
Lexicon Digitization - A Framework for Structuring,
Normalizing and Cleaning Lexical Entries

Hamzeh Amayreh Mohammad Dwaikat Mustafa Jarrar1

Birzeit University, Palestine

ABSTRACT
We present a parsing framework that we developed for
digitizing about 150 Arabic-multilingual lexicons and storing
them into one lexicographic database – available at Birzeit
University. The framework consists of 30 parsers for
(re)structuring, normalizing, and cleaning lexical entries.
This parsing framework can be beneficial in resolving issues
faced when hard-copy lexicons are to be digitized and
represented in a machine-processable format. Each parser in
the framework takes a lexical entry as input and (i) detects a
candidate problem(s) to be resolved, (ii) assigns a category
label to this problem, and then (iii) generates a suggested
correction. The output might then be given to a linguist (if
needed) to review and confirm manually.

The parsers were built to handle a broad set of delicate issues
in both Arabic and English lexical entries of various types of
lexicons. Such issues emerged because lexicons are originally
designed to be printed and used as hard copies rather than
stored in a machine-processable and understandable form.
Symbols and characters in lexical entries might be used to
indicate various cases, which is even more delicate when the
same symbol is used differently within the same or across
lexicons.

KEYWORDS
Lexicon, Dictionary, Arabic, Lexicon Digitization, Lexical entries,
Lexicography, Linguistic Resources, Arabic NLP.

1 Introduction and Motivation
Lexicons and language resources are no more limited to hard copies
and manual use. They are becoming important components in
natural language processing and for building smart applications.
Although there are many available dictionaries for most languages,
limited number of Arabic lexicons are available in digital formats

1 Corresponding author (mjarrar@birzeit.edu)
2 Published as: Amayreh, H., Dwaikat, M., & Jarrar, M. (2019): A Framework Digitization Arabic Lexicons – Structuring, Normalizing and Cleaning Lexical Entries. Technical
Report. Birzeit University, Palestine.
3 The Lexicographic Search Engine (https://ontology.birzeit.edu)

(Jarrar and Amayreh, 2019). This is not only because of the poor
Arabic OCR technologies to recognize hard-copies into machine-
readable text but also because converting this text into a machine-
understandable (i.e., structured) format is indeed challenging.
Furthermore, lexicons may come of different content and different
structures; thus, automatic digitization tools are also difficult to
develop. Lexicons might be grouped into the following five types,
based on their structures and content:

(i) Dictionary, which typically consists of a list of lexical
entries and their translation in another language(s).

(ii) Glossary, which typically consists of a set of lexical entries,
each with a gloss to define the meaning of this lexical entry.
Some glossaries include other information such as
synonyms, translation(s), abbreviations, and references
(i.e., relations) to other lexical entries.

(iii) Linguistic lexicon: lexical entries with their senses (i.e.,
meanings), and maybe linguistic features, some inflections,
and derivations.

(iv) Thesaurus: sets of synonymous lexical entries.

(v) Semantic-variations lexicon: pairs of lexical entries and
the semantic differences between each of these lexical
entries.

(vi) Morphological database/lexicon: set of lexical entries (i.e.,
lemmas), each with some inflections and morphological
features.

This report2 presents the parsing framework that we developed at
Birzeit University while digitizing about 150 Arabic-multilingual
lexicons and storing them in one database (Jarrar and Amayreh,
2019; Jarrar, 2018). This lexicographic database is accessible
through: (i) an online linguistic search engine3 (Jarrar, 2020; Alhafi

et al., 2019), (ii) a set of RESTful web services4, and (iii) an RDF
representation using the W3C Lemon Model (Jarrar et al., 2019).
All lexical concepts in all lexicons are being linked with concepts
in the Arabic Ontology (Jarrar, 2021; Jarrar, 2011). Additionally,
all lexical entries (i.e., lemmas) across lexicons are also being
mapped with each other (Jarrar et al., 2018) and with dialectal
lemmas (Jarrar et al., 2017; Jarrar et al., 2014).

