is that KLD and Jaccard clearly
outperform Cosine and Pearson.

The third noticeable result is that the light10 stemmer
does not provide any clear improvement when compared
to NoSW and Raw versions of the dataset. In fact, when
the light10 stemmer is applied with the Jaccard and
Pearson functions, the purity results slightly deteriorated
compared to that of NoSW.

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE
DOI 10.1109/AICCSA.2017.162

504

Figure 2: P urities for SKM.

Figure 3 shows the standard deviation of purities
corresponding to the 50 consecutive runs. The standard
deviations associated with the root based stemmer are
higher than the other versions of the dataset. This is worth
noting as it indicates there are more opportunities for
improving the purity by selecting certain runs.

Figure 3: S ta ndard de via tions for the purities of SKM.

For Raw, NoSW and Light10, the KLD function has a

higher standard deviation compared to the other three
functions.

Figures 2 and 3 show that when the Cosine function is
applied to the dataset without preprocessing (Raw), there
is a very low standard deviation which indicates the purity
results are consistently poor.

5.2. Purities of OSKM

Figure 4 presents the purities of OSKM. The root-
based stemmer significantly outperformed the light10
stemmer and the other two versions of the dataset for all
four functions. In particular, the root based stemmer
increased the purity by more than 0.1 compared to that of
the light10 stemmer and no preprocessing for all functions.

Figure 4: P urities of OSKM.

KLD marginally outperformed the other three

functions. In particular, the purity of KLD was higher than
the Cosine function by at least 0.07 for all four versions of
the dataset.

The combination of KLD and the root-based stemmer
achieved the highest purity overall (0.764). The second-
best combination (Jaccard and the root- based stemmer)
had a purity of 0.719.

OSKM increased the purities for KLD, Cosine and
Pearson compared to that of the SKM for all versions of
the dataset. For the Jaccard function, it is worth noting that
OSKM increased the purity for the root-based stemmer by
more than 0.11 and deteriorated the purities for the
Light10 stemmer by more than 0.03. This means that
repeating the runs and selecting runs with maximum
similarities deteriorate the performance. The purities of
the Raw and NoSW versions of the datasets were
comparable.

Figure 5 shows the standard deviations of the purities
for OSKM. The standard deviations of the root-based
stemmer are noticeably lower than SKM. This indicates
that repeating the runs and selecting the maximum
similarities improve and stabilize the results.

Figure 5: S ta ndard de via tions of purities for OSKM.

0.075

0.055

0.035

0.015

KLD Cosine Pearson Jaccard

Raw NoSW Light10 Root

0.8
0.75

0.7
0.65

0.6

0.55

0.5
KLD Cosine Pearson Jaccard

Raw NoSW Light10 Root

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE
DOI 10.1109/AICCSA.2017.162

505

The standard deviation of Pearson and light10 stemmer
changed from 0.0443 (SKM) to 0.0576 (OSKM) but the
associated average purities are comparable.

5.3. Entropies of SKM and OSKM

Figures 6 and 7 show the entropies of SKM and OSKM
respectively. It is shown that improvements in purities
leads to an improvement in entropies i.e. lower entropies
indicate better clustering. The lowest entropy achieved is
0.234 for the root-based stemmer and the KLD function.
This is also the combination that lead to the best purity.

Figure 6: Entropies for SKM.

Figure 7: Entropies for OSKM.

For SKM, the entropies corresponding to the root-
based stemmer are better than the entropies of the other
three versions of the dataset. This is the case for all four
similarity functions. This indicates that root-based
stemming results have a better distribution.

OSKM does not improve the entropies when compared
to SKM in all settings. However, when using the root-
based stemmer there are consistent improvements for all
similarity functions.

6. Conclusion and Future Work
The experiments in this study clustered Arabic short

texts into positive and negative categories for sentiment
analysis. Contrary to many published papers on
information retrieval applications for normal-sized
documents, it is shown that root-based stemming is
superior to light10 stemming.

In the same context, KLD outperformed all other
similarity functions. The combination of KLD and root-
based stemming achieved the highest purity of 0.764 by a
margin of at least 0.04.

