
Towards Methodological Principles
for Ontology Engineering

A thesis submitted by

Mustafa Jarrar

For the degree of

Doctor of Philosophy

Vrije Universiteit Brussel

Faculty of science

May 2005

Promoter: Professor Dr. Robert Meersman

 II
-D

Dr. Mustafa Jarrar
Senior Research Scientist
Marie Curie Postdoc Fellow

University of Cyprus
Phone: 357 22 892.676 | Fax: +357 22 892.701
mustafa (at) jarrar.info
www.jarrar.info

Downloads and pages related to this thesis:

x Thesis: http://www.jarrar info/phd-thesis

x DogmaModeler: http://www.jarrar.info/Dogmamodeler/

x ORM Markup Language (Ver 3.0): http://www.jarrar.info/publications/index.htm#[J07a]

x ORM Verbalizor: http://www.jarrar.info/orm/verbalization/

x The Customer Complaints ontology: http://www.jarrar.info/CContology

x Blog: http://mjarrar.blogspot.com/

x Related publications: http://www.jarrar.info/publications/

 III
-D

Jury Members:

- Professor Dr. Luc Steels (Jury President)
Vrije Universiteit Brussel, Belgium

- Professor Dr. Robert Meersman (Promoter)
Vrije Universiteit Brussel, Belgium

- Professor Dr. Dirk Vermeir
Vrije Universiteit Brussel, Belgium

- Professor Dr. Fausto Giunchiglia
University of Trento, Italy

- Professor Dr. Esteban Zimanyi
Université Libre de Bruxelles, Belgium

© Copyright 2005 by Mustafa Jarrar

All rights reserved.

Copyright Note: The text and the ideas presented in this thesis rests with
the Author. No part of this work may be reproduced, stored in retrieval
system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior
permission of the author.

 IV
-D

 V
-D

Abstract

The Internet and other open connectivity environments create a strong
demand for the sharing of data semantics. Emerging ontologies are
increasingly becoming essential for computer science applications.
Organizations are looking towards them as vital machine-processable
semantics for many application areas. An ontology in general, is an agreed
understanding (i.e. semantics) of a certain domain, axiomatized and
represented formally as logical theory in a computer resource. By sharing
an ontology, autonomous and distributed applications can meaningfully
communicate to exchange data and make transactions interoperate
independently of their internal technologies.

The main goal of this thesis is to present methodological principles for
ontology engineering to guide ontology builders towards building
ontologies that are both highly reusable and usable, easier to build, and
smoother to maintain.

First, we investigate three foundational challenges in ontology
engineering (namely, ontology reusability, ontology application-
independence, and ontology evolution). Based on these challenges, we
derive six ontology-engineering requirements. Fulfilling these
requirements is the goal and motivation of our methodological principles.

Second, we present two methodological principles for ontology
engineering: 1) ontology double articulation, and 2) ontology
modularization. The double articulation principle suggests that an
ontology be built as separate domain axiomatizations and application
axiomatizations. While a domain axiomatization focuses on the
characterization of the intended meaning (i.e. intended models) of a
vocabulary at the domain level, application axiomatizations mainly focus

 VI
-D

on the usability of this vocabulary according to certain
application/usability perspectives. An application axiomatization is
intended to specify the legal models (a subset of the intended models) of
the application(s)’ interest. The modularization principle suggests that
application axiomatizations be built in a modular manner.
Axiomatizations should be developed as a set of small modules and later
composed to form, and be used as, one modular axiomatization. We
define a composition operator for automatic module composition. It
combines all axioms introduced in the composed modules.

Third, to illustrate the implementation of our methodological principles,
we develop a conceptual markup language called ORM-ML, an ontology
engineering tool prototype called DogmaModeler and a customer
complaint ontology that serves as a real-life case study.

This research is a contribution to the DOGMA research project, which is a
research framework for modeling, engineering, and deploying ontologies.
In addition, we find we have benefited enormously from our participation
in several European projects. It was through the CCFORM project
(discussed extensively in chapter 7) that we were able to test and debug
many ideas that resulted in this thesis. The Network of Excellence
KnowledgeWeb has also proved to be a fruitful brainstorming
environment that has undoubtedly improved the quality of the analyses
performed and the results obtained.

 VII
-D

To my Parents

 To my country Palestine

 To all donors in the world

 VIII
-D

 IX
-D

Acknowledgments

At last, I am very glad to write this page. The relief and accomplishment I
feel in having come to this stage comes with a deep sense of indebtedness
to the help, support, and inspiration of the many people to whom the
thesis owes its existence.

First of all, I wish to express my sincere gratitude to Professor Robert
Meersman, the promoter and the friend, who guided this work and helped
whenever I was in need. Robert’s direction and support have been
invaluable, not only in science but also in life experience. I was blessed in
the last five years, with his guidance, encouragement, tolerance, freedom,
trust, hospitality, and his friendship.

To the members of the jury - Professor Dr. Fausto Giunchiglia, Professor
Dr. Esteban Zimanyi, Professor Dr. Dirk Vermeir, and the president of
jury, Professor Dr. Luc Steels - I am most grateful for the precious time
you all devoted to reading this. It is my honor and I thank you for the
advice and the constructive criticism that contributed substantially to
bringing the original conception to this final stage.

I wish to express my debt to all present and former colleagues in
STARLab who have provided me with inspiration, advice, and
encouragement, and who have so generously shared their knowledge and
technical expertise with me. Especially, I am indebted to my colleague
Andriy Lisovoy, who helped me in the implementation of
DogmaModeler. Andriy is more than a colleague: I thank him also for the
richness he brought to my social and especially for the inspiring coffee
breaks that we spent together. I wish him great success in his PhD and in
his life in general.

 X
-D

I would like to thank also, Stijn Heymans for reviewing chapter 5. His
discussion and suggestions have influenced my work significantly.

I am in debt to many other colleagues for the useful discussions, we had
on different occasions - of which served greatly to influence my research.
In particularly I wish to thank Andreas Persidis, Stefano Spaccapietra,
Olga De Troyer, Luk Vervenne, Jan Demey, Nicola Guarino, Enrico
Franconi, Jeff Z. Pan, Luciano Serafini, Giancarlo Guizzardi, Paolo
Bouquet, Aldo Gangemi, Mohand-Saïd Hacid, Robert Colomb, Rita
Temmerman, Werner Ceusters, and Stefano Borgo.

I also gratefully acknowledge the financial support I received from the
BTC-CTB, as part of a mixed scholarship offered under the cooperation
program between Belgium and Palestine.

Finally, I dedicate this work to my parents, my sons, my country,
Palestine, and to all donors in the world.

Contents

Introduction and Overview .. 1
1.1 Scope and motivation ... 1

1.1.1 Foundational challenges in ontology engineering 3
1.1.2 Types of methodologies ... 5

1.2 Summary of the main goals and contributions ... 8
1.3 Thesis outline and structural overview .. 11

Fundamental Challenges in Ontology Engineering 15
2.1 Ontology reusability ... 16

2.1.1 Significance of ontology reusability ... 17
2.1.2 Reusability challenges .. 18
2.1.3 Conclusion .. 19

2.2 Ontology application-independence .. 20
2.2.1 Example .. 21
2.2.2 Related work .. 24
2.2.3 Ontology usability is also important ... 26
2.2.4 Conclusion .. 26

2.3 Ontology evolution ... 28
2.3.1 The complexity of change .. 28
2.3.2 Distributed evolution .. 29
2.3.3 Alternative axiomatizations .. 30
2.3.4 Conclusion .. 31

2.4 Summary .. 32

Ontology Double Articulation .. 37
3.1 Introduction.. 38

3.1.1 Overview of the double articulation principle .. 38
3.1.2 Example .. 40

3.2 Domain Axiomatization ... 42
3.2.1 Definition (double articulation, intended models, legal models) 44
3.2.2 Importance of linguistic terms in ontology engineering 46
3.2.3 On representing domain axiomatizations ... 48

Table of Contents

 XII
-D

3.2.4 Summary: properties of domain axiomatization....................................... 50
3.3 The notion of an ontology base .. 51

3.3.1 Definition (Lexon) .. 51
3.3.2 Definition (Concept)... 52
3.3.3 Definition (Role) .. 52
3.3.4 Definition (Mapping lexons into first order logic) 53
3.3.5 The notion of context ... 54
3.3.6 The notion of Gloss ... 55
3.3.7 Further formal axiomatizations (Incorporating upper level ontologies) ... 58

3.4 Application axiomatization .. 62
3.4.1 Example .. 63

3.5 Discussion .. 69

Ontology Modularization ... 73
4.1 Introduction.. 74

4.1.1 A simple example ... 74
4.2 Related work .. 77
4.3 Our approach ... 78

4.3.1 Modularity criterion ... 79
4.3.2 Module composition ... 81

4.4 Formal framework ... 83
4.4.1 Definition (Module) ... 83
4.4.2 Definition (Model, Module satisfiability) .. 83
4.4.3 Definition (Composition operator) ... 83
4.4.4 Definition (Modular axiomatization) ... 86

4.5 Composition of ORM conceptual schemes ... 87
Step 1: Composing fact types. ... 89
Step 2: Composing constraints. ... 90

Step 2.1: Combining value constraints .. 90
Step 2.2: Combining mandatory constraints .. 91
Step 2.3: Combining disjunctive mandatory .. 91
Step 2.4: Combining uniqueness and frequency constraints 92
Step 2.5: Combining set-comparison constraints 95
Step 2.6: Combining subtype constraints (total, exclusive) 98
Step 2.7: Combining ring constraints ... 99

Step 3: Reasoning about the satisfiability of ORM modules 102
Pattern 1 (Top common supertype) .. 103

Table of Contents

 XIII
-D

Pattern 2 (Exclusive constraint between types) 104
Pattern 3 (Exclusion-Mandatory) ... 105
Pattern 4: (Frequency-Value) ... 107
Pattern 5 (Value-Exclusion) ... 108
Pattern 6 (Set-comparison constraints) .. 110

4.6 Discussion and conclusions ... 113

ORM Markup Language ... 118
5.1 Introduction and motivation .. 119

5.1.1 Why ORM .. 120
5.2 ORM-Markup Language .. 121

5.2.1 ORM-ML metadata .. 122
5.2.2 ORM-ML Body .. 124

Object Types .. 124
Subtypes ... 125
Predicates ... 125
Predicate Objects ... 126
Constraints ... 127

5.3 Discussion and conclusions ... 131

DogmaModeler Ontology Engineering Tool 134
6.1 Introduction, a quick overview of DogmaModeler 135
6.2 Modeling domain axiomatizations in the Ontology Base 138

6.2.1 Context Modeling ... 138
6.2.2 Concept Modeling .. 139
6.2.3 Lexon Modeling ... 141

Lexon notation and visualization ... 142
6.3 Modeling application axiomatizations ... 145

6.3.1 Generating ORM-ML ... 147
6.3.2 Verbalization .. 148

6.4 Validation of application axiomatization ... 152
6.5 Axiomatization libraries ... 156
6.6 Composition of axiomatization modules .. 159
6.7 Other functionalities .. 162

6.7.1 Ontology-driven forms ... 162
6.7.2 Ontology Multilingualism .. 164

Table of Contents

 XIV
-D

6.8 Discussion and conclusions ... 165

The CCFORM Case Study ... 168
7.1 Introduction.. 169
7.2. Customer Complaint ontology .. 170

7.2.1 Customer-complaint domain axiomatization .. 171
“Customer Complaint” Context ... 171
Vocabularies and their glosses ... 174
Lexons ... 175

7.2.2 Customer-complaint application axiomatization 175
Complaint Problems .. 176
Complaint resolutions .. 178
Contract ... 179
Complaint .. 180
Complainant ... 181
Complaint recipient ... 182
Address .. 182

7.3 Discussion and lessons learnt .. 184
7.4 Multilingual lexicalization of the CContology 187
7.5 Conclusions .. 191

Conclusions and Future Work ... 192
8.1 Summary .. 193
8.2 Discussion and concluding remarks .. 194

Contribution to ORM .. 205
8.3 Future Research ... 206

Appendices .. 210
Appendix A: ORM Markup Language ... 212

Appendix A1 (tree view of the ORM-ML XML-Schema) 212
Appendix A2 (ORM-ML XML-Schema) ... 213
Appendix A3: Complete Example .. 222

Appendix B: DogmaModeler ... 226
Appendix B1: DogmaModeler Ontology Metadata .. 226
Appendix B2: XML-Schema of ORM-ML graphical style sheets 231
Appendix B3: ORM Verbalization Templates .. 235

Table of Contents

 XV
-D

English verbalization template ... 235
Dutch verbalization template ... 242
Arabic verbalization template .. 249
Russian verbalization template .. 256

Appendix C: Customer Complaint Ontology ... 264
Appendix C1: The CCglossary .. 264
Appendix C2: Lexons in the CContology ... 280

Appendix D: Thesis Glossary ... 296

Bibliography .. 300

List of Figures

Fig. 2.1. Ontology A. ... 22
Fig. 2.2. Ontology B. ... 22
Fig. 3.1. Ontology Double Articulation. .. 39
Fig. 3.2. A bibliography ontology base. ... 41
Fig. 3.3. Particular applications committing to an ontology base through their application

axiomatizations. .. 42
Fig. 3.4. An example of three different applications specializing a domain concept. 45
Fig. 3.5. A list of concepts described by glosses. .. 56
Fig. 3.6. A formal axiomatization of the instantiation relationship, as found in

[GGMO01]. .. 61
Fig. 3.7. A formal axiomatization of the Parthood relationship as found in [GGMO01]. 61
Fig. 3.8. Meaningful semantic interoperation between Bookstore applications. 65
Fig. 3.9. An OWL representation of the Bookstore ontological commitment. 68
Fig. 4.1. Book-shopping and Car-Rental axiomatizations. .. 75
Fig. 4.2. Modularized axiomatizations. ... 76
Fig. 4.3. (a) Compatible composition, (b) Incompatible composition. 82
Fig. 4.4. Combining UML constraints. .. 85
Fig. 4.5. Examples of several combinations of ORM constraints: (a) combination of two

value constraints, (b) combination of uniqueness, and frequency, (c) combination
of subset and equality, and (d) combinations of equality and exclusion constraints.
 .. 86

Fig. 4.6. Combining ORM fact types. .. 89
Fig. 4.7. Combining value constraints. .. 90
Fig. 4.8. An example of a mandatory constraint. ... 91
Fig. 4.9. An example of a disjunctive mandatory constraint. .. 91
Fig. 4.10. An example of combining disjunctive mandatory constraints. 92
Fig. 4.11. Example of uniqueness constraints. ... 93
Fig. 4.12. Example of a frequency constraint. ... 93
Fig. 4.13. An example of combining uniqueness and frequency constraints. 94
Fig. 4.14. An example of combining inter-predicate uniqueness constraints. 95
Fig. 4.15. Examples of set-comparison constraints. .. 96
Fig. 4.16. Converting multiple exclusions into pairs of exclusions. 97

List of Figures

 XVII
-D

Fig. 4.17. Combining subset (or equality) with exclusion. .. 97
Fig. 4.18. Combining subset and equality constraints. .. 98
Fig. 4.19. Examples of subtype constraints: (a) total, (b) exclusive. 98
Fig. 4.20. Combining subtype constraints. .. 99
Fig. 4.21. Examples of ring constraints. .. 100
Fig. 4.22. Relationships between ring constraints [H01]. .. 101
Fig. 4.23. Subtype without a top common supertype. .. 103
Fig. 4.24. Subtype with exclusive supertypes. ... 104
Fig. 4.25. Unsatisfiable schemes because of the mandatory and exclusion conflicts. ... 106
Fig. 4.26. Contradiction between value and frequency constraints. 108
Fig. 4.27. Contradiction between value and exclusion constraints. 109
Fig. 4.28. A non fact type populatable schema. ... 110
Fig. 4.29. Main set-comparison implications [H01]. ... 110
Fig. 5.1. An empty instance of the ORMSchema, as an example of ORM-ML document.