During the process of digitizing 150 Arabic multilingual lexicons,
we faced a considerable set of challenges. Not only that each
lexicon follows a different structure, but we also found that the
same lexicon is not always consistent with the way it is supposed
or claimed to follow.

We did not use any OCR technology because of their very low
accuracy. Instead, and as will be discussed in section 3, lexicons
were manually typed (into MS Word) and then parsed and
converted into the two temples depicted in Figure 1, then mapped
to database tables. This report focuses only on the parsing of the
lexical entries before converting them into a database, which is the
most challenging task in lexicon digitization.

Our goal is to automate the digitization process as much as possible
by detecting and correcting errors, then give the results to humans
to validate and confirm when needed. We designed a parsing
framework consisting of 30 parsers5 designed to collectively handle
Arabic and English lexical entries and ensure their correctness.
Each parser was designed to detect and correct a specific issue.

Because lexicons are language references, they are assumed to be
free of errors, thus should be correctly parsed and should not
contain any mistake. To meet this strict requirement, each parser in
our framework assigns a category label to each detected or
corrected issue. This is very helpful for humans to review later and
confirm each category of corrections.

The digitizing phases of the 150 lexicons are overviewed in (Jarrar
and Amayreh, 2019), in which we also presented the linguistic
search engine that we developed to allow people to search the
lexicons online. This article presents the parsing framework and
focuses only on the normalization and cleaning issues.

In the rest of this report, section 2 overviews the related work, and
in section 3, we present the parsing framework. Section 4 presents
the 30 parsers.

4 The LexAPI page (https://ontology.birzeit.edu/lexapi) for retrieving synonyms,
translations, definitions, ontology concepts, morphological features, and others.

2 Related Work
Research on digitizing Arabic lexicons is limited. In what follows
we review the most important works.

An electronic lexicon, called Al-Madar (Khemakhem et al., 2016),
was constructed based on a printed copy of the Al-Ghani Lexicon
and then represented using the ISO LMF standard. Most of the tasks
in constructing Al-Madar were done manually through a web
interface that was developed specifically for this lexicon.

A Medieval Arabic lexicon, called (’al-qa ̄mu ̄s al-muhi ̄t), was
digitized by Nahli et al. (2016) and then represented using the ISO
LMF standard and using the Lemon model (Khalfi et al, 2016). This
lexicon was originally in a plan-text format and was structured and
normalized through several processing steps based on patterns for
markers that are found in the text.

Five Hadith lexicons that were digitized by Soudani et al. (2015)
and represented using the ISO LMF standard. The digitization of
these lexicons was more sophisticated as they were digitized
through several structuring and normalization phases. The
structuring phase includes the identification of markers and blacks
of linguistic information. The normalization phase mains to map
the extracted blocks into linguistic categories, mainly LMF classes
and attributes.

As lexicons typically are of different types and different structures
that serve various purposes, it is difficult to generalize or reuse a
digitization methodology for other lexicons.

Instead, we propose a parsing framework enriched with 30 parsers.
The framework, as shall be explained in the next section, assumes
a lexicon to be structured into Lexical Entry and Lexical Concept
templates. Then, the normalization of lexicographic information
elements can be semiautomated using appropriate parsers, given
the specific needs for each lexicon. We do not claim that our
proposed framework is suitable for digitizing any type of lexicons,
but it was used for digitizing our 150 Arabic-multilingual lexicons,
which were of different types.

3 The Parsing Framework
During our work on the digitization of 150 Arabic multilingual-
lexicons, we have come across many issues for which we
developed a parsing framework to resolve semi-automatically.
Most of these lexicons were first manually typed (in MS Word) as
they were only available in hard copies. Other lexicons that we

5 All parsers and other Arabic NLP tools can be downloaded from
(https://ontology.birzeit.edu/tools/)

found in digital textual formats, were parsed semi-automatically. In
case a lexicon uses regular markers (e.g., comma, semicolon, tab,
new line) to separate different linguistic features, then it was
converted automatically into a table (in MS Word), which we
designed for each lexicon; otherwise, such markers were manually
added to the text before it is automatically converted. Each resultant
table was then parsed and restructured into a normalized model
using two general templates (see Figure 1). Each lexicon was
parsed and mapped to these templates by: First, extracting lexical
entries and their linguistic features and storing them in the Lexical
Entry template. Second, by extracting definitions and their relations
and storing them in the Lexical Concept template.