Although Cosine similarity is used in many products and
published papers, we found that Cosine produced inferior
purity results to the KLD, Jaccard and Pearson functions in
all settings. The best results for the Cosine function occurred
when it is combined with root-based stemming but these
results are at least 0.09 less than the highest purity.

The results in this paper are of further interest as root-
based stemming requires less memory usage and reduces
the run time of the associated applications.

It would be interesting to repeat the experiments using
more datasets. Unfortunately, the authors were not able to
attain access to more datasets at the time of writing this
paper. Other interesting avenues for further investigations
are lemmatization and distant clustering technique.
As the dataset used in this study contains some dialectal
words, which might not be correctly stemmed by Light10
and Kohja’s stemmers, some noise might be generated. We
plan to extend our work to study how much dialectal words
may affect stemmers performance in this application
scenario of clustering-based Sentiment Analysis.

7. References

[1] S. Khoja, 2016. [Online]. Available:

http://zeus.cs.pacificu.edu/shereen/research.htm.
[Accessed 01 August 2016].

[2] R. M. Duwairi, R. Marji, N. Sha'ban and S. Rushaidat,
"Sentiment Analysis in Arabic Tweets," in 5th
International Conference on Information and
Communication Systems (ICICS), 2014.

[3] E. Zangerle, G. Wolfgang and G. Specht, "On the impact
of text similarity functions on hashtag recommendations
in microblogging environments," Social Network Analysis
and Mining, vol. 3, no. 4, pp. 889-898, 2013.

[4] S. R. El-Beltagy and A. Ali, "Open Issues in the
Sentiment Analysis of Arabic," in IIT, 2013.

[5] H. Froud, R. Benslimane, A. Lachkar and S. A. & Ouatik,
"Stemming and similarity measures for Arabic
Documents Clustering," in I/V IEE ISVC, 2010.

0.3

0.28

0.26

0.24

0.22

0.2
KLD Cosine Pearson Jaccard

Raw NoSW Light10 Root

2017 IEEE/ACS 14th International Conference on Computer Systems and Applications

2161-5330/17 $31.00 © 2017 IEEE
DOI 10.1109/AICCSA.2017.162

506

[6] H. Froud, A. Lachkar and S. Ouatik, "Arabic text
summarization based on latent semantic analysis to
enhance arabic documents clustering," International
Journal of Data Mining & Knowledge Management
Process (IJDKP), 2013.

[7] D. Abuaidah, "Using Bisect K-Means Clustering
Technique in the Analysis of Arabic Documents," ACM
Transactions on Asian and Low-Resource Language
Information Processing, vol. 15, no. 3, p. 17, 2016.

[8] Q. Bsoul and M. Mohd, "Effect of ISRI stemming on
similarity measure for Arabic document clustering," in
Asia Information Retrieval Symposium, Springer Berlin
Heidelberg, 2011.

[9] O. Ghanem and W. M. Ashour, "Stemming Effectiveness in
Clustering of Arabic Documents," International Journal of
Computer Applications, vol. 5, no. 49, pp. 1-6, 2012.

[10] L. Larkey, L. Ballesteros and M. Connell, "Improving
Stemming for Arabic Information Retrieval: Light
Stemming and Co-occurrence Analysis," in ACM SIGIR,
2002.

[11] N. Sandhya, Y. S. Lalitha, V. Sowmya, A. D. K.. and D.
A. Govardhan, "Analysis of Stemming Algorithm for Text
Clustering," vol. 8, no. 5, 2011.

[12] A. Shoukry and A. Rafea, "Sentence-Level Arabic
Sentiment Analysis," in International Conference on
Collaboration Technologies and Systems (CTS), 2012.

[13] B. Pang and L. Lillian, "Opinion mining and sentiment
analysis," Foundations and trends in information
retrieval, vol. 2, no. 1-2, pp. 1-135, 2008.

[14] M. Althobaiti, U. Kruschwitz and M. Poesio, "Combining
Minimally-supervised Methods for Arabic Named Entity
Recognition," Transactions of the Association for
Computational Linguistics, vol. 3, pp. 243-255, 2015.