 .. 122
Fig. 5.2. An example of an ORMMeta node, using Dublin Core metadata elements. ... 123
Fig. 5.3. An example of an ORMMeta Node, using DogmaModeler metadata elements.

 .. 124
Fig. 5.4. ORM-ML representation of an Object Type. .. 125
Fig. 5.5. ORM-ML representation of subtypes. ... 125
Fig. 5.6. A simple binary predicate and its representation in ORM-ML. 126
Fig. 5.7. ORM-ML representation of nested fact types (Objectified predicates). 127
Fig. 5.8. ORM-ML representation of Uniqueness and Mandatory constraints. 128
Fig. 5.9. ORM-ML representation of the Subset constraint. .. 129
Fig. 5.10. ORM-ML representation of the Equality constraint. 129
Fig. 5.11. ORM-ML representation of the Exclusion constraint. 129
Fig. 5.12. ORM-ML representation of the Exclusive and Totality constraint. 129
Fig. 5.13. ORM-ML representation of the value constraint. .. 130
Fig. 5.14. ORM-ML representation of the Frequency constraint. 130
Fig. 5.15. ORM-ML representation of the Ring constraints. ... 131
Fig. 6.1. A general screenshot of DogmaModeler. .. 136
Fig. 6.2. Context modeling window. ... 138
Fig. 6.3. Concept modeling window. ... 140
Fig. 6.4. Incorporating existing lexical resources in gloss modeling. 141
Fig. 6.5. Lexon-modeling window. .. 142
Fig. 6.6. Lexon graphical notation. .. 143

List of Figures

 XVIII
-D

Fig. 6.7. Lexon browsing. .. 144
Fig. 6.8. Modeling application axiomatizations. .. 146
Fig. 6.9. Mapping to ORM Subtype relationship. .. 147
Fig. 6.10. The ORM-ML panel window. ... 148
Fig. 6.11. The Pseudo NL panel window. .. 149
Fig. 6.12. Verbalization template for the ORM Mandatory constraint. 150
Fig. 6.13. Example of ORM mandatory constraint. ... 150
Fig. 6.14. Verbalization template for the ORM Exclusive constraint. 151
Fig. 6.15. Example of an ORM Exclusive constraint. ... 151
Fig. 6.16. Verbalization template for the ORM Subset constraint. 152
Fig. 6.17. Example of ORM Subset constraint. ... 152
Fig. 6.18. DogmaModeler’s support of Logical validations. ... 153
Fig. 6.19. DogmaModeler’s support of ontological validations. 154
Fig. 6.20. DogmaModeler’s support of syntax and lexical validations. 155
Fig. 6.21. DogmaModeler’s a meta-model of the axiomatization library. 157
Fig. 6.22. DogmaModeler’s support of axiomatization libraries. 158
Fig. 6.23. DogmaModeler’s support of axiomatization libraries. 159
Fig. 6.24. An example of the ORM-ML representation of a modular axiomatization,

using URIs. ... 160
Fig. 6.25. An example of an ORM-ML representation of a modular axiomatization,

where the content of a module is included as a sub-commitment. 161
Fig. 6.26. The step of generating an ontology-based web form. 163
Fig. 6.27. the “Xform Tree” window. .. 163
Fig. 6.28. The resultant web form of e-Payment axiomatization. 164
Fig. 7.1. The “Complaint Problems” application axiomatization module. 177
Fig. 7.2. The “Complaint Resolutions” application axiomatization module. 179
Fig. 7.3. The “Contract” axiomatization module. .. 180
Fig. 7.4. The “Complaint” application axiomatization module. 181
Fig. 7.5. The “Complainant” application axiomatization module.................................. 181
Fig. 7.6. The “Recipient” application axiomatization module. 182
Fig. 7.7. The “Address” application axiomatization module. .. 183
Fig. 7.8. An example of multilingual lexicalization of the CContology. 189
Fig. A.1. A tree view of the elements in the ORM-ML XML Schema. 212
Fig. A.2. ORM schema diagram example .. 222
Fig. B.1. ORM-Diagram, English. ... 241
Fig. B.2. ORM-Diagram, Dutch. ... 247

List of Figures

 XIX
-D

Fig. B.3. ORM-Diagram, Arabic. .. 255
Fig. B.4. ORM-Diagram, Russian. .. 262

List of Tables

Table 2.1. Ontology Engineering Requirements. .. 33
Table 4.1. All possible combatable combinations or ring constraints. 102

List of Figures

 XX
-D

Chapter 1: Introduction and Overview

 1
-D

Chapter 1

Introduction and Overview

“The process of building or engineering ontologies for
use in information systems remains an arcane art form,
which must become a rigorous engineering discipline.”

- (Guarino et al., [GW02])

The central goal of this thesis is to develop methodological principles for
ontology engineering. We briefly outline the scope and motivation of the
thesis in section 1.1. In section 1.2, we summarize the main goals and
contributions of the thesis and in section 1.3, we give an overview of the
thesis outline.

1.1 Scope and motivation
The Internet and open connectivity environments create a strong demand
for the sharing of data semantics. Emerging ontologies are increasingly
becoming essential for computer science applications. Organizations are
beginning to view them as useful machine-processable semantics for
many application areas. Some examples of such applications are:

Chapter 1: Introduction and Overview

 2
-D

x e-commerce content standards [GP03][BCW97][CG01],

x bioinformatics [Gene00] [BBB+98] [KRS+02],

x geographical information systems [F97][FE99][U01][RSV98],

x regulatory and legal information systems [BVW97][GP01][JS03],

x digital libraries [SMD00][W98] [BDMW95],

x e-learning [SKC02][AKS04][VKMND04],

x agent technology [FLS96][TB01][K03],

x database design [G02] and integration [W95][WSW99],

x software engineering [DW00][WF99][M98],

x natural language processing [K96][CC03][BCW02],

x information access and retrieval [GMV99][ACFOH03][AR00],

x the Semantic Web [BF99][M04][GAC+04],

x Web services [BLA+05][NM02],

x etc.

An ontology in general, is a shared understanding (i.e. semantics) of a
certain domain, axiomatized and represented formally -as logical theory-
in a computer resource. By sharing an ontology, autonomous and
distributed applications can meaningfully communicate to exchange data
and make transactions interoperate independently of their internal
technologies. In this way, heterogeneous and distributed information
resources can be integrated and searched through mediators [TSC01]
[SOV+02].

In recent years, research on ontologies has turned into an interdisciplinary
subject. It combines elements of Philosophy (especially what is now
called Analytic Philosophy [S03a]), Linguistics (mainly lexical semantics
[KTT03]), Logic (in particular, first-order logic and its derivatives, e.g.

Chapter 1: Introduction and Overview

 3
-D

description logic [BCMNP03]), and Computer Science. Within computer
science, the research on ontologies emerged “mainly” within two
subcommunities: artificial intelligence (among scientists largely
committed to building shared knowledge bases) and database (among
scientists and members of industry who are largely committed to building
conceptual data schemes, also called semantic data models [V82]).

Unlike a conceptual data schema or a “classical” knowledge base that
captures semantics for a given enterprise application, the main and
fundamental advantage of an ontology is that it captures domain
knowledge highly independently of any particular application or task
[JDM03]. A consensus on ontological content is the main requirement in
ontology modeling, and this is what mainly distinguishes it from
conceptual data modeling. Neither an ontology nor its development
process is a single person enterprise [KN03].

1.1.1 Foundational challenges in ontology engineering

In this section, we briefly present critical challenges that face the endeavor
of the ontology development life cycle. We consider tackling these
challenges as the goal of our research.

x Ontology reusability. Reusability implies the maximization of an
ontology’s use across different kinds of applications or tasks, i.e.
among different purposes [JDM03][JM02a]. The main benefits of
ontology reuse are not only savings in time, cost, and efforts, but
also an increase in “reliability” [HV93]. A highly reusable
ontology gives the indication that it is generally accepted (it fosters
trust and consensus). Considering the reusability during the
development phase will assist in ensuring that the resulting
ontology to be specific for and dependent on certain purposes. The
more reusable an ontology is, the more it will be independent from
specific needs. This is an essential goal for ontology development
methodologies to guide ontology builders towards more reusability

Chapter 1: Introduction and Overview

 4
-D

[G97]. The main challenges that hamper ontology reusability are
1) the influence of a specific purpose (what it is made for) on the
ontology developer and 2) the difficulty of identifying and
isolating the reusable components (i.e. allowing the reuse of the
general-purpose parts of an ontology).

x Ontology application/task-independence. Ontologies are supposed
to capture semantics at the domain level and be independent of
application requirements [G97][CJB99][M99a][JDM03]. One
problem that arises when building an ontology is that there will
always be intended or expected application requirements “at hand”
(i.e. usability perspectives) which influence the independence of
ontology axioms. Different usability perspectives (i.e. different
purposes of what an ontology is made for and how it will be used)
lead to different or even to conflicting axiomatizations, although
these axiomatizations might intuitively be in agreement at the
domain level. The more an axiomatization is independent of
application perspectives, the less usable it will be. In contrast, the
closer an axiomatization is to application perspectives, the less
reusable it will be. From a methodological viewpoint, notice that if
a methodology emphasizes usability perspectives, or evaluates
ontologies based only on how they fulfill specific application
requirements, the resultant ontology will be similar to a conceptual
data schema (or a classical knowledge base) containing specific -
and thus less reusable - knowledge. Likewise, if a methodology
emphasizes only on the independence of the knowledge and
ignores application perspectives, the resultant ontology will be less
usable.

x Ontology evolution. The continuous growth and intensive
maintenance of emerging ontologies currently (and for the
immediately foreseeable future) are serious challenges in the
ontology development life cycle [Hj01] [KKOF02] [MMS03].

Chapter 1: Introduction and Overview

 5
-D

Ontologies evolve over time, due to conceptual changes,
epistemological changes, scope extensions, mistakes and quality
improvements, etc. Such changes have implication for the
applications that have committed to a changing ontology. More
significantly however, the evolution processes itself becomes more
complex in the case of large-scale ontologies. Ontologies are being
developed, reviewed, used, and maintained by different people and
experts over different times and locations. Thus, we believe that
this challenge should not only be tackled through technical or ad
hoc solutions, but through an effective foundation of ontology
engineering that enables the smooth evolution of ontologies.

Consequently, such challenges imply the importance of a solid and a
principled methodology for ontology engineering that provides guidance
for developing “true” ontologies with minimum cost, time and effort.

1.1.2 Types of methodologies

According to the guiding scenario that a methodology provides, we
distinguish between a stepwise methodology, a modeling methodology,
and an engineering methodology1.

A stepwise methodology divides the ontology development process into a
set of phases, and provides a series of steps and guidelines to be followed
in each phase. For example, the Methontology [FGJ97] methodology
divides the ontology development life cycle into: specification,
conceptualization, formalization, implementation, and maintenance. The
On-To-Knowledge [S03b] methodology divides it into: feasibility study,
kickoff, refinement, evaluation, and applications & evolution. As an
analogy, the development process of a software program according to the
classical “Waterfall” methodology [R70] is divided into: specification,
requirement analysis, design, implementation, and testing.

1 The goal of this distinction is to motivate and understand the general scope of the
thesis.

Chapter 1: Introduction and Overview

 6
-D

A modeling methodology is concerned with the formal analysis of a given
domain: what kinds of modeling decision need to be made and how these
decisions can be evaluated. Such domain analysis (the modeling process)
can be performed typically by means of a set of well-defined modeling
constructs and primitives, e.g. the notions of concept/class, n-ary
relations/roles, functions, properties/attributes, constraint/rule types, etc.
As an analogy, the Object Role Modeling ORM [H01], and the Enhanced
Entity Relationship EER [EN99] are modeling methodologies for building
database schemes. They provide database designers with a set of
primitives by which they can be guided to build normalized database
schemes. In ORM, for instance, the world can be analyzed and modeled as
objects-types playing roles. In addition, ORM supports a rich set of
constraint types such as mandatory, uniqueness, subsumption, equality,
exclusive, subset, ring, etc., which allow for the focus on the integrity of
data models2. For ontologies, the OntoClean [GW02] methodology
provides a set of metaproperties, such as essence, rigidity, identity, unity,
subsumption, instantiation, etc. These metaproperties (as a theoretical tool
or methodology) guide ontology builders to focus on and characterize the
intended meaning of the properties, classes, and relations that make up an
ontology3.

An engineering methodology is concerned with the design, representation,
architecture, and management aspects of ontologies. The questions it
seeks to answer include how to enable ontology reusability, usability,
maintainability, distributed development, application-independence,
scalability, etc. Engineering methodologies are not concerned directly
with modeling decisions or phases. By way of analogy, in the software

2 It is perhaps worthwhile to note that ORM derives from NIAM (Natural Language
Information Analysis Method), which was explicitly designed to be a stepwise
methodology arriving at "semantics" of a business application's data based on natural
language communication.
3 The OntoClean methodology is mainly concerned with the taxonomic structure of an
ontology.

Chapter 1: Introduction and Overview

 7
-D

development life cycle, the object-oriented paradigm is the basis for an
engineering methodology. This paradigm provides guidance for its
adopters (software developers) by encapsulating the complexity of each
software module, thus making their products (software programs) more
reusable, maintainable, and easy to build as it.