We faced many challenges that were very difficult to resolve in a
fully automatic manner. Therefore, we have built a parsing
framework designed to handle this process semi-automatically with
minimum human involvement. Our parsers detect and filter out
each issue individually, then assign a category label to each of these
issues to indicate its nature. Some issues might be assigned several
labels as there might be multiple parsers applicable on it. The
output of the parsers also includes suggested corrections depending
on the nature of the issue. Each labeled issue (i.e., category) can
then be given to a linguist to review and confirm the suggested
corrections. Complex cases that parsers detect but cannot correct
were processed manually by the linguist.

Our framework cannot be used to handle all issues for all types of
lexicons, as each lexicon is of different purposes, and each has its
own structure and challenges. Nevertheless, the framework was
used for digitizing 150 Arabic lexicons.

Figure 1: Lexical Concept and Lexical Entry templates

4 Set of Parsers
This section presents our set of parsers. Each parser is designed to
(1) detect a certain issue (a candidate problem in a lexical entry),
(2) give a label to this issue, and (3) suggest a correction. The input
for each parser is a set of lexical entries, and the output is the label
and the suggested correction. All parsers, their category labels, and
suggested corrections are summarized in Table 1.

4.1 Comma and Semi-colon

This parser is designed to handle lexical entries that include Arabic

and English comma(s) and/or semi-colon(s) {“,”, “;”, “؛”, “،”},
which are common in most dictionaries. It is found to most likely
mean synonymy. The parser detects commas and replaces them
with a chosen delimiter of synonymy (“|” in our case). Then it
gives them the label (Com) for later review and/or approval.

4.2 Parenthesis

Parenthesis are used in dictionaries for purposes that differ between
different dictionaries and within the same dictionary. A special type
of their use is to re-arrange words in a lexical entry in a way that
maintains an alphabetical ordering, such as: “accelerator
(linear...)”, “affinity (chemical)”, “drawing (final)”, “earth (the)”,
and “crush (to)”. Most of these cases are identified when there is a
single word between the parenthesis that is either an adjective, an
adverb, or the word “the”. The parser then deletes the parenthesis
and moves the word between it to the beginning of the lexical entry.
However, in cases where the text between the parenthesis is “to”,
both the parenthesis and the word “to” are removed and the lexical
entry is given a POS feature of the value “verb”. These cases are
given the label (P0), and are flagged for manual inspection of the
suggested correction.

4.3 Parenthesis pairs

The use of different types of parenthesis (i.e., (), {}, <>, or []) are
found in many dictionaries. Their use however, have variant
purposes that cannot be generalized into a rule to apply when such
cases are met during parsing. Therefore, these cases were only
given the label (P6) by the parser, and they were not given a
suggested correction. Yet, they were flagged for the reviewer to
manually check them.

4.4 Plural sign

Some lexical entries include the plural form between parenthesis.
For regular plurals, the text “(s)” is appended to the end of the
lexical entry as in “border(s)”. In this case the parser removes the
plural sign (i.e., (s)) and copies the same lexical entry with an “s”

!"#$%&' ()*%"+,

!"#$%&' -*,./

Lexical	concept	ID	
Synonyms <1234561789:; 1>		|	<1234561789:; 2>	|	.	.	.		|		<1234561789:; n>	

Definition

Example

Relation	Name LexicalConceptID

Lexical	Entry	ID
Lexical	Entry

Feature/derivation Value/LexicalEntryID

letter appended to its end as the plural feature of the word.
However, in case of irregular plurals such as: “appendix (pl.
appendices)”, the plural sign (i.e., pl.) and the parenthesis are
removed and the plural form of the lexical entry is added as its
plural feature. Cases of the plural sign are labeled as (P1) by the
parser and are flagged for manual inspection.