[15] M. Efron, "Information search and retrieval in
microblogs," Information search and retrieval in
microblogs." Journal of the American Society for
Information Science and Technology, vol. 62, no. 6, pp.
996-1008, 2011.

[16] J. Akshay, X. Song, T. Finin and B. Tseng, "Why we
twitter: understanding microblogging usage and
communities.," in In Proceedings of the 9th WebKDD and
1st SNA-KDD 2007 workshop on Web mining and social
network analysis, 2007.

[17] G. Salton and C. Buckley, "Term weighting approaches in
automatic text retrieval," Information Processing and
Management, vol. 24, no. 5, pp. 513-523, 1988.

[18] G. Salton, Automatic text processing: the transformation,
analysis, and retrieval of information by computer,
Boston: Addison-Wesley Longman Publishing Co., 1989.

[19] A. Go, R. Bhayani and L. Huang, "Twitter Sentiment
Classification using Distant Supervision," CS224N
Project Report, Stanford, 2009.

[20] A. K. Jose, N. Bhatia and S. Krishna, "TWITTER
SENTIMENT ANALYSIS," National Institute of
Technology, Department of Computer Science &
Engineering, Calicut, Monsoon, 2010.

[21] A. Huang, "Similarity measures for text document
clustering," in Proceedings of the sixth new zealand
computer science research student conference
(NZCSRSC2008), Christchurch, New Zealand, 2008.

[22] M. Steinbach, G. Karypis and V. Kumar, "A Comparison
of Document Clustering Techniques," in KDD Workshop
on Text Mining, 2000.

[23] S. Khoja and R. Garside, "Stemming Arabic text,"
Lancaster University, Lancaster, 1999.

[24] N. Abdulla, N. Mahyoub, M. Shehab and N. Al-Ayyoub,
"Arabic sentiment analysis: Corpus-based and lexicon-
based," in In Proceedings of The IEEE conference on
Applied Electrical Engineering and Computing
Technologies (AEECT)., 2013.

[25] K. Darwish, W. Magdy and A. Mourad, "Language
processing for arabic microblog retrieval," in Proceedings
of the 21st ACM international conference on Information
and knowledge management, 2012.

[26] A. Newsri, "Effective Retrieval Techniques for Arabic
Text," Melbourne, Australia, 2008.

[27] E. Al-Shammari and J. Lin, "Towards an Error-Free
Arabic Stemming," in Proceedings of the 2nd ACM
workshop on Improving non english web searching
(iNEWS '08), New York, NY, USA, 2008A.

[28] E. Al-Shammari and J. Lin, "A novel Arabic
lemmatization algorithm," in Proceedings of the second
workshop on Analytics for noisy unstructured text data,
Singapore, 2008B.

[29] A. Jain, "Data clustering: 50 years beyond K-means,"
Pattern Recognition Letters, vol. 31, p. 651–666, 2010.

[30] R. Kashef and M. S. Kamel, "Enhanced bisecting k-means
clustering using intermediate cooperation," Pattern
Recognition, vol. 42, no. 11, pp. 2557-2569, 2009.

[31] C. Manning, P. Raghavan and H. Schütze, Introduction to
information retrieval, vol. 1, Cambridge: Cambridge
university press, 2008.

[32] M. Jarrar, N. Habash, F. Alrimawi, D. Akra, N. Zalmout:
Curras: An Annotated Corpus For The Palestinian Arabic
Dialect. Journal Language Resources and Evaluation.
Pages(1-31) Volume(50), Issue(219). Springer. 2016

	Bookmarks
	Clustering Arabic Tweets for Sentiment Analysis
	1. Introduction
	2. Related Work
	3. Dataset and Preprocessing
	4. Clustering Algorithm
	4.1. Quality Measures
	4.2. Document Representation
	4.3. Similarity Functions
	4.4. Implementation Details

	5. Experiments, Results and Discussion
	5.1. Purities of SKM
	5.2. Purities of OSKM
	5.3. Entropies of SKM and OSKM

	6. Conclusion and Future Work
	7. References