Notice that stepwise methodologies usually are invented based on “best
practice”, and their guidance cannot easily be formally captured; cf. the
pattern approach in software development [A97b]. In comparison, as both
modeling and engineering methodologies are usually based on well-
articulated principles, they can be called principled methodologies. For
any kind of methodology, as suggested by Meersman in [JM02a], this
should imply teachability and repeatability. Indeed, a good methodology
must be easy to understand and based on broadly accepted principles.

This thesis is concerned with developing two methodological principles
for ontology engineering, with the aim of tackling the ontology
development challenges4 recapped above. Our two fundamental
methodological principles are “Ontology Double Articulation” and
“Ontology Modularization”.

Although we present a research prototype of an ontology development
tool as part of this study (called DogmaModeler, see chapter 6), it is not a
goal of our methodological principles to provide technical or ad hoc
solutions. We attempt to be general enough in describing our
methodological principles, so that they can be applied across domains and
application scenarios.

For illustration purposes, we have also developed a conceptual markup
language (called ORM-ML, see chapter 5) which allows for the marking
up and serialization of ORM conceptual diagrams. However, it is not our

4 Notice that the ontology development challenges presented in this thesis mostly are
engineering challenges. See (e.g. [GW00][U96]) to know about some development
challenges that concern the modeling and stepwise methodologies.

Chapter 1: Introduction and Overview

 8
-D

goal to develop an ontology language, or reasoning primitives and
services.

Further discussions on the motivation and the engineering challenges of
ontologies will be presented in chapter 2. The next section summarizes the
main goals and contributions of the thesis.

1.2 Summary of the main goals and contributions
The central goal of this dissertation is to develop methodological
principles for ontology engineering. The main concerns that distinguish
our approach are:

1. Maximization of both reusability and usability of ontologies.

2. Easing of the development and the smoothening of the evolution
of ontologies.

Because of the nature of the subject, the contributions of this dissertation
will cover a fairly broad spectrum of aspects related to ontology
engineering. Keeping in mind the central goals stated above, our
contributions can be summarized as:

x Problem specification. Several challenges in ontology engineering
are discussed and clarified. These include, the influence of
usability perspectives in ontology engineering, domain
axiomatization verses application axiomatization, the importance
of reusability, reusability vs. usability of ontologies, ontology
evolution and the importance of linguistic terms in ontology
engineering, etc.

x Methodological principles. We present two methodological
principles for ontology engineering: 1) the “ontology double
articulation” principle that suggests that ontologies be articulated
in two parts: domain axiomatizations and application
axiomatizations; 2) the “ontology modularization” principle

Chapter 1: Introduction and Overview

 9
-D

suggests that application axiomatizations be decomposed into a set
of smaller, related modules. The main idea of the double
articulation principle is to prevent ontology builders from
encoding and mixing their application and usability (specific)
axioms with domain axioms. While domain axiomatizations are
mainly concerned with capturing the “intended meaning” of
domain vocabularies, application axiomatizations are mainly
concerned with the “usability” of these vocabularies. As a result,
we increase both reusability and usability. To represent an
ontology according to this principle, we first introduce the notion
of ontology base, for capturing domain axiomatizations. Second,
we introduce the notion of ontological commitments to capture
application axiomatization, by which particular applications
commit to a domain axiomatization. The main idea of the
modularization principle is to have smaller modules of
axiomatizations, which are easier to develop, reuse, replace, and/or
maintain, etc.

Remark: Our research on ontology double articulation is based and
builds on the research that was originally conducted by Meersman
in [M99a][M99b]. In this thesis, we present fundamental
modifications, extensions, and implementation to this idea. For
example, we provide precise definitions of the double articulation,
context, concept, and introduce the notions of domain
axiomatization, gloss, upper-forms, application ontological
commitments, etc.

This study is a contribution to the DOGMA5 research project,
which is a research framework for modeling, engineering, and
deploying ontologies.

5 DOGMA stands for “Development of Ontology Guided Methodology Approach”.

Chapter 1: Introduction and Overview

 10
-D

x Implementation: ORM-ML, DogmaModeler, and the CCFORM
case study.

ORM-ML: we have defined a conceptual markup language, called
ORM-ML, which allows representing ORM conceptual diagrams
in an open and textual syntax. By doing this, we enable the reusing
of conceptual data modeling methods and tools -mainly ORM- for
modeling, representing, visualizing, and verbalizing application
axiomatizations [JDM03].

DogmaModeler: Based on the ideas presented in this thesis, we
have developed an ontology engineering tool, called
DogmaModeler. It supports among other things: (1) the
development, browsing, and management of domain and
application axiomatizations, and axiomatization libraries; (2) the
modeling of application axiomatizations using the ORM graphical
notation, and the automatic generation of the corresponding ORM-
ML; (3) the verbalization of application axiomatizations into
pseudo natural language (supporting flexible verbalization
templates for English, Dutch, Arabic, and Russian, for example)
that allows non-experts to check, validate, or build
axiomatizations; (4) the automatic composition of axiomatization
modules, through a well-defined composition operator; (5) the
validation of the syntax and semantics of application
axiomatizations; (6) an illustration of the process of incorporating
lexical resources in ontology modeling; (7) a simple approach of
multilingual lexicalization of ontologies; (8) the automatic
mapping of ORM schemes into X-Forms and HTML-Forms; etc.

CCFORM case study: The methodological principles and their
support tool have been successfully applied in a number of
national and European projects such as CCFORM, FFPOIROT,
SCOP, etc. To end, we report our experience and main

Chapter 1: Introduction and Overview

 11
-D

achievements in applying our methodological principles and tool
in the CCFORM project, for developing a multilingual Customer
Complaint ontology (CContology) [JVM03].

1.3 Thesis outline and structural overview
The thesis is organized in four main parts. We specify the problem,
propose a solution, and show an implementation of this solution before
concluding appropriately.

Part I Problem Specification

Chapter 2 (Problem specification). In this chapter we present an
extended motivation for the goals of this thesis. We discuss and
specify several challenges in ontology engineering. We clarify and
define some terminology used in this thesis.

Part II: Methodological Principles

Chapter 3 (Ontology Double Articulation). In this chapter, we discuss
the “Ontology Double Articulation” methodological principle. We
examine the general properties of domain axiomatization verses
application axiomatization. We introduce the notion of an ontology
base, the notion of an ontological commitment; and show how
particular applications commit to the ontology base through
ontological commitment(s). The importance of lexical resources in
ontology engineering are discussed and incorporated.

Chapter 4 (Ontology Modularization). This chapter introduces the
“Ontology Modularization” methodological principle. We first present
its advantages (e.g. reusability, maintainability, distributed
development, etc.). Then we introduce and discuss a set of criterion,
which are necessary for achieving an effective modularization. We
define a composition operator for composing axiomatization modules.

Chapter 1: Introduction and Overview

 12
-D

At the end of this chapter, we present an algorithm for composing
ORM schemes (seen as application axiomatization modules).

Part III: Implementation Aspects and Case Study

Chapter 5 (ORM Markup Language). In this chapter we define the
ORM Markup Language. The motivation for choosing ORM for
modeling and representing application axiomatizations is explained.

Chapter 6 (DogmaModeler Ontology Engineering Tool). We present
the software that we have built to demonstrate the implementation of
the two methodological principles. The functionalities supported in
DogmaModeler are also discussed.

Chapter 7 (CCFORM Case Study). In this chapter, we present a case
study of the development of a customer complaint ontology using our
methodological principals and the DogmaModeler tool. This ontology
itself and the lessons we learnt in applying our methodological
principles and tool will be presented and discussed.

Part IV: Conclusions

Chapter 8 (Conclusions and Future Work). This chapter summarizes
the main ideas of this thesis, and suggests directions for future work.

Appendices: Appendix A lists the XML Schema of the ORM markup
language. Appendix B lists the DogmaModeler ontology Metadata, An
XML-Schema of the ORM-ML graphical style sheets, and 5 ORM
Verbalization Templates. Appendix C lists the Customer Complaint
ontology (CCglossary, CC lexons, and seven application axiomatization
modules). Finally, appendix D presents a glossary of the terminology that
we often use in this thesis.

 13
-D

Part I

Problem specification:
Fundamental challenges in

ontology engineering

“Semantics is a grand challenge for the current
generation of computer technology”

-(David Embley, [E05])

 14
-D

Chapter 2: Foundational challenges in Ontology Engineering

 15
-D

Chapter 2

Fundamental Challenges in
Ontology Engineering

“The most important task for the new information systems ontology
pertains to what we might call the Database Tower of Babel problem.

Different groups of data- and knowledge-base system designers have for
historical and cultural and linguistic reasons their own idiosyncratic terms

and concepts by means of which they build frameworks for information
representation. Different databases may use identical labels but with

different meanings; alternatively the same meaning may be expressed via
different names. As ever more diverse groups are involved in sharing and

translating ever more diverse varieties of information, the problems
standing in the way of putting such information together within a larger

system increase geometrically.”

 -(Barry Smith, [S02])

This chapter presents an extended analysis of the goals of this thesis and
the motivation driving this endeavor. We investigate and specify several
challenges in ontology engineering. Section 2.1 discusses the significance,
and challenges of ontology reusability. In section 2.2, we introduce and
discuss the most challenging issue in ontology engineering: the
application-independence of ontologies. In section 2.3, we clarify some
ontology evolution challenges. To end, section 2.4 draws some
conclusions and derives the main ontology engineering requirements.

Chapter 2: Foundational challenges in Ontology Engineering

 16
-D

2.1 Ontology reusability
Although the role of ontology in information systems is well appreciated
in the literature, little attention has been given to research on ontology
reusability. Approaches to ontology reusability remain ad hoc. The aim of
this section is to discuss what ontology reusability means, the key benefits
of reuse, and the main challenges that hamper ontology reusability.

Reusability is one of the most significant aspects in engineering and
manufacturing in general. For example, realizing the value of this,
software engineers have developed libraries of software routines that are
common to different programs to save themselves from having to recode
the same routines time and again. In the problem-solving research6, the
importance and techniques of knowledge reusability have been researched
to improve the reusability of “problem solving methods” [R00]. Several
researchers (e.g. Chandrasekaran and Johnson [CJ93], Clancey [C92], or
Swartout and Moore [SM93]) proposed the idea of structuring knowledge
into different levels of abstraction. Steels in [S93] proposed a
componential framework that decomposes knowledge into reusable
components. Many believed that building large knowledge bases would
only be possible if efforts are combined (Neches et al. in [PFP+92]). A
unified framework to enable and maximize knowledge reusability is
advisable.

Supporting and enabling knowledge reusability is an important goal of
building ontologies ([UG96] [GPB99] [G95]). Notice that ontology
usability is subtly different from ontology reusability. Increasing the
reusability of knowledge implies the maximization of its usage among
several kinds of tasks. Increasing ontology usability could just mean
maximizing the number of different applications using an ontology for the

6 This research area was -active in the 80s- focusing on the development of the so-called
the next generation of expert systems.

Chapter 2: Foundational challenges in Ontology Engineering

 17
-D

same kind of task7. The intended use of the term ‘task’, in this thesis, is
related and limited to the inferential knowledge that is required to describe
a task to be performed. It does not describe dynamic or temporal aspects8.
An application may perform one or more kinds of tasks. In this thesis, the
term task is often interchanged with the ‘application’ that performs one
kind of task. We sometimes use the term generic task to refer to a highly
reusable task.

2.1.1 Significance of ontology reusability

The main benefits of ontology reuse are:

x Savings in time, cost, and efforts. Instead of constructing an
ontology from scratch and repeating the efforts that have already
been spent elsewhere to capture and creating the same knowledge,
one may reuse an existing ontology or some parts of it9. This
implies the construction of sharable ontology libraries, such that
one can easily search, identify and reuse ontology modules that fit
his/her purposes.

x Increasing reliability [HV93]. A reusable ontology gives
indication that it is approved and generally accepted (i.e. trust and
consensus)10.

7 For example, compare a Bibliography ontology used by 1000 applications performing
the same kind task (e.g. bookselling) with another ontology (of the same subject-matter)
used by 100 applications performing different kinds of tasks (e.g. bookselling,
borrowing, publishing, etc.). While the former is highly used, the latter is highly reused.
8 For example, “online bookselling” is a task that can be described by a static knowledge
elements or propositions such as: IsA(Book, Product), PublishedBy(Book, Publisher),
ValuatedBy(Book, Price), RequestOf(Order, Book), Issues(Customer, Order),
SetteledVia(Order, Payment-method), etc.
9 For example, suppose one wishes to build an ontology of Online Bookstores, he/she
may reuse several parts from other existing ontologies of e.g. Customers, Order,
Payment-methods, Shipping, etc. which might be developed for and deployed in other
application scenarios.
10 For example, suppose an ontology of payment methods is used in 1000 application
scenarios and another ontology of the same subject matter is used only in 3 scenarios.

Chapter 2: Foundational challenges in Ontology Engineering

 18
-D

x They constitute an important quality factor. Taking reusability into
account during the development phase helps avoid that the
resulting ontology to be specific for and dependent on certain
purposes (i.e. “requirements at hand”). Pursuing ontology
reusability, in the early development phases, will help prevent the
ontology from reflecting a particular data model or from being
suitable only for one application, etc.

2.1.2 Reusability challenges

In the following, we discuss the fundamental challenges that hamper
ontology reusability.

The main concern that restricts ontology reuse is the dependency on the
purpose that an ontology is made for. Although ontologies are intended to
capture knowledge at the domain level11, the axiomatization of knowledge
can be noticeably influenced by the purpose that this knowledge is made
for and how it will be used. In other words, when axiomatizing a domain,
several kinds of usability perspectives are usually taken into account (e.g.
granularity, scope and relevancy, reasoning/computational scenario, etc.).
Thus, when using knowledge for a different purpose (i.e. reusing), the
usability perspectives for both purposes may differ or clash. Ontology
reusability will be restricted depending on how different the usability
perspectives are. We shall investigate this issue in section 2.2 since it is
related to what we call ontology application-independence, or reusability
verses usability.

Another important reusability concern is the difficulty of identifying and
isolating the reusable components; i.e. allowing the general-purpose parts
of an ontology to be reused instead of reusing the whole ontology. An
ontology - in the common practice of ontology engineering - is being

The repeated use of the former ontology gives indication that it is widely accepted and
there is a consensus about it, and it has been adequately tested and improved.
11 See Appendix D for the definition of “domain level”.

Chapter 2: Foundational challenges in Ontology Engineering

 19
-D

represented as one module. Internal couplings in knowledge structure (e.g.
relationships between concepts, concept definitions, etc.) make it difficult
for the general-purpose parts to be isolated and reused. For example,
suppose one has a previously constructed a bookstore ontology that
describes books, orders, shipping methods, payment methods, etc. It
should be easy when building a new car-rental ontology to reuse for
example, the payment aspects, since both Bookstore and Car-Rental
ontologies share parts of a same axiomatization about payment methods.
Ontology representation frameworks and languages should support
modeling primitives that allow the representation of ontologies in a
modular manner so that one can easily (de)compose modules.