4.5 Singular sign

The singular form of a lexical entry is often included in dictionaries,
as in “arteriolae (sing. arteriola)”. Cases as such are detected by our
parser, and are given the label (P2), they are also given a suggested
correction which extracts the singular form (“arteriola” in this case)
as the singular feature of the lexical entry. The parser then removes
the singular sign (i.e., sing.) and the parenthesis. These cases are
also flagged to be manually reviewed later.

4.6 POS sign

Some dictionaries denote that a lexical entry is a verb by appending
(to) -sometimes (to…)- to the lexical entry. Adjectives are denoted
by the sign (adj.) and nouns by the sign (n.). For such cases, the
parser removes the POS sign from the lexical entry and map the
sign to its corresponding value as the POS feature of the lexical
entry. These cases are given the label (P3) by this parser.

4.7 Origin

Dictionaries sometimes include the origin of a lexical entry. The
origin is denoted by the abbreviation of its original language.
Examples of such include: (“(It.)”, “(Fr.)”, “(Hun.)”, “(Sp.)”,
“(Lat.)”, “(Ger.)”, “(n.)”, “(Por.)”, “(Ar.)”, “(Ind.)”, “(Ice.)”,
“(Swe.)”, “(Nor.)”, “(Isl.)”, “(Rus.)”, “(Pl.)”, “(L.)”, “(Esk.)”,
“(Pol.)”, “(Fin.)”, “(Jap.)”, “(Tur.)”). In such cases, the lexical entry
is copied to the appropriate language column, and the origin sign is
removed from both columns. The parser also gives these cases the
label (Orig)	and adds the origin feature to the lexical entry.

4.8 Hyphen

Dictionaries use different forms of hyphens (i.e., “-”, “–”) for
different purposes. All forms are converted to the standard hyphen
form “-” before the parsing step which handles different cases as
such: (1) When the hyphen appears immediately after the second
word in a two-word lexical entry (e.g., “rotation curl-”), the parser
removes the hyphen and moves the second word before the first
word of the lexical entry (e.g., “curl rotation”). (2) When the
hyphen is preceded with space and appears immediately before the
second word (e.g., “sound -stone”) the parser removes the hyphen
(e.g., “sound stone”). (3) When the hyphen is surrounded by spaces
(e.g., “radiance - radiant intensity per unit area (at a point of a

surface; in a given direction)”), it is most likely used to separate
between the lexical entry and its explanation. For this case, the
parser removes the hyphen and moves the explanation to the gloss
of the lexical entry. (4) Finally, when the hyphen is used -with no
spaces around it- as a separator between multiword phrases (e.g.,
“semi-tone”), it is kept as it is. All cases where a hyphen exists are
given the flag (H) by the parser and are flagged for manual review.

4.9 Special Symbols

Sometimes dictionaries include one of these symbols (!, @, #, $, %,

٪, &, ~, _) in their lexical entries. Since this is not a prominent issue
and since symbols might be valid in certain lexical entries, and due
to the difficulty of parsing such a case; symbols as such were kept
intact except for the “!” which the parser removes. However, all
cases of symbols were given the flag (Sym) for later manual
inspection.

4.10 Arithmetic symbols

A lexical entry in a dictionary might contain one of these arithmetic
symbols (+, *, ×, ÷, /, ^, =). Such arithmetic symbols might be part
of the lexical entry indeed, but often they are used as markers to
indicate certain issues. Our parser detects them all and label them
with (Arth) for manual treatment, but it provides suggested
corrections only in two cases. One of which is related to the “=”
symbol that is often used to separate between synonyms as in “ear
crystals (= statolith)” which was corrected to “ear crystals |
statolith” by removing the parenthesis and replacing the “=” sign
with “|” (the delimiter we use to separate between synonyms). The
other case is related to the “/” symbol which is sometimes used also
to separate between synonyms as in “bank examiner/ inspector”
which was dealt with by replacing the “/” with the delimiter “|”
and copying the text before “/” symbol excluding the last word just
after the added delimiter “|” and before the first word that came
immediately after the “/” symbol.