Consequently, we believe that the capability of ontology reuse strongly
depends on the design and engineering of the ontology representation
model.

2.1.3 Conclusion

In this section we have defined what ontology reusability means,
discussed the significance of ontology reusability as a fundamental
requirement in ontology engineering; and clarified the main foundational
challenges that restrict ontology reusability.

Based on the reusability challenges stated above, we derive the following
ontology engineering requirements:

x Ontologies should be engineered in a way that allows the isolation
and identification of the reusable parts of an ontology.

x The influence of usability perspectives on ontology axioms should
not be emphasized during the ontology development phases12.

In the next section, we proceed to discuss another related ontology
engineering challenge.

12 This requirement will be revisited and extended in the next section, we shall discuss
the influence of usability perspectives in more detail.

Chapter 2: Foundational challenges in Ontology Engineering

 20
-D

2.2 Ontology application-independence
In this section, we discuss another fundamental ontology engineering
challenge. We examine to what extent one can build an ontology
independently of application requirements. Then, we discuss ontology
reusability verses ontology usability before presenting the work done by
other researchers in relation to this challenge. To end, we draw some
important requirements for ontology engineering.

Ontologies are supposed to capture knowledge at the domain level
independently of application requirements [G97] [GB99] [CJB99]. This is
in fact, the main and most fundamental asset of an ontology. The greater
the extent to which an ontology is independent of application
requirements, the greater its reusability, and hence, the ease at which a
consensus can be reached about it. Guarino argued in [G97] that:

“Reusability across multiple tasks or methods should be
systematically pursued even when modeling knowledge related to a
single task or method: the more this reusability is pursued, the closer
we get to the intrinsic, task-independent aspects of a given piece of
reality (at least, in the commonsense perception of a human agent).”

Ontology application-independence is not limited to the independence of
implementation requirements - it should also be considered at the
conceptual level. For example, notice that application-independence is the
main disparity between an ontology and a conceptual data schema (e.g.
EER, ORM, UML, etc.) although both capture knowledge at the
conceptual level [JDM03]. Unlike ontologies, when building a conceptual
data schema, the modeling decisions depend on the specific needs and
tasks that are planned to be performed within a certain enterprise, i.e. for
“in-house” usage.

The problem is that when building an ontology, there will always be
intended or expected usability requirements -“at hand”- which influence
the independency level of ontology axioms. In the problem-solving

Chapter 2: Foundational challenges in Ontology Engineering

 21
-D

research community, this is called the interaction problem. Bylander and
Chandrasekaran argue that:

“Representing knowledge for the purpose of solving some
problem is strongly affected by the nature of the problem and
the inference strategy to be applied to the problem.” [BC88]

The main challenge of usability influence is that different usability
perspectives (i.e. different purposes of what an ontology is made for and
how it will be used) lead to different - and sometimes conflicting -
axiomatizations although these axiomatizations might agree at the domain
level.

2.2.1 Example

The following example illustrates the influence of some usability
perspectives when modeling Bibliography ontologies.

We present two ontologies within the same Bibliography domain:
ontology A in fig. 2.1 and ontology B in Fig. 2.2. Suppose that both
ontologies are built separately; ontology A is built and used within a
community of bookstores, and ontology B is built and used within a
community of libraries13.

We will show that although both ontologies intuitively agree at the
domain level, they differ formally because of the differences in their
communities’ usability perspectives. To this end, we argue that building
ontologies under the strong influence of usability perspectives leads to
more application-dependent, and thus less reusable ontologies.

13 Notice that the goal of this example is neither to discuss the Bibliography domain
itself, nor to present adequate an ontology - we use it only for illustration purposes.

Chapter 2: Foundational challenges in Ontology Engineering

 22
-D

Fig. 2.1. Ontology A.

Fig. 2.2. Ontology B.

In the following, we examine the influence of usability perspectives on the
modeling decisions of both conceptual relations14 and ontology rules,15
respectively.

On modeling conceptual relations. The concept ‘Author’ in ontology B is
attributed with the ‘First Name’ and the ‘Last Name’ concepts. Such details
(i.e. granularity) are not relevant to bookstore applications; they are not
specified in ontology A. Similarly, unlike ontology A, the pricing
relations {Valuated-By(Book, Price), Amounted-To(Price, Value), Measured-

In(Price, Currency)} are not relevant for library applications, so they are not
specified in ontology B.

From such differences, one can see that deciding the granularity level and
the scope boundaries depend on the relevance to the intended (or
expected) usability. Although such differences do not necessarily

14 See appendix D for the definition of “conceptual relation”.
15 See appendix D for the definition of “ontology rule”.

Chapter 2: Foundational challenges in Ontology Engineering

 23
-D

constitute a disagreement between both axiomatizations, they hamper the
reusability of both ontologies. In order to reuse such ontologies, the
reusing applications need to make some adaptations, viz. introducing the
incomplete knowledge and dismissing the “useless” knowledge that
normally distracts and scales down the reasoning/computational
processes.

On modeling ontology rules. Notice that both ontologies in the example
above do not agree on the notion of what is a “Book”. Although both
ontologies agree that the ISBN is a unique property for the concept book
(see the uniqueness rules16), they disagree whether this property is
mandatory for each instance of a book. Unlike ontology B, ontology A
axiomatizes that each instance of a book must have an ISBN value (see
the mandatory rule17). This rule implies for example that “PhD Theses” or
“Manuals”, etc. would not be considered instances of books in ontology A
because they do not have an ISBN, while they would be under ontology
B.

One can see from this example that modeling the ISBN as mandatory
property for all instances of the concept book is naturally affected by
bookstores’ business perspective. Obviously, bookstores communicate
only the books “that can be sold” and thus “commercially” should have
ISBN, rather than perusing the notion of book at the domain level.
Nevertheless, at the domain level, both bookstore and library applications
intuitively share the same concept of what is really a book. For example,
suppose that one assigns an ISBN for an instance of a “PhD Thesis”. This
instance can then be considered as a book for bookstores. If however, the
ISBN is removed for an instance of a book, then this instance will no

16 The uniqueness rule in ORM is equivalent to 0:1 cardinality restriction. (notation:
‘ ’), it can be verbalized as “each book must have at most one ISBN”.
17 The mandatory rule in ORM is equivalent to 1-m cardinality restriction. (notation: ‘ ’),
it can be verbalized as “each book must have at least one ISBN”.

Chapter 2: Foundational challenges in Ontology Engineering

 24
-D

longer be a book, even though it still refers to the same real life object and
is still being referred to and used as a book.

Accordingly, as ontology rules are supposed to formally specify/constrain
the permitted models18 that can necessarily hold for a given domain [F02],
determining such rules, in practice is dominated by “what is permitted and
what is not” for the intended or expected usability.

Furthermore, besides the modeling decisions of ontology rules, the
determination of the number and the type of these rules (the reasoning
scenario) are also influenced by usability perspectives. For example, a
light-weight axiomatization (e.g. with a minimum number of rules or
formalities) might be sufficient if the ontology is to be accessed and used
by people (i.e. not computers). Depending on the application scenario,
other types of ontology rules (i.e. modeling primitives/constructs) might
be preferred, over the ORM set of rules (which are easier to reason for
database and XML based applications).

At this point, we conclude that even application-types might intuitively
agree on the same semantics at the domain level, but the usability
influence on axiomatizing this semantics may lead to different (or even
conflicting) axiomatizations. An axiomatization might be more relevant
for some applications than others, due to the difference of their usability
perspectives. This issue presents an important challenge to the nature and
the foundation of ontology engineering.

2.2.2 Related work

Guarino and his co-authors have argued (in e.g. [G98a][G97]) that in
order to capture knowledge at the domain level, the notion of what is an
ontology should be more precisely defined. Gruber’s commonly used
definition, [G95], of an ontology is of “an explicit specification of a
conceptualization”, referring to an extensional ("Tarski-like") notion of a

18 Also called “ontology models” as in [G95].

Chapter 2: Foundational challenges in Ontology Engineering

 25
-D

conceptualization as found e.g. in [GN87]. Guarino and his collaborators
point out that this definition per se does not adequately fit the purposes of
an ontology. They argue, in our opinion correctly, that a conceptualization
should not be extensional because a conceptualization benefits from
invariance under changes that occur at the instance level and from
transitions between different “states of affairs”19 in a domain. They
propose a conceptualization as an intensional semantic structure i.e.
abstracting from the instance level, which encodes implicit rules
constraining the structure of a piece of reality20. Therefore, “an ontology
only indirectly accounts for a conceptualization”. In other words, an
ontology becomes a logical theory which possesses a conceptualization as
an explicit, partial model. Furthermore, they have proposed the OntoClean
methodology for evaluating ontological decisions [GW02]. The
methodology consists of a set of formal notions that are drawn from
Analytical Philosophy and called metaproperties. Such metaproperties
include rigidity, essence, identity, unity, and dependence. The idea of
these notions is to focus on the intrinsic properties of the concepts, which
are application-independent.

Following Guarino et al’s ontology definition and their associated
OntoClean methodology, one can see in the previous example that the two
axiomatizations should not be seen as different ontologies since they only
differ on their description of extensions i.e. states of affairs. Both
axiomatizations implicitly share the same intensional semantic structure or
conceptualization. Furthermore, the ISBN is an extrinsic property (i.e. not
intrinsic)21 since it is not rigid22 for all instances of the concept book.

19 See Appendix D for the definition of “state of affairs”.
20 See e.g. the definition of “extensional verses intensional semantics” in appendix D.
21 To understand the difference between intrinsic and extrinsic properties, the following
is a quotation taken from [GW00]: “An intrinsic property is typically something inherent
to an individual, not dependent on other individuals, such as having a heart or having a
fingerprint. Extrinsic properties are not inherent, and they have a relational nature, like
“being a friend of John”. Among these, there are some that are typically assigned by

Chapter 2: Foundational challenges in Ontology Engineering

 26
-D

Therefore, it cannot be used to specify the intended meaning of a book at
the domain level.

An important problem of the OntoClean methodology, in our opinion, is
its applicability. It relies on deep philosophical notions that (1) in practice
are not easy or intuitive to utilize - at least for “nonintellectual” domain
experts; and (2) it only focuses on the intrinsic properties of concepts and
such properties are often difficult to articulate. For example, how to
formally and explicitly articulate the identity criteria of a book (or person,
brain, table, conference, love, etc.). Guarino and Welty state in [WG01]:
“We may claim as part of our analysis that people are uniquely identified
by their brain, but this information would not appear in the final system
we are designing”. In short, it would seems that OntoClean can be applied
mainly by highly trained intellectuals for domain analysis and ontological
checks23.

2.2.3 Ontology usability is also important

There is another factor that should not be ignored, especially with regards
to the philosophically inspired research on ontologies (or the so-called
“philosophical ontology” as in [S03a]). In keeping with current views in
the field of information technology, ontologies are to be shared and used
collaboratively in software applications. This gives even more weight to
the importance of ontology usability.

2.2.4 Conclusion

The closer an axiomatization is to certain application perspectives, the
more usable it will be. In contrast, the more an axiomatization is
independent of application perspectives, the more reusable it will be. In

external agents or agencies, such as having a specific social security number, having a
specific customer i.d., even having a specific name.”
22 “A property is rigid if it is essential to all its possible instances; an instance of a rigid
property cannot stop being an instance of that property in a different world” [WG03].
23 See [GGO02] for a successful application of OntoClean on cleaning up
WordNet[M95].

Chapter 2: Foundational challenges in Ontology Engineering

 27
-D

other words, there is a tradeoff between ontology usability and ontology
reusability.

From a methodological viewpoint, if a methodology emphasizes usability
perspectives or evaluates ontologies based on how they fulfill specific
application requirements, the resulting ontology will be similar to a
conceptual data schema (or a classical knowledge base) containing
application specific and thus, less reusable knowledge. Likewise, if a
methodology emphasizes the independency of the knowledge, the
resulting ontology in general will be less usable, since it has no intended
use by ignoring application perspectives.

Based on the above, we propose the following ontology engineering
requirement:

x The influence of usability perspectives on ontology axioms should
be well articulated, pursuing both reusability and usability.

To fulfill this requirement, in Chapter 3 we will propose the ontology
double articulation principle. Concisely, an ontology is double-articulated
into domain axiomatization and its application axiomatizations. While a
domain axiomatization is concerned with capturing the intended meaning
of domain vocabularies (which is supposed to be reusable), application
axiomatizations are mainly concerned with the usability of these
vocabularies.

We are now ready to analyze the third ontology engineering challenge:
ontology evolution.

Chapter 2: Foundational challenges in Ontology Engineering

 28
-D

2.3 Ontology evolution
The continuous growth and intensive maintenance of ontologies are
serious concerns in the ontology development life cycle. Ontologies
evolve over time [KKOF02], due to conceptual changes, epistemological24
changes, scope extensions, mistake corrections and quality enhancements,
etc. Furthermore, ontologies evolve in a distributed environment through
interactions by different people over different locations [BHGSS03].

Current research on ontology evolution focuses mainly on treating the
implication of changes on the applications that are committing to a
“changed” ontology, more than dealing with the evolution process itself.
Change to an ontology has operational consequences for running
applications – for example, consider the implications of changes on a
database schema [VH91]. Various mechanisms have been proposed to
tackle the impact of changes by separating the changes into new versions
or layers, see e.g. [Hj01] [KKOF02] [MMS03].

Not only the implications of evolution, but also the evolution process
“itself” becomes more complex in case of large-scale and distributed
ontologies. In this thesis, we focus only on clarifying and tackling
foundational (i.e. not technical) challenges in ontology evaluation.

2.3.1 The complexity of change

Before modifying or extending an ontology, one needs to carefully
understand the intended meaning of all existing concepts and axioms. In
case of large-scale ontologies, this process becomes more complex
because (1) of the internal couplings among axioms and the large number
of them; (2) the large-scale ontologies are usually built by different people
and capture knowledge across domains and subjects.

24 See appendix D for the definition.

Chapter 2: Foundational challenges in Ontology Engineering

 29
-D

As ontology axioms only indirectly account for a conceptualization
[G98a], a large part of the intended meaning of the ontology concepts will
remain implicit between ontology developers. It will be difficult for
different ontology developers, especially those with different backgrounds
working in different time periods to know what was originally intended,
or what the modeling decisions and choices were. To a large extent, the
literal interpretations of the concepts labels (i.e. terms) will be considered
rather than what was originally intended, especially in case of a light-
weight ontology axiomatization.