4.11 Quotation marks

Quotation marks (", ') were all removed by the parser except for
these two cases: (1) when the (") is used as the inch measure unit
as in “oil well cartridge 4" standard” which is detected by checking
for a missing (") pair and by checking the immediate character
before the (") to be a number. In this case the (") was kept. (2) when
the (') is used before the possessives s as in “Grimm's law” which
was kept as it is. All cases of quotation marks including the ones
that were not changed were all given the label (Q) by our parser.

4.12 Punctuation

Cases in which punctuation marks (`, ?, :, ., …, ‘, ’, ؟) were used in
lexical entries were flagged for manual inspection, except for the
comma “,” which is dealt with by another parser/rule, and the colon
“:” which is replaced by our synonyms delimiter “|”. These cases
were all given the label (Pun) by the parser. In addition, the dot “.”
punctuation mark is removed if it comes at the end of a lexical
entry.

4.13 Abbreviation

This parser detects cases in which the dot “.” is used to separate
between letters of an abbreviation as in “adenosine triphosphate
(A.T.P)”. The parser extracts the abbreviations into a new
abbreviation feature and label such cases with (Abbr) for manual
review.

4.14 Digits

Digits (0-9, ٩-٠) are often found in lexical entries where it is there
either to denote listing of different sneses for a lexical entry as in
“Bill 1 - Billet de banque”, and “Bill 2 - facture” or as a valid part
of a lexical entry as in “solubility in CCL4” or as a result of an error
as in “1odging” (notice the first character is 1 not L). There was a
difficulty in determining which one is the case, therefore the parser
removes all numbers except for lexical entries that are entirely
numbers, and give all cases of numbers the flag (Num) so that a
reviewer can later approve the change.

4.15 Non-English characters in English entries

When there are non-English characters in an English lexical entry,
our parser detects this case and checks whether the character is
Latin or not. If Latin, it keeps it. Otherwise, the parser deletes the
character. The parser also gives such cases the label (NE) for later
manual review.

4.16 Non-French characters in French entries

Similarly, for non-French characters in a French lexical entry, our
parser detects these cases and deletes the characters only if they are
non-Latin. The parser also gives them the label (NF) for later
manual review.

4.17 Non-Arabic characters in Arabic entries

Non-Arabic characters in an Arabic lexical entry are also detected
and given the label (NA) by our parser for them to be manually
reviewed later. No suggested correction is provided in this case.

4.18 Arabic word starts with final-form Alif

As a result of an error, sometimes Arabic words in dictionaries start
with the Alif letter in its final form (ى) which is syntactically wrong

in Arabic. However, it is very hard to determine whether this letter
should be removed or replaced with one of the beginning-forms of
the Alif. Therefore, our parser detects such words, deletes the first
letter of the words (final-form Alif), and give them the flag (SA) for
later inspection by a linguist.

4.19 Arabic word starts with a diacritic

Often times Arabic words in Arabic lexical entries start with a

diacritic character rather than a letter (e.g., “ ث د ح َ َّ ◌ َ ”). This is a
result of an error as it is not syntactically correct in Arabic. Our
parser removes diacritics at the beginning of an Arabic word, and

labels these cases with (D0) for later review. Hence, “ ث د ح َ َّ ◌ َ ” is
corrected to “ ث د ح َ َّ ” by the parser.

4.20 non-terminal Arabic letter has its diacritic as Tanween

Another syntactically wrong case in Arabic is when a Tanween

diacritic (◌ ً , ◌ ٌ , ◌ ٍ) appears as the diacritic for a non-terminal letter
in Arabic lexical entries. Such cases are dealt with by removing the
Tanween diacritic and flagging the case as (T1) for later review.

4.21 Arabic Maddah character

The Arabic Tatweel character (ـ) is used in Arabic for lengthening
words to justify them (e.g., “ ءاـــــــــمس ”). This is non-relevant to the
syntax and the semantics of the word. Therefore, our parser deletes
this character from Arabic lexical entries and give them the flag
(Mad) for later review. Hence, “ ءاـــــــــمس ” is corrected to “ ءامس ”.

4.22 Arabic word starts with Ta Marbuta

An Arabic word that starts with the letter Ta Marbuta (ة) is
considered syntactically wrong. Our parser detects such cases,
removes the letter Ta Marbuta, and give them the flag (T2) for the
reviewer to determine whether it should be replaced or removed
completely.

4.23 Inconsistent diacritics on the same Arabic letter

Another syntax error that might occur in Arabic lexical entries is
when there are multiple inconsistent diacritics on the same letter,
for example: in the word (لع ◌ ف َ ِ) the first letter (ف) has two

diacritics, the Fatha (◌ َ) and the Kasra (◌ ِ) which is not correct. Our
parser removes all inconsistent diacritics and give each case the
label (D1) for later correction by a linguist whom will decide what
diacritic(s) to keep and what to delete.

4.24 Arabic AL (لا)

To maintain an alphabetical ordering, some dictionaries remove the
Arabic AL (لا) (“The” in English) from the beginning of Arabic
words in lexical entries and put it between parenthesis after the
word as in “)...لا(نوك ”. Our parser detects such cases and deletes
the)لا...(. The parser also gives such cases the label (AL) for the
reviewer to approve the suggested correction.

However, other cases might need further correction, such as:
“ ةیئابرھكلا)...لا(تایكرح ”, which the parser initially corrects to:
“ ةیئابرھكلا تایكرح ”. This might be syntactically incorrect in some
cases, since the second word (right-to-left) starts with an AL, while
the AL of the first word was removed by the parser. Therefore, for
each case of AL)لا...(, the parser removes AL)لا(from the
beginning of all successive words in the lexical entry. Hence,
“ ةیئابرھكلا)...لا(تایكرح ” is corrected to “ ةیئابرھك تایكرح ”.

4.25 Character-set issues

Often characters with the same orthography have different
encodings in the Unicode character set. Examples of such are the
No-Break space character () (U+00a0) compared to the regular
space () (U+0020). This problem is even more apparent in Arabic,
for example the two Arabic letters Lam (ل) and Alif (ا) when the
Lam precedes the Alif, it is written as (لا). Sometimes this (لا) is
found represented as two character encoded as (U+0644U+0627),
while other times, it is found as a single character encoded as
(U+FEFB) depending on the Unicode version used when the
dictionary was typed. Our parser detects such cases and corrects
them. For example: The No-Break space character is replaced with
the regular space character, and the (لا) encoded as (U+FEFB) is
replaced with the (لا) encoded as (U+0644U+0627). Our parser also
gives such cases the label (CS).

4.26 Lengthy multiword lexical entries

There are cases in which a lexical entry has many words such as
“buildings or other structures recurrent taxes on land” which forms
“poor” lexical entries. Our parser detects all cases with more than
five words and give them the label (Long) so that a reviewer can
later decide whether to make it shorter, consider it a definition, skip
it, etc.

4.27 Multiple white spaces

This parser detects cases in which there are more than one
consecutive whitespace character. The parser replaces these cases
with a single space character and give them the label (space).

4.28 Sub-term synonymy

This parser detects the case in which a lexical entry -either from
source or after parsing- has two synonyms; one of which is part of
the other as in “internal condition | internal condition of a body”. It
is very likely that the second entry is an explanation rather than a
synonym of the first entry. The parser in this case, removes the
smaller synonym (e.g., “internal condition” in this case) and the
synonymy delimiter “|”. Finally, the parser gives such cases the
label (STS) for later manual review.

4.29 Arabic related symbol

Arabic glosses in dictionaries use delimiter (.ظ) that is a shortcut
for the word (رظنا) (i.e., see in English) to refer the reader to another
related lexical entry. This parser replaces all occurrences of (.ظ)
with (:رظنا) and adds the referenced lexical entry as a related feature
to the lexical entry. The parser also gives these cases the label
(ARS) for later review.