Accordingly, in order to achieve efficient maintenance, critical
assumptions that are important because they make clear the factual
meaning of an ontology vocabulary should be rendered as part of the
ontology. Such an attachment - even if added informally - would facilitate
both users' and developers' commonsense perception of the subject
matter. It is important, not only for future maintenance but also advised
for the collaborative and distributed development of ontologies. To fulfill
this engineering requirement, we shall introduce the notion of gloss to
ontology engineering in chapter 3. A gloss is supposed to render
informally the factual knowledge that is critical to understanding a
concept, but that is unreasonable, irrelevant, or very difficult to formalize
and articulate explicitly.

2.3.2 Distributed evolution

Ontology development and maintenance is not a single-person effort.
Adequate ontologies are normally built, reviewed, and maintained by
several types of knowledge experts [SK03]. For example, our experience
in building a “Customer Complain Ontology”, reported in chapter 7,
shows that some parts of the ontology - specifically those that capture
knowledge about customer regulations - should be built and evaluated by
lawyers. The classification of complaint problems and resolutions should

Chapter 2: Foundational challenges in Ontology Engineering

 30
-D

be performed by market and ADR25 experts. The whole ontology needs to
be reviewed by CRM26 application experts and other such professionals.

Engineering such collaborations is a challenge, especially in the case of
large-scale and multi-domain ontologies. First, the development and
maintenance processes need to be divided and distributed among the
contributors according to their expertise; second, the contributions of the
experts need to be integrated and this is not an easy task.

Several software environments have been proposed to enable the
distributed development of ontologies, such as [SKKM03], [MMS03], and
[TTN97]. We believe that instead of (or complementary to) developing
such ad hoc tactics for tackling this issue, the ontology representation
model itself should be capable of distributed development and smooth
evolution27. As an analogy, compare the capability of distributing the
development of a program built in Pascal with a program built in JAVA
i.e. procedural verses object-oriented distributed software development.

2.3.3 Alternative axiomatizations

Alternative axiomatizations are different formalizations of the same
subject-matter. They reflect different usability perspectives. As we have
discussed in section 2.2, an axiomatization might be more relevant or
usable for one application than another. In many cases, the irrelevance
might only apply to certain portions and not the whole axiomatization. For
example, the creators of different applications may prefer to alter the
axiomatization of the notion of ‘address’ within an ontology depending on
how addresses are structured in their country of service.

The main advantages of allowing easy interchange of ontology parts (i.e.
replacing parts), in general, are:

25 ADR stands for Alternative Dispute Resolution.
26 CRM stands for Customer Relationship Management.
27 In chapter 4 and 5, we shall discuss and illustrate how the double-articulation and the
modularization engineering principles aim to fulfill this requirement.

Chapter 2: Foundational challenges in Ontology Engineering

 31
-D

1. Enabling ontology users and maintainers to interchange ontology
parts with others that are more relevant, reliable, accurate, etc.

2. Enabling “Natural” ontology evolution: successful axiomatizations
in certain domains will likely become popular and evolve into the
trusted de facto semantics.

Still, the way an ontology is represented and engineered currently does not
allow for an easy interchange of it parts as it is being built and used as one
component. Alternating the axiomatization of ontology parts demands that
the ontology be represented and engineered as a configurable set of
modules; rather than as one large and complexly interrelated component28.

2.3.4 Conclusion

In this section, we have presented important engineering challenges in
ontology evolution: complexity of change, distributed development, and
alternating axiomatizations.

Based on the above challenges, we draw the following ontology
engineering requirements:

x Critical assumptions that make clear the factual meaning of an
ontology vocabulary should be rendered as part of the ontology,
even if informally, to facilitate both users' and developers'
commonsense perception of the subject matter.

x The ontology representation model should be capable of
distributed and collaborative development.

x Ontologies should be engineered in a way that enables smooth and
efficient evolution.

x Ontologies should be engineered in a way that allows for easy
replacement of ontology parts.

28 We shall discuss ontology modularization in chapter 5, and illustrate (de/)compose of
ontological modules.

Chapter 2: Foundational challenges in Ontology Engineering

 32
-D

2.4 Summary
In this chapter, we have focused on clarifying several foundational
challenges in ontology engineering: ontology reusability, ontology
application-independence, and ontology evolution29. Based on these
challenges, we summarize the main ontology engineering requirements in
the table below:

No. Requirement

R1.
Ontologies should be engineered in a way that allows the
isolation and identification of the reusable parts of the ontology.

R2.
The influence of usability perspectives on ontology axioms
should be well articulated, in pursuit of both reusability and
usability.

R3.

Critical assumptions that make clear the factual meaning of an
ontology vocabulary should be rendered as part of the ontology,
even if informally, to facilitate both users' and developers'
commonsense perception of the subject matter.

R4.
The ontology representation model should be capable of
distributed and collaborative development.

R5.
Ontologies should be engineered in a way that enables smooth
and efficient evolution.

29 We are aware of other foundational challenges in ontology engineering that are not
discussed due to the limited focus of our research. Such challenges include that of
ontology multilingualism and ontology integration. We have developed modest
methodological guidelines for developing multilingual lexicalization of ontologies. These
guidelines are presented briefly in chapter 7, as part of our case study. Furthermore,
[K04] [VDZ04] show some advantages and applications of our methodological
principles in ontology integration.

Chapter 2: Foundational challenges in Ontology Engineering

 33
-D

R6.
Ontologies should be engineered in a way that allows for the
easy replacement of ontology parts.

Table 2.1. Ontology Engineering Requirements.

As outlined earlier, this thesis is structured in three parts. We specify the
problem, propose a solution, and show an implementation of this solution.
In this chapter, we have specified the ontology engineering challenges and
derived some engineering requirements. Fulfilling these requirements is
the goal of our methodological principles and we present these in the next
part of this thesis.

 34
-D

 35
-D

Part II

Methodological principles

The term ‘methodology’ means:

“New Latin methodologia, from Latin methodus + -logia –logy
1)a body of methods , rules, and postulates employed by a

discipline : a particular procedure or set of procedures. 2) the
analysis of the principles or procedures of inquiry in a particular

field.”

-(Merriam-Webster Online Dictionary)

In this part, we introduce our methodological principles for ontology
engineering, namely the ontology double articulation principle (chapter 3)
and the ontology modularization principle (chapter 4).

 36
-D

Chapter 3: Ontology double articulation

 37
-D

Chapter 3

Ontology Double Articulation

“Syntax is merely a necessary device by which we attach
semantics to the representation, and it makes little sense to claim

that a representation formalism is semantically more powerful
merely because it has more syntactical constructs …”

-(Robert Meersman, [M95],)

This chapter presents the first engineering principle: ontology double
articulation (a domain axiomatization and its application axiomatizations).
Section 3.1 quickly introduces the double articulation principle. In section
3.2, we present and discuss the general properties of domain
axiomatization. Section 3.3 introduces the notion of ontology base for
capturing domain axiomatizations. In section 3.4 we discuss the nature of
application axiomatizations, and introduce the notion of application
ontological commitments. Finally, section 3.5 summarizes the main
advantages that can be gained and the engineering requirements that can
be fulfilled by the double articulation principle.

Chapter 3: Ontology double articulation

 38
-D

3.1 Introduction30
In this section, we schematically introduce and illustrate the principle and
its general idea. Further details follow.

The goal of the ontology double articulation principle31, mainly, is to
fulfill the R2 engineering requirement: The influence of usability
perspectives on ontology axioms should be well articulated, in pursuit of
both reusability and usability.

As we have noted earlier, our research on ontology double articulation is
based on the research conducted by Meersman in [M99a] [M99b] within
the DOGMA project. In this chapter we introduce fundamental changes
and extensions.

The term “double articulation”, in this thesis, simply means expressing
knowledge in a twofold axiomatization. See section 3.2 for the formal
definition and details. The term “articulation” in WordNet means:
“Expressing in coherent verbal form”, “The shape or manner in which
things come together and a connection is made”, etc. In the semiotics and
linguistics literature, the term “double articulation” has been introduced
by [N90][M55]32 (which has a different meaning and usage than ours) to
refer to the distinction between lexical and functional unites of language
or between content and expression.

3.1.1 Overview of the double articulation principle

The ontology double articulation principle, in nutshell, is that: an ontology
is doubly articulated into: domain axiomatization and application
axiomatizations. While a domain axiomatization is mainly concerned with

30 Later this chapter was revised and extended (see [JM08])
31 In this chapter, we, sometimes, refer to this principle as “the principle” or “this
principle”.
32 We are grateful to Dr. Peter Spyns for drawing our attention to this analogy and
introduction of this term.

Chapter 3: Ontology double articulation

 39
-D

characterizing the “intended meanings” of domain vocabulary (typically
shared and public), an application axiomatization (typically local) is
mainly concerned with the usability of these vocabularies. The double
articulation implies that all concepts and relationships introduced in an
application axiomatization are predefined in its domain axiomatization.
Multiple application axiomatizations (e.g. that reflect different usability
perspectives, and that are more usable) share and reuse the same
intended meanings in a domain axiomatization.

To translate this principle into software architecture, see DOGMA33, we
adopt (and extend) the notion of ontology base [M99a] for capturing
domain axiomatizations; and we introduce the notion of application
axiomatization, by which particular applications commit to an ontology
base. An ontology therefore can be seen as an ontology base and a layer
of ontological commitments, i.e. a domain axiomatization and its
application axiomatizations, see fig. 3.1.

Fig. 3.1. Ontology Double Articulation.

The ontology base is intended to capture domain axiomatizations. It
basically consists of a set of binary conceptual relations [M99a]. The
lexical rendering of a binary conceptual relation is called lexon. A lexon is

33 See http://www.starlab.vub.ac.be/research/dogma.htm (March 2005)

Chapter 3: Ontology double articulation

 40
-D

described as a tuple of the form <J: Term1, Role, InvRole, Term2>, where Term1
and Term2 are linguistic terms. J is a context identifier, used to bound the
interpretation of a linguistic term into a concept. For each context J and
term T, the pair (J, T) is assumed to refer to a concept. Role and InvRole
are lexicalizations of the pair roles of a binary relationship R, e.g.
HasType/IsTypeOf.

The commitment layer consists of a set of application axiomatizations.
Particular applications commit to the ontology base through an application
axiomatization. Such a commitment is called application ontological
commitment34. Each application axiomatization consists of: (1) a set of
lexons from an ontology base; (2) a set of rules to constrain the usability
of these lexons.

3.1.2 Example

In this example, we revisit the bibliographic example that we presented in
section 2.2. Fig. 3.2 shows a Bibliography ontology base.

34 We sometimes use the notion of “application ontological commitment” and the notion
“application axiomatization” interchangbly in this thesis. It is also worth to note that the
notion of “ontological commitment” as found in [GG95] generally refers to a
“conceptualization”, literally, it is defined as “a partial semantic account of the intended
conceptualization of a logical theory.”

Chapter 3: Ontology double articulation

 41
-D

Fig. 3.2. A bibliography ontology base.

The illustrations in figures 2.1 and 2.2 are seen as two application
axiomatizations (Bookstore and Library axiomatizations) by which
particular applications make a commitment to and share the same
Bibliography ontology base (see figure 3.3). Notice that all conceptual
relations in both application axiomatizations correspond to (or are
derived from) lexons in the Bibliography ontology base. In this way,
different application axiomatizations share and reuse the same intended
meaning of domain concepts.

Chapter 3: Ontology double articulation

 42
-D

Fig. 3.3. Particular applications committing to an ontology base through their application

axiomatizations.

3.2 Domain Axiomatization
In the previous section, we have briefly introduced the ontology double
articulation principle. In this section, we discuss35 the general properties
of domain axiomatization36, viz. the nature and the level of details that are
appropriate to characterize domain concepts.

As we have discussed in section 2.2, decreasing the influence of usability
perspectives is a principal engineering requirement when axiomatizing
domain concepts. To capture knowledge at the domain level, one should
focus on characterizing the intended meaning of domain vocabularies (i.e.
domain concepts), rather than on how and why these concepts will be
used. A domain axiomatization becomes an axiomatic theory that only
includes the axioms that account for (i.e. characterize) the intended
meaning of the domain vocabularies.

35 Our style of discussion in this section is inspired by the style used by Nicola Guarino
and Barry Smith to discuss what is an ontology, conceptualization, etc.
36 These properties are summarized at the end of this section.

Chapter 3: Ontology double articulation

 43
-D

This motivates us to understand the relationship between a domain
vocabulary and the specification of its intended meaning in a logical
theory.

In general, it is not possible to build a logical theory to specify the
complete and exact intended meaning of a domain vocabulary37. Usually,
the level of detail that is appropriate to explicitly capture and represent it
is subject to what is reasonable and plausible for domain applications.
Other details will have to remain implicit assumptions. These assumptions
are usually denoted in linguistic terms that we use to lexicalize concepts,
and this implicit character follows from our interpretation of these
linguistic terms.

On the relationship between concepts and their linguistic terms Avicenna
(980-1037 AC) [Q91] argued that:

 “There is a strong relationship/dependence between concepts and
their linguistic terms, change on linguistic aspects may affect the
intended meaning… Therefore logicians should consider linguistic
aspects ‘as they are’. …”38.

Indeed, the linguistic terms that we usually use to name symbols in a
logical theory convey some important assumptions, which are part of the
conceptualization that underlie the logical theory. We believe that these
assumptions should not be excluded or ignored (at least by definition) as
indeed they are part of our conceptualization.

Hence, we share Guarino and Giaretta’s viewpoint [GG95], that an
ontology (as explicit domain axiomatization) only approximates its
underlying conceptualization; and that a domain axiomatization should be

37 This is because of the large number of axioms and details that need to be intensively
captured and investigated, such detailed axiomatizations are difficult -for both humans
and machines- to compute and reason on, and might holds “trivial” assumptions.
38 This is an approximated translation from Arabic to English.

Chapter 3: Ontology double articulation

 44
-D

interpreted intensionally, referring to the intensional notion of a
conceptualization.

Gruber [G95] defined an ontology as an explicit specification of a
conceptualization, referring to the extensional ("Tarski-like") notion of a
conceptualization as found in [GN87]. Guarino and Giaretta pointed out
that this definition per se does not adequately fit the purposes of an
ontology. They argued that according to Gruber’s definition, the re-
arrangement of domain objects (i.e. different state of affairs) corresponds
to different conceptualizations. Guarino and Giaretta argue that a
conceptualization benefits from invariance under changes that occur at the
instance level by transitions between merely different “states of affairs” in
a domain, and thus should not be extensional. Instead, they propose a
conceptualization as an intensional semantic structure (i.e. abstracting
from the instance level), which encodes implicit rules constraining the
structure of a piece of reality39. Indeed, this definition allows for the focus
on the meaning of domain vocabularies (by capturing their intuitions)
independently of a state of affairs. See [G98a] for the details and
formalisms.