4.30 Arabic special symbols

Other cases were found apparent in Arabic lexical entries, such as:
having angular brackets “< >” or “(ن)” which are removed and
given the label (AOS) by our parser for it to be later checked
manually.

4.31 Duplicate Arabic lexical entries

This parser detects duplicate Arabic lexical entries, that are exactly
the same or didactically-compatible words (i.e., their Implication
Direction metric is greater than or equal to zero) [5]. For example,
the entries “ ل عف َ ” and “ لع ف َ ” are considered didactically-compatible
since they have an Implication Direction metric of zero, which
means that each word implies the other, and hence can be treated
as duplicates. The parser then. and for each entry, removes the
diacritic of a letter if its corresponding letter on the other word has
no diacritic (e.g., “ ل عف َ ” and “ لع ف َ ” become “ لعف ” and “ لعف ”). The
parser gives these cases the label (DAE) for later manual review.

Table 1. Summary of the parsers, category labels, and suggested corrections.

 Parser Example Label Suggested Correction

1 Comma “austral, southern” Com “austral | southern”

2 Parenthesis “affinity (chemical)” P0 chemical affinity

3 Parenthesis pairs “ >ورداجوفأ< ددع ” P6 “ ورداجوفأ ددع ”

4 Plural sign “border(s)”

“appendix (pl. appendices)”

P1 “border”

“appendix”

Plural

5 Singular sign “arteriolae (sing. arteriola)” P2 “arteriolae” Singular

6 POS sign “acidic (adj.)” P3 “acidic” POS

7 Origin “andante(It.)” Orig “andante” Origin

8 Hyphen “rotation, curl-”

“sound -stone”

H “curl rotation”

“sound stone”

9 Special Symbols “full ahead!”

“newscar (TV & radio)”

Sym “full ahead”

“newscar (TV & radio)”

10 Arithmetic symbols “ear crystals (= statolith)”

“bank examiner/ inspector”

Arth “ear crystals | statolith”

“bank examiner | bank inspector”

11 Quotation marks “huff and puff “process””

“oil well cartridge 4” standard”

“Grimm's law”

Q “huff and puff process”

“oil well cartridge 4” standard”

“Grimm's law”

12 Punctuation “R?entgen rays” Pun “Rentgen rays”

13 Abbreviation “adenosine triphosphate
(A.T.P)”

 “adenosine triphosphate” Abbr.

14 Digits “solubility in CCL4” Num “solubility in CCL”

15 Non-English “Cliché” NE None

16 Non-French “N° de compte” NF None

17 Non-Arabic “ لكشب داو U” NA None

18 Start with final-form Alif “ جذومى ” SA “ جذوم ”

19 Start with a diacritic “ ث د ح َ َّ ◌ َ ” D0 “ ث د ح َ َّ ”

20 Non-terminal letter with Tanween “ ّ ٍ ن بت ” T1 “ ّ نبت ”

21 Maddah “ ءاــــــــمس ” Mad “ ءامس ”

22 Ta Marbuta “ يلوحكة ممست ” T2 “ يلوحك ممست ”

23 Inconsistent diacritics “ ة تا و ◌ ص ِ ِ َ َ ” D1 “ ة تا وص َ َ ”

24 Arabic AL “)...لا(نوك ”

“ ةیئابرھكلا)...لا(تایكرح ”

AL “ نوك ”

“ ةیئابرھك تایكرح ”

25 Charset (see the text) CS (see the text)

26 Lengthy lexical entries “buildings or other structures
recurrent taxes on land”

Long None

27 Multiple white space “reach into” space “reach into”

28 Sub-term synonymy “internal condition of a body |
internal condition”

STS “internal condition of a body”

29 Arabic related symbol “ نیح شیطعتلاب زیمتی يذلا تماصلا ةمس
.شیطعت .ظ .ھقطن ”

ARS “ نیح شیطعتلاب زیمتی يذلا تماصلا ةمس
.شیطعت :رظنا .ھقطن ”

30 Arabic special symbols “)ن(طیشنت ” AOS “ طیشنت ”

31 Duplicate Arabic lexical entries “ ل عف َ ” and “ لع ف َ ” DAE “ لعف ” and “ لعف ”

REFERENCES

Aïda Khemakhem, Bilel Gargouri, Abdelmajid B. Hamadou, and
Gil Francopoulo. 2016. ISO standard modeling of a large
Arabic dictionary. Natural Language Engineering, 22(6), Pages
849-879.

Diana Alhafi, Anton Deik, Mustafa Jarrar: Usability Evaluation of
Lexicographic e-Services. The 16th IEEE/ACS International
Conference on Computer Systems and Applications
(AICCSA). Pages(1-7). IEEE. Abu Dhabi, UAE. 2019

Mustapha Khalfi, Ouafae Nahli, and Arsalane Zarghili. 2016.
Classical dictionary Al-Qamus in lemon. In Proceeding of the
4th IEEE International Colloquium on Information Science and
Technology. IEEE, Morocco, 325-330.

Nadia Soudani, Ibrahim Bounhas, Bilel Elayeb, and Yahya
Slimani. 2015. An LMF-based Normalization approach of
Arabic Islamic dictionaries for Arabic Word Sense
Disambiguation: application on hadith. International Journal on
Islamic Applications in Computer Science and Technology,
3(2).

Ouafae Nahli, Francesca Frontini, Monica Monachini, Fahad Khan,
Arsalane Zarghili, and Mustapha Khalfi. 2016. Al Qamus al
Muhit, a Medieval Arabic Lexicon in LMF. In Proceeding of
the LREC.

Mustafa Jarrar, Nizar Habash, Faeq Alrimawi, Diyam Akra, Nasser
Zalmout: Curras: An Annotated Corpus for the Palestinian
Arabic Dialect. Journal Language Resources and Evaluation.
Pages(745-775). Volume(51), Issue(3). Springer
(doi.org/10.1007/s10579-016-9370-7). 2017

Mustafa Jarrar: Search Engine for Arabic Lexicons. The 5th
Conference on Translation and the Problematics of Cross-
cultural Understanding. The Forum for Arab and International
Relations. Doha, Qatar. December, 2018

Mustafa Jarrar, Fadi Zaraket, Rami Asia, and Hamzeh Amayreh.
2018. Diacritic-Based Matching of Arabic Words. ACM Trans.
Asian Low-Resour. Lang. Inf. Process. 18, 2, Article 10
(December 2018), 21 pages.

Mustafa Jarrar, Hamzeh Amayreh: Linguistic Search Engine. In
Proceedings of the International World Wide Web conference
(WWW 2019). ACM, San Francisco, CA, USA.

Mustafa Jarrar: Building a Formal Arabic Ontology (Invited
Paper). Proceedings of the Experts Meeting on Arabic
Ontologies and Semantic Networks. ALECSO, Arab League.
Tunisia. July, 2011

Mustafa Jarrar, Nizar Habash, Diyam Akra, Nasser Zalmout:
Building a Corpus for Palestinian Arabic: a Preliminary Study.
Arabic Natural Language Processing Workshop, at the
Conference on Empirical Methods in Natural Language
Processing (EMNLP 2014). Pages(18-27). Association for
Computational Linguistics. ISBN:9781937284961. Qatar.
October, 2014

Mustafa Jarrar, Hamzeh Amayreh, John P. McCrae: Representing
Arabic Lexicons in Lemon - a Preliminary Study. The 2nd
Conference on Language, Data and Knowledge (LDK 2019).
Pages(29-33). CEUR, Volume 2402. ISSN:1613-0073.
Leipzig, Germany. 2019

Mustafa Jarrar: Digitization of Arabic Lexicons. Arabic Language
Status Report. UAE Ministry of Culture and Youth. Pages 214-
2017. Dec 2020

Mustafa Jarrar: The Arabic Ontology - An Arabic Wordnet with
Ontologically Clean Content. Applied Ontology Journal, 16:1,
1-26. IOS Press. 2021