3.2.1 Definition (double articulation, intended models, legal models)

Given a concept C as a set of rules (i.e. axioms) in our mind about a
certain thing in reality, the set I of “all possible” instances that comply
with these rules are called the intended models of the concept C.
According to the ontology double articulation principle, such concepts are
captured at the domain axiomatization level. An application Ai that is
interested in a subset IAi of the set I (according to its usability
perspectives), is supposed to provide some rules to specialize I. In other
words, every instance in IAi must also be an instance in I:

IAi � I

39 See the definition of “Extensional verses Intensional semantics” in appendix D.

Chapter 3: Ontology double articulation

 45
-D

We call the subset IAi: the legal models (or extensions) of the application’s
concept CAi. Such application rules are captured at the application
axiomatization level.

Both domain and application axiomatizations can be seen (or expressed)
as sentences in first order logic.

As we have illustrated in the previous section, bookstore applications that
are interested only in the instances of the concept ‘book’ (that can be sold)
need to declare the Mandatory rule that each instance of book must have
an ISBN value.

In Fig. 3.4 we show three kinds of applications specializing a domain
concept.

Fig. 3.4. An example of three different applications specializing a domain concept.

The differences between the legal models of these application-types
illustrate their different usability perspectives:

x The intersection between the legal models of CA2 and the legal
models CA3 shows that IA3 is a subset of IA2. An example of this
case could be the difference between notions of ‘book’ in the
axiomatization of bookstores and libraries: all legal instances of

Chapter 3: Ontology double articulation

 46
-D

the bookstores’ notion are legal instances for the libraries, but not
vice versa. For libraries, the instances of e.g. ‘Manual’ or ‘Master
Thesis’ can be instances of a ‘book’; however, they cannot be
instances of ‘book’ for bookstores, unless they are published with
an ‘ISBN’.

x The difference between IA1 and IA3 shows an extreme case: two
types of applications sharing the same concept C while their legal
models are completely disjoint according to their usability
perspectives. An example of this case could be the difference
between notions of ‘book’ in the axiomatization of bookstores’
and museums’: Museums are interested in exhibiting and
exchanging instances of old ‘books’, while bookstores are not
interested in such ‘books’, unless for example, they are re-edited
and published in a modern style.

One may wonder how domain concepts can be agreed upon because of the
difficulty in gaining an objective insight into the nuances of another
person’s thoughts. Many researchers admit that a conceptualization
reflects a particular viewpoint and that it is entirely possible that every
person has his own concepts. For example, Bench-Capon and Malcolm
argued in [BM99] that conceptualizations are likely to be influenced by
personal tastes and may reflect fundamental disagreements. In our
opinion, herein lies the importance of linguistic terms.

3.2.2 Importance of linguistic terms in ontology engineering

Linguistic resources (such as lexicons, dictionaries, and glossaries.) can be
used as consensus references to root ontology concepts. In other words,
ontology concepts and axioms can be investigated using such linguistic
resources and it can be determined whether a concept is influenced by
personal tastes or usability perspectives. We explain this idea further in
the following paragraphs:

Chapter 3: Ontology double articulation

 47
-D

The importance of using linguistic resources in this way lies in the fact
that a linguistic resource renders the intended meaning of a linguistic term
as it is commonly agreed among the community of its language. The set of
concepts that a language lexicalizes through its set of word-forms is
generally an agreed conceptualization40[T00]. For example, when we use
the English word ‘book’, we actually refer to the set of implicit rules that
are common to English-speaking people for distinguishing ‘books’ from
other objects. Such implicit rules (i.e. concepts) are learned and agreed
from the repeated use of word-forms and their referents. Usually,
lexicographers and lexicon developers investigate the repeated use of a
word-form (e.g. based on a comprehensive corpus) to determine its
underlying concept(s) [BDVHP00] [RFOGP99].

Given the definition of the term ‘book’ found in WordNet (a written work
or composition that has been published, printed on pages bound together),
one can judge, for example, that an ISBN is not really a necessary
property for every instance of a book (see our discussion in section 2).
Notice that such judgments cannot be based on the literal interpretation of
the term definition, but should be based on the intuition that such short
definitions provide. For more precision, one may use several linguistic
resources to investigate and root ontology concepts.

In short, a way of preventing ontology builders from imposing their
personal viewpoints and usability perspectives at the conceptual level is,
by investigating and rooting the ontology concepts at the level of a human
language conceptualization. This involves making a distinction between a
personal viewpoint and. a community viewpoint. Notice that by doing
this, we are (indirectly) investigating and rooting our ontology concepts at
the domain level, because the conceptualization of a language emerges
from the repeated use of linguistic terms and their referents in real life
domains.

40 Thus, we may view a lexicon of a language as an informal ontology for its community.

Chapter 3: Ontology double articulation

 48
-D

Taking a step further in this regard, we will discuss and illustrate the
incorporation of existing linguistic resources into the ontology
engineering process in section 3.5 and 6.2.2. We shall show how to link
the vocabulary used in an ontology with term-definitions found in
linguistic resources. In section 3.3.6 we shall introduce the notion of
gloss to capture such definitions, and to define new concepts that may not
exist in linguistic resources.

3.2.3 On representing domain axiomatizations

In this section, we discuss some choices that we think are relevant for
representing domain axiomatizations.

A domain axiomatization merely cannot be a list of linguistic terms, and
their intended meanings cannot be completely implicit. The intended
meaning of linguistic terms should be axiomatized and represented by
means of a formal language.

From a methodological viewpoint, such a formal language should be
content-oriented rather than syntax-oriented. This language should serve
as a theoretical tool which guides ontology builders through its primitives,
and restrict them to focus only on and represent the “kinds” of axioms that
account for the intended meaning of domain vocabularies.

By analogy, the conceptual “data” modeling languages ORM and EER
provide database designers a set of primitives with which they can be
guided to build a normalized database schema. Indeed, ORM and EER
can be seen as content-oriented languages, because they restrict the focus
of database designers to the integrity of data models.

An example of the difference between conceptual data modeling
primitives and the kind of primitives that account for the intended
meaning of a vocabulary41 is the difference between the “Rigid” and
“Mandatory”. Something can be mandatory but not rigid, as in the case of

41 i.e. conceptual data modeling vs. conceptual domain modeling.

Chapter 3: Ontology double articulation

 49
-D

‘ISBN’ which is not a rigid property for every instance of a ‘book’ but
could be mandatory for some applications. In other words, to model
something as a rigid property, it should be rigid in all possible
applications, while what can be mandatory for an application might not be
mandatory for another. See [GW00][JDM03][WSW99][GHW02] for
more discussions on such issues.

Current research trends on ontology languages within the Semantic Web
and the description logic communities are mainly concerned with
improving logical consistency and inference services. Such services in our
opinion are more suitable for building knowledge base applications or
expert systems rather than axiomatizing “domain concepts”. Significant
results within the description logic community have indeed been achieved
in the development of expressive and decidable logics, such as DLR
[CDLNR98], SHIQ [HST99], SHOQ [HS01], etc., yet less attention has
been given to the quality of ontological content.

“…I was annoyed by the fact that knowledge representation
research was more and more focusing on reasoning issues, while
the core problems of getting the right representations were not
receiving that much attention…”. (Nicola Guarino42).

An example of a modeling primitive in the SHOQ description logic which
in our opinion, should not be allowed in axiomatizing domain concepts
since it does not account for meaning, is datatypes [P04]. Such a primitive
belongs mainly to the symbolic level. In short, description logics (and
their derivative languages such as DAML+OIL, or OWL) seem to play a
useful role in specifying application (rather than domain) axiomatizations.

We shall return, in section 3.4 to the use of both conceptual data modeling
languages and description logic based languages, for modeling and
representing application axiomatizations.

42 An interview with Nicola Guarino and Christopher Welty (9 June 2004):
http://esi-topics.com/erf/2004/june04-ChristopherWelty html

Chapter 3: Ontology double articulation

 50
-D

We observe two possible ways to capture formal domain axiomatizations:
(1) as an arbitrary set of axioms, e.g. using description logic, or (2)
through a knowledge representation model (e.g. a database). The first case
is common within the Semantic Web and Artificial Intelligence
communities; in this case ontology builders are responsible (i.e. unguided)
to decide whether an axiom accounts for the intended meaning of a
vocabulary. This way offers ontology builders more freedom and
expressiveness, but the risk of encoding usability perspectives is still high.
In the second case, ontology builders are restricted only to capturing and
storing the kind of axioms that account for factual meaning; assuming that
the representation model is well studied and designed to pursue such
axioms. This way is less expressive than the first one, but it reduces the
risk of mixing domain and application axioms. The second way offers
scalability in accessing and retrieving axioms, which is usually a
problematic issue in the first way. The second way is mostly used within
the lexical semantics community, e.g. WordNet [MBFGM90],
Termintography [KTT03]. Notice that both ways are (or should be) well
formalized and map-able to first order logic, and thus can be seen as
logical theories.

We have chosen the second way for our approach. As we will show in
section 3.3, we have developed a data model for capturing domain
axiomatizations called an ontology base [M99a][M99b].

3.2.4 Summary: properties of domain axiomatization

In this section, we summarize the basic properties of a domain
axiomatization: it is (1) an axiomatized theory (2) that accounts for the
intended meaning of domain vocabularies; (3) it is intended to be shared
and used as a vocabulary space for application axiomatizations. It is
supposed to be (4) interpreted intensionally, (5) and investigated and
rooted at a human language conceptualization.

Chapter 3: Ontology double articulation

 51
-D

3.3 The notion of an ontology base
This section introduces the notion of ontology base. An ontology base
[M99a] is a knowledge representation model for capturing domain
axiomatizations. This notion is used as a core component in the DOGMA
project.

Basically, an ontology base consists of a set of lexons. A lexon is a binary
relationship between context-specific linguistic terms, or in other words, a
lexical rendering of a binary conceptual relation.

3.3.1 Definition (Lexon)

A lexon is described in [M99a][M99b] as a tuple of the form:

!77� 21 ,',,: rrJ

Where:

J is a context identifier.

T1 and T2 are linguistic terms from a language L.

r and 'r are lexicalizations of the pair roles of a binary conceptual
relationship R; the role 'r is the inverse of the role r . One can
verbalize a lexon as (T1 r T2), and (T2 'r T1). For example, the pair
roles of a subsumption relationship could be: “Is a type of” and “Has
type”; the pair roles of a parthood relationship could be: “is a part of”
and “has part”, and so forth.

 The following is a set of lexons, as a simple example of an ontology base:

<Commerce: Person, Issues, Issued by, Order>
<Commerce: Order, Settled Via, Settles, Payment Method>
<Commerce: Money Order, Is a type of, Has type, Payment Method>
<Commerce: Check, Is a type of, Has type, Payment Method>
<Commerce: Payment Card, Is a type of, Has type, Payment Method>
<Commerce: Credit Card, Is a type of, Has type, Payment Card>
<Commerce: Credit Card, Has, Is of, Expiration Date>

Chapter 3: Ontology double articulation

 52
-D

3.3.2 Definition (Concept)

A term T within a context J is assumed [M99a] to refer to a concept C:

CT o),(J

Notice, for example, that within the context ‘Commerce’, the linguistic
term ‘Order’ refers to “A commercial document used to request someone
to supply something in return for payment”. It may refer to other concepts
within other contexts, e.g. within the context ‘Military’, the term ‘Order’
refers to “A command given by a superior that must be obeyed”43. Further
detail about the notion of context will be discussed in the next section.

As we have discussed earlier, a concept is a set of rules in our mind about
a certain thing in reality. The notion of intended meaning (or word
meaning/sense) can be used alternatively with the notion of concept to
denote something. The set of all possible instances (i.e. in all possible
stats of affairs) that comply with these rules are called intended models.

3.3.3 Definition (Role)

A role within a context is not intended to refer to a concept; thus,
Cr o),(J is improper. In other words, our notion of role does not refer

to a “stand alone” unary (or binary) concept. Rather, roles only lexicalize
the participation of a “unary concept” in an n-ary conceptual relationship.
As the notion of a lexon is a lexical rendering of a binary conceptual
relationship, we formalize a lexon as two context-specific terms playing
mutual roles, that both refers to a binary concept (typically called binary
conceptual relation):

2),,(),,,(CrTrT o!� JJ

The notation of a context-specific term playing a role � �rT ,,J is called

concept-role.

43 These two definitions of the term “Order” are taken from WordNet, (May 2004)
http://www.cogsci.princeton.edu/cgi-bin/webwn.

Chapter 3: Ontology double articulation

 53
-D

For practical purposes, we shall not require for both roles to be explicitly
lexicalized within a lexon. We assume that at least one role is to be
lexicalized, such as <Bibliography, Book, is-a, Written Material>.

An ontology base is intended to capture binary relationships. This does
not deny the existence of ternary (or more) relationships. We believe that
relationships in practice are mainly binary. Moreover, binary relations are
easier for ontology builders to model, extract, or reason with.

3.3.4 Definition (Mapping lexons into first order logic)

Each lexon !77� 21 ,',,: rrJ in the ontology base is mapped into three

statements in first order logic, as the following44:

))(),(()(21 yTyxryxTx o�o�

))(),('()(12 xTxyrxyTy o�o�

),('),(. xyryxryx l�

For example, the mapping of the lexon <Commerce: Person, Issues,

IssuedBy, Order> into first order logic can be done as follows:

))(),(()(yOrderyxIssuesyxPersonx o�o�

))(),(()(xPersonxyIssuedByxyOrdery o�o�

),(),(. xyIssuedByyxIssuesyx l�

Notice that Context is not part of our formal mapping of lexons. As we
shall discuss in the next section, a context is an informal notion used to
bound the interpretation of a linguistic term into a concept. Linguistic
terms, e.g. ‘Person’, ‘Order’, etc. can be seen as unambiguous terms (i.e.
concepts) within the lexon formal mapping. A lexon (or it formal
mapping) is assumed to be true (i.e. axiom) within its context, see section

44 This mapping was achieved over the course of a fruitful discussion with Stijn
Heymans.

Chapter 3: Ontology double articulation

 54
-D

3.3.5. In section 3.3.7 we shall discuss how to introduce further formal
axiomatizations at the ontology base level, for targeting systematic
ontological quality.

Finally, our formal lexon mapping assumes unique role names. Each role
label (or InvRole) should be unique within the formal mapping of lexons.
As this is might not be the case in practice, one can provide an “internal”
naming convention, for example, by renaming ‘Issues’ as ‘Issues_Order’
and ‘IssuedBy’ as ‘IssuedBy_Person’.

At this point, we have established how that lexons are the basic building
blocks of an ontology base and that they are the basic domain axioms. The
principal role of an ontology base is to be a shared vocabulary space for
application axiomatizations. As sharing lexons means sharing the same
concepts and their intended models, semantic interoperability between
classes of autonomous applications can be achieved, basically, by sharing
a certain set of lexons45.

3.3.5 The notion of context

The notion of context has been, and still is, the subject of occasionally
intense study, notably in the field of Artificial Intelligence. It has received
different interpretations. Commonly, the notion of context has been
realized as a set of formal axioms (i.e. a theory) about concepts. It has
been used among other things: to localize or encode a particular party’s
view of a domain, cf. C-OWL [BHGSS03]; as a background, microtheory,
or higher-order theory for the interpretation of certain states of affairs
[M93][S00][MVBCFGG04][SGP98][GG0]; and to facilitate the
translation of facts from one context to another, as in KIF [PFP+92].

In our approach, we shall use the notion of context to play a “scoping”
role at the ontology base level. We say a term within a context refers to a

45 As we shall show in section 3.4, a class of interoperating applications may need to
agree on and share some rules that constrain the use of a concept, i.e. share the same
legal models.

Chapter 3: Ontology double articulation

 55
-D

concept, or in other words, that context is an abstract identifier that refers
to implicit (or maybe tacit46) assumptions, in which the interpretation of a
term is bounded to a concept.

Notice that a context in our approach is not explicit formal knowledge. In
practice, we define context by referring to a source (e.g. a set of
documents, laws and regulations, informal description of “best practice”,
etc.), which, by human understanding, is assumed to “contain” those
assumptions. Lexons are assumed (by human understanding) to be “true
within their context’s source”. Hence, a lexon is seen as a domain axiom.

In section 6.2.1, we suggest some “best practices” for defining a context.
In section 7.2.1, we present an example of a context definition in a real-
life case study. The lessons we learnt and our experience with defining
contexts are also reported in this section.

Before proceeding to discuss further formal axiomatizations at the
ontology base level, we introduce the notion of gloss as part of the
ontology base model.

3.3.6 The notion of Gloss47

Within an ontology base, each combination of a Context and a Term is
given a unique number, called a ConceptID. Thus, one can alternatively
use ConceptID or (Context, Term) to uniquely refer to a concept48 within
an ontology base.

46 The difference between implicit and tacit assumptions, is that the implicit assumptions
can, in principle, be articulated but still they have not, while tacit assumptions are the
knowledge that cannot be articulated. it consists partially of technical skills -the kind of
informal, hard-to-pin-down skills captured in terms like “know-how”, and “we know
more than we can tell or put in words”. However, even though tacit assumptions cannot
be articulated, they can be transferred through other means over than verbal or formal
descriptions [Inn+03] [N94].
47 Later this section was revised and extended (See [J06]).
48 For some approaches, e.g. [KTT03], the lexicalization of concepts is not necessary -
concepts can be represented and referenced only by ConceptIDs. In our approach
however, this is not allowed. Each concept must be lexicalized by a linguistic term.

Chapter 3: Ontology double articulation

 56
-D

Each concept should be described by a gloss. A gloss is an auxiliary
informal account for the commonsense perception of humans of the
intended meaning of a linguistic term. See fig. 3.5.

Fig. 3.5. A list of concepts described by glosses.

Notice that the information provided in a gloss can be translated, in
principles, into formal logical statements. However, both are seen and
used in complement rather than as alternatives.

The purpose of a gloss is not to provide or catalogue general information
and comments about a concept, as conventional dictionaries and
encyclopedias do [MBFGM90]. A gloss, for formal ontology engineering
purposes, is supposed to render factual knowledge that is critical to
understanding a concept, but that is unreasonable or very difficult to
formalize and/or articulate explicitly.

The following are some guidelines to consider when deciding what should
and should not be provided in a gloss.

1. It should start with the principal/super type of the concept being
defined. For example, “Search engine: A computer program that
…”, “Invoice: A business document that…”, “University: An
institution of …”.

2. It should be written in the form of propositions, offering the reader
inferential knowledge that helps him to construct the image of the

Chapter 3: Ontology double articulation

 57
-D

concept. For example, instead of defining ‘Search engine’ as “A
computer program for searching the internet”, it can be defined
as, “One of the most useful aspects of the World Wide Web. Some
of the major ones are Google, Galaxy….”. One can also say “A
computer program that enables users to search and retrieve
documents or data from a database or from a computer
network…”.

3. More importantly, it should focus on distinguishing characteristics
and intrinsic properties that differentiate the concept from other
concepts. For example, compare the following two glosses of a
‘Laptop computer’: (1) “A computer that is designed to do pretty
much anything a desktop computer can do. It runs for a short time
(usually two to five hours) on batteries”; and (2) “A portable
computer small enough to use in your lap…”. Notice that
according to the first gloss, a ‘server computer’ running on
batteries can be seen as a laptop computer; also, a ‘Portable
computer’ that is not running on batteries is not a ‘Laptop
computer’.

4. The use of supportive examples is strongly encouraged: (1) to
clarify true cases that are commonly known to be false, or false
cases that are known to be true; and (2) to strengthen and illustrate
distinguishing characteristics (by using examples and counter-
examples). The examples can be types and/or instances of the
concept being defined. For example: “Legal Person: An entity with
legal recognition in accordance with law. It has the legal capacity
to represent its own interests in its own name, before a court of
law, to obtain rights or obligations for itself, to impose binding
obligations, or to grant privileges to others, for example as a
plaintiff or as a defendant. A legal person exists wherever the law
recognizes, as a matter of policy, the personality of any entity,
regardless of whether it is naturally considered to be a person.

Chapter 3: Ontology double articulation

 58
-D

Recognized associations, relief agencies, committees and
companies are examples of legal persons”.

5. It should be consistent with the lexons and formal definitions.

6. It should be sufficient, clear, and easy to understand49.

Glosses play a significant role during the ontology development,
deployment, and evolution phases. As we discussed in section 2.3,
ontologies are being developed, reviewed, used, and maintained by many
different people over different times and locations. Indeed, glosses are
easier to understand and agree on than formal definitions, especially for
non-intellectual domain experts. Glosses are a useful mechanism for
understanding concepts individually without needing to browse and reason
on the position of concepts within an axiomatized theory. Further,
compared with formal definitions, glosses help to build a “deeper”
intuition about concepts, by denoting to implicit or tacit assumptions.

Hence, we fulfill the R3 requirement: critical assumptions that make clear
the factual meaning of an ontology vocabulary should be rendered as part
of the ontology, even if informally, to facilitate both users' and developers'
commonsense perception of the subject matter.

3.3.7 Further formal axiomatizations (Incorporating upper level
ontologies)

In order to achieve a systematic ontological quality and precision50 on the
specification of the intended meanings of linguistic terms, these
specifications might need to receive more formal restrictions, than just
mapping lexons into logical statements.

49 There is more to say on how to define a gloss; we limited ourselves in this thesis to
present the most relevant issues.
50 The notion of “ontological precision” is defined by Aldo Gangemi in [G04] as “the
ability to catch all and only the intended meaning”.

Chapter 3: Ontology double articulation

 59
-D

For example, without introducing further formal restrictions to the
following lexons:

<Bibliography: Man, Is-a, Person>
<Bibliography: Author, Is-a, Person>
<Bibliography: Mustafa, Is-a, Person>

The ontological difference (or the misuse of ‘is-a’) cannot be
systematically detected51.

In this section, we discuss how a formal axiomatic system can be
introduced into an ontology base.

As we have chosen to represent formal domain axiomatization in a data
model (i.e. ontology base), arbitrary and expressive formal definitions are
restricted (see our discussion on this issue in section 3.2.3). Therefore, we
extend the ontology base model to incorporate primitives of upper level
ontologies. Our incorporation of upper level ontologies in this thesis is
fairly simplistic; deep philosophical argumentations that are necessary for
such incorporation are presented schematically for the sake of simplicity.
It is important to note that the upper ontologies are still very much works
in progress. We have chosen to incorporate the topic in this thesis for the
sake of contextual completeness as we believe that it complements the
general idea of our approach.

Upper level ontologies are formal axiomatic systems that describe the
most general categories of reality. Such ontologies are not only
application and task independent but also domain (and possibly language)
independent axiomatizations [DHHS01] [G98b].

Based on the literature of upper level ontologies as found for example in
[DHHS01] [G98b] [MBGGO03], we introduce, in our approach, the

51 By assuming that the ‘is-a’ refers to a subsumption relationship (i.e. Sub-Type of),
only the first lexon is correct. The ‘is-a’ in the second lexon should interpreted as “is role
of”, because ‘Author’ is a role of ‘Person’ and not a type of a ‘Person’; and obviously,
the last lexon refers to ‘is instance of’. See [GW02] for more details on this issue.

Chapter 3: Ontology double articulation

 60
-D

notion of upper-form. Each term within a context should have an upper-
form, likewise, each lexon should have an upper-form.

Term upper-forms

Term upper-forms are superior types of concepts, such as substantial,
feature, abstract, region, event, process, type, role, particular, etc. The
notation of term upper-form is:

!� ameUpperFormNT :)(J

For example, Bibliography(Person):Substantial, Bibliography(Author):Substantial,

Bibliography(First-Name):Property, etc.

A term can have several upper-forms; the notation: }{:)(UpperFormTJ . For
example, Bibliography(Person):{Substantial, Type}, Bibliography(Author):{Substantial,

Role}, Bibliography(Mustafa):{Substantial, Instance}, etc.

Lexon upper-forms

Lexon upper-forms are relationship kinds, also called “basic primitive
relations” [MBGGO03], such as parthood, dependence, property-of,
attribution, subsumption, etc. Such relationship kinds are carefully and
formally axiomatized in upper level ontologies, and they are general
enough to be applied in multiple domains. Our notation of a lexon upper-
form is:

!�!77� ameUpperFormNrr :,',,: 21J

For example, the lexon “<Bibliography: Book, Is-a, HasType, Written Material>:

Subsumption” is a subsumption relationship where the concept ‘Book’
formally subsumes the concept ‘Written Material’. The lexon
“<Bibliography: Book, Has-Part, Is-Part-Of, Chapter>: Parthood” is a parthood
relationship, where an instance of the concept ‘chapter’ is a part of an
instance of the concept ‘Book’. The lexon “<Bibliography: Author, Has, Is-Of,

Name>: Property” is a property-of relationship, where the concept ‘Name’
is a property of the concept ‘Author’, and so forth.

Chapter 3: Ontology double articulation

 61
-D

The idea of introducing upper-forms is to bring on or induce the formal
axiomatization of such relation kinds, as defined in upper level ontologies,
into lexons. In other words, upper-forms are used as theoretical tools to
incorporate formal account into lexons. For example, the formal account
of the lexon “<Bibliography, Mustafa, instance-of, Author>: Instantiation” is induced
by the formal axiomatization of the instantiation relationship as found
[GGMO01], see fig 3.6.

)(),(I),(I asymmetryxyyx �o

)tivityantitransi(),(),(()),(),((yzIzyIzxIyxI ���o�

)),(()(xyIyxParticular def ��

)(x)Universal(def xParticular�

Fig. 3.6. A formal axiomatization of the instantiation relationship, as found in
[GGMO01].

The formal account of the lexon “<Bibliography: Book, Has-Part, Is-Part-Of,

Chapter>: Parthood” is induced by the formal axiomatization of the parthood
relationship as found in [GGMO01], see fig 3.7.

),(xxP

yxxyPyxP o�)),(),((

),()),(),((zxPzyPyxP o�

Fig. 3.7. A formal axiomatization of the Parthood relationship as found in [GGMO01].

By inducing the formal axiomatization of the ‘Subsumption’ relationship, as
found in [GGMO01], the following lexon is incorrect because a ‘Role’
cannot subsume a ‘Type’.

Bibliography(Person):{Substantial, Type}

Bibliography(Author):{Substantial, Role}

<Bibliography: Author, Is-a, Person>: Subsumption

Chapter 3: Ontology double articulation

 62
-D

Notice that formal axiomatizations of such upper forms are not necessary
to be used at runtime by applications that use or share lexons. The main
goal is to use these axiomatizations as theoretical tools to achieve a
systematic quality at the development and maintenance time of an
ontology.

Our methodological principles and their implementation prototypes are
independent of a particular upper level ontology. The choice of which
upper level ontology to use is left to ontology builders. In an upcoming
effort, we plan to develop a library of upper-ontology components, so that
ontology builders will be able to plug-in and automatically reason about
the quality of their lexons.

3.4 Application axiomatization
In the previous sections, we have presented and discussed the first part of
the ontology double articulation principle. We have introduced the notion
of an ontology base for capturing domain axiomatizations independently
of usability perspectives. In this section, we introduce the second part of
the ontology double articulation principle: application axiomatizations.
First, we discuss the general properties of these axiomatizations; then, we
introduce the notion of application ontological commitments.

While the axiomatization of domain knowledge is mainly concerned with
the characterization of the “intended models” of concepts, the
axiomatization of application knowledge is mainly concerned with the
characterization of the “legal models” of these concepts (see fig. 3.4).
Typically, as domain axiomatizations are intended to be shared, public,
and highly reusable at the domain level, application axiomatizations are
intended to be local and highly usable at the task/application-kind level.

As we have discussed earlier, applications that are interested only on a
subset of the intended models of a concept (according to their usability
perspective) are supposed to provide some rules to specialize these

Chapter 3: Ontology double articulation

 63
-D

intended models. Such a specialization is called an application
axiomatization. Notice that this specialization is not seen as two different
concepts subsuming one another through a “subsumption relationship”.
Rather, the vocabulary -of unary and binary concepts- used in application
axiomatization is restricted to the vocabulary defined in its domain
axiomatization. As shall be cleared later in this section, an application
axiomatization becomes a set of rules to constrain a certain use of domain
vocabulary. Formally speaking, these rules declare what should
necessarily hold in any possible world for a class of applications.

A particular application commits to the intended meaning of a domain
vocabulary (i.e. in an ontology base) through its application
axiomatization. This commitment is called application’s ontological
commitment. An application axiomatization typically consists of: (1) an
ontological view that specifies which domain concepts in an ontology base
are relevant to include and represent in this axiomatization. These
concepts can be explicit lexons or derived from lexons, (2) a set of rules to
characterize the legal models of the ontological view, i.e. to formally
declare what should necessarily hold in any possible world for the
applications sharing this axiomatization.

We say that a particular extension of an application (i.e. a set of instances)
commits to an ontology base through an application axiomatization if it
conforms to or is consistent with the ontological view and the rules
declared in this axiomatization (cf. model-theoretic semantics). We shall
came back to this issue in section 4.4.2.

3.4.1 Example

This example is based on that presented in section 3.1.2. We show an
application scenario of software agents interoperating through a semantic
mediator to exchange data messages and business transactions. The
interoperation is enabled by the sharing of the same Bookstore

Chapter 3: Ontology double articulation

 64
-D

axiomatization, i.e. as a global and legal data model52. The data source (or
its “export schema” [ZD04]) of each agent is mapped into the shared
axiomatization. All exchanged data messages (e.g. those formed in XML,
RDF, etc.) can be validated according to whether they conform to the
rules and the ontological view declared in the Bookstore axiomatization
by using for example model-theoretic semantics [R88].

52 This way of sharing and using axiomatizations (as global schema) seems more
applicable to data integration and mediation systems [BB04][ZD04][CBB+04]. They can
also be used to describe web services [NM02]. For example, an axiomatization could be
specified for each web service (to describe the “static” information provided to/by a web
service), so that all agents accessing a web service share the same axiomatization.

Chapter 3: Ontology double articulation

 65
-D

Fig. 3.8. Meaningful semantic interoperation between Bookstore applications.

The ontological view of the above bookstore axiomatization specifies
which concepts are relevant for the task(s) of this application scenario.
These concepts correspond to explicit lexons in the ontology base, or they
might be derived from these lexons. One can see in the ontology base that
a ‘Book’ is not explicitly a ‘subtype of’ a ‘Product’ as specified in the

Chapter 3: Ontology double articulation

 66
-D

Bookstore axiomatization. This subsumption is derived from these lexons:
{<Bibliography: Book, Is-A, Written Material>, <Bibliography: Written Material, Is-A,

Product>}. Based on these subsumptions, some inheritance also might be
drawn; For example, ‘Book’ inherits the relationship <Bibliography: Book,

Written-By, Author> from its ‘Written Material’ supertype. The choice of
which concepts and relations should be included in an axiomatization is
an application-dependent issue or subject to a usability perspective. See
our discussion on this issue in section 2.2.

In this bookstore axiomatization, four rules are declared and can be
verbalized as: 1) each Book must Has at least one ISBN; 2) each Book
Has at most one ISBN; 3) each ISBN Is-Of at most one Book; 4) it is
possible for a Book to be Written-by several Authors, and it is possible for
an Author to write several Books.

Notice that the double articulation principle enables usability perspectives
to be encountered and encoded outside domain axiomatization. In turn,
this indeed increases the usability of application axiomatizations as well
as increases the reusability of domain axiomatization.

Depending on the application scenario, application axiomatizations may
be used in different ways. For example, in the Semantic Web and
information search/retrieval scenarios, declaring rules might be not
important because the main idea of these scenarios is to expand (rather
than to constrain) queries. Filtering the unwanted results (i.e. illegal
models) is the responsibility of the people who usually are involved in
such application scenarios53. In chapter 7, we show the application
scenario of an ontology-based user interface, where application
axiomatizations are used as shared data models of complaint web forms.

To increase usability of application axiomatizations, they might be
specified in multiple specification languages, such as DAML+OIL, OWL,

53 For example, as Google users filter out the unwanted web-pages that appear as a result
of their search.

Chapter 3: Ontology double articulation

 67
-D

RuleML, EER, UML, etc. Figure 3.9 shows the above Bookstore
axiomatization expressed in OWL.

 .
<owl:Class rdf:ID="Product" />
<owl:Class rdf:ID="Book">
 <rdfs:subClassOf rdf:resource="#Product" />
</owl:Class>
<owl:Class rdf:ID="Price" />
<owl:Class rdf:ID="Value" />
<owl:Class rdf:ID="Currency" />
<owl:Class rdf:ID="Title" />
<owl:Class rdf:ID="ISBN" />
<owl:Class rdf:ID="Author" />
<owl:ObjectProperty rdf:ID="Valuated-By">
<rdfs:domain rdf:resource="#Product" />
<rdfs:range rdf:resource="#Price" />
</owl:ObjectProperty>
<owl:DataProperty rdf:ID=" Amounted-To .Value">
 <rdfs:domain rdf:resource="#Price" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:ObjectProperty>
<owl:DataProperty rdf:ID="Measured-In.Currency">
 <rdfs:domain rdf:resource="#Price" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:ObjectProperty>
<owl:DataProperty rdf:ID=“Has.ISBN">
 <rdfs:domain rdf:resource="#Book" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#integer "/>
</owl:ObjectProperty>
<owl:DataProperty rdf:ID=“Has.Title">
 <rdfs:domain rdf:resource="#Title" />
<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="Written-By">
 <owl:inverseOf rdf:resource="#Writes "/>
 <rdfs:domain rdf:resource="#Book" />
 <rdfs:range rdf:resource="#Author" />
</owl:ObjectProperty>
<owl:Restriction>
 <owl:onProperty rdf:resource="# Has.ISBN " />
 <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">1</owl:cardinality>
</owl:Restriction>
 .

Chapter 3: Ontology double articulation

 68
-D

Fig. 3.9. An OWL representation of the Bookstore ontological commitment.

Although both representations share the same intended meaning of
concepts at the domain (/ontology base) level, notice the disparities
between ORM and OWL in representing the Bookstore axiomatization.
For example, ORM does not distinguish between DataProperties and
ObjectProperties as does OWL. This is an example of an epistemological
difference54. The ORM uniqueness constraint that spans over “Written-
By/Writes” cannot (or should not) be expressed in OWL, as it is implied
by definition55. The other uniqueness and mandatory constraints are
expressed as a one cardinality restriction in OWL.

Such logical and epistemological disparities (which are induced by the
difference between the formalizations and the constructs of both
languages) illustrate different ways of characterizing the legal models of
application axiomatizations. The choice of which language is more
suitable for specifying application axiomatizations depends on the
application scenario and perspectives. For example, ORM and EER are
mainly suitable for database and XML (-based) application scenarios
since they are comprehensive in their treatments of the integrity of data
sets. For inference and reasoning application scenarios, description logic
based languages (such as OWL, DAML, etc.) seem to be more applicable
than other languages, as they focus on the expressiveness and the
decidability of axioms.

Allowing different languages, optimized techniques, or methodologies to
be deployed at the application axiomatization level will indeed increase
the usability of these axiomatizations. A recent application axiomatization
language called �-RIDL [VDM04] has been developed within the

54 See the definition of “epistemological” in appendix D.
55 The formalization of ObjectProperties in OWL does not allow the same tuple to appear
twice in the same set, such as Written-By = {<author1, book1>, < author1, book1>,…}.

Chapter 3: Ontology double articulation

 69
-D

DOGMA framework. Its creators claim it is better suited to the database
applications’ commitment to an ontology base.

3.5 Discussion
In this chapter, we have presented the double articulation principle. We
have shown how application verses domain axiomatizations can be well
articulated. We have introduced the notion of an ontology base for
capturing domain axiomatizations, and the notion of application
axiomatizations by which particular applications commit to the intended
meaning of domain vocabulary.

In the following paragraphs, we summarize the main advantages of the
double articulation principle:

x Increase reusability of domain axiomatization, as well as usability
of application axiomatizations. As we have shown in this chapter,
the application-independence of an ontology is increased by
separating domain and application axiomatizations. Usability
perspectives have a neglectable influence on the independence of a
domain axiomatization, because ontology builders are prevented
from encoding their application-specific axioms. In other words,
domain axiomatizations are mainly concerned with the
characterization of the “intended models” of concepts, while
application axiomatizations are mainly concerned with the
characterization of the “legal models” of these concepts. Hence,
we fulfill the R2 engineering requirement: The influence of
usability perspectives on ontology axioms should be well
articulated, in pursuit of both usability and reusability.

x Allows different communities to create and maintain domain
axiomatization (typically public) and application axiomatizations
(typically local). Indeed, domain experts, lexicographers,
knowledge engineers, and even philosophers, may contribute to

Chapter 3: Ontology double articulation

 70
-D

the development, maintenance, and review phases of domain
axiomatizations. It is needless for them to know why and how
these axiomatizations will be used. Application-oriented experts
can also contribute to and focus on the development phases of
application axiomatizations, without needing to know about the
correctness of domain axioms. Hence, we fulfill the R4
engineering requirement: the ontology representation model
should be capable of distributed and collaborative development.

x Allows the deployment of differently optimized technologies and
methodologies to each articulation. For example, relational
database management systems can be used (with high scalability
and performance) to store and retrieve large-scale ontology bases.
Natural language parsing and understanding techniques can be
employed for extracting lexons from texts (see [PSDM03] for an
example of preliminary results on this issue). Different
specification languages can be used to specify application
axiomatizations and these increase the usability of these
axiomatizations.

Furthermore, the importance of linguistic terms in ontology engineering is
observed and incorporated in our approach. Not coincidentally, our
approach allows for the adoption and reuse of many available lexical
resources to support (or to serve as) domain axiomatizations. Lexical
recourses (such as lexicons, glossaries, thesauruses and dictionaries) are
indeed important recourses of domain concepts. Some resources focus
mainly on the morphological issues of terms, rather than categorizing and
clearly describing their intended meanings. Depending on its description
of term meaning(s), its accuracy, and maybe its formality56, a lexical
resource can play an important role in ontology engineering.

56 i.e., the discrimination of term meanings in a machine-referable manner.

Chapter 3: Ontology double articulation

 71
-D

An important lexical resource that is organized by word meanings (i.e.
concepts, or called synsets) is WordNet [MBFGM90]. WordNet offers a
machine-readable and comprehensive conceptual system for English
words. Currently, a number of initiatives and efforts in the lexical
semantic community have been started to extend WordNet to cover
multiple languages. As we have discussed in section 3.2.2, the consensus
about domain concepts can be gained and realized by investigating these
concepts at the level of a human language conceptualization. This can be
practically accomplished e.g. by adopting the informal description of term
meanings that can be found in lexical resources such as WordNet, as
glosses. We shall illustrate this issue in our implementation prototype in
chapter 6.

The notion of gloss as an auxiliary informal account of the intended
meaning of a linguistic term fulfills the R3 engineering requirement:
critical assumptions that make clear the factual meaning of an ontology
vocabulary should be rendered as part of the ontology, even if informally,
to facilitate both users' and developers' commonsense perception of the
subject matter.

In the next chapter, we proceed to present the second methodological
principle for ontology engineering: the ontology modularization principle.

Chapter 3: Ontology double articulation

 72
-D

Chapter 4: Ontology Modularization

 73
-D

Chapter 4

Ontology Modularization

“Modularity is a key requirement for large ontologies in
order to achieve re-use, maintainability, and evolution.”

- (Alan Rector, [R03])

This chapter presents the second engineering principle of our approach:
Ontology Modularization. In section 4.1, we introduce and illustrate the
general idea of the ontology modularization principle. Section 4.2
overviews other approaches to ontology modularization. We describe our
approach to modularity and composition and present the formal details in
sections 4.3 and 4.4 respectively. As an illustration of our approach, in
section 4.5 we present an algorithm for the automatic composition of
modules specified in ORM. Section 4.6 summarizes the main advantages
gained and the engineering requirements fulfilled by the modularization
principle.57

57 Later, this section was revised and extended, see [J05a].

Chapter 4: Ontology Modularization

 74
-D

4.1 Introduction
In this section, we introduce and illustrate the general idea of the ontology
modularization principle. Further details follow in the next sections.

The modularization principle aims to fulfill the following ontology
engineering requirements:

x R1. Ontologies should be engineered in a way that allows for the
isolation and identification of the reusable parts of the ontology.

x R4. The ontology representation model should be capable of
distributed and collaborative development.

x R5. Ontologies should be engineered in a way that enables smooth
and efficient evolution.

x R6. Ontologies should be engineered in a way that allows easy
replacement of the axiomatization of ontology parts.

The main idea of the modularization principle is to decompose an
application axiomatization into a set of smaller related modules, which: 1)
are easier to reuse in other kinds of applications; 2) are easier to build,
maintain, and replace; 3) enable distributed development of modules over
different locations and expertise; 4) enable the effective management and
browsing of modules, e.g. enabling the construction of libraries of
application-kind axiomatizations.

To compose modules, we propose a composition operator: all atomic
concepts and their relationships (i.e. lexons) and all constraints, across the
composed modules, are combined together to form one axiomatization
(called modular axiomatization).

4.1.1 A simple example

In what follows, we give an example to illustrate the (de)composition of
application axiomatizations. Fig. 4.1 shows two axiomatizations of Book-

Chapter 4: Ontology Modularization

 75
-D

Shopping and Car-Rental applications, defined on an e-commerce
ontology base58. Notice that both axiomatizations share the same axioms
about the “payment” conceptualization.

Fig. 4.1. Book-shopping and Car-Rental axiomatizations.

Instead of repeating the same effort to construct the axiomatization of the
“payment” part, the modularization principle suggest that we decompose
these axiomatizations into three modules, which can be shared and reused
among other axiomatizations (see fig. 4.2). Each application-type (viz.
Book-Shopping and Car-Rental) selects appropriate modules (from a

58 The e-commerce ontology base is not illustrated here for the sake of brevity.

Chapter 4: Ontology Modularization

 76
-D

library of application axiomatizations) and composes them through a
composition operator. The result of the composition is seen as one
axiomatization59.

Fig. 4.2. Modularized axiomatizations.

Engineering application axiomatizations in this way will not only increase
their reusability, but also the maintainability of these axiomatizations. As
the software engineering literature teaches us, small modules are easier to
understand, change, and replace [P72] [SWCH01]. An experiment by
[BBDD97] proves that the modularity of object-oriented design indeed
enables better maintainability and extensibility than structured design.

59 The illustrated composition in this example is very simplistic, as each pair of modules
overlap only in one concept, i.e. the “Payment Method”. In farther sections, we discuss
more complicated compositions, in which rules in different modules may contradict or
imply each other.

Chapter 4: Ontology Modularization

 77
-D

Decomposing axiomatizations into modules also enables the distributed
development of these modules over different location, expertise, and/or
stakeholders. As an analogy, compare the capability of distributing the
development of a program built in Pascal with a program built in JAVA,
i.e. structured verses modular distributed software development. In
chapter 7, we report our practical experience and the maintainability in the
distributed development of a Customer Complaint Ontology
(CContology).

4.2 Related work
The importance of modularity has received limited attention from within
the knowledge representation community [SK03]. Modularity has been
adopted by some researchers to achieve more scalability for reasoning and
inference services. A knowledge base is seen as a set of distributed
knowledge bases, with each base referred to as a module. In this way
reasoning is performed locally in each module, and the results are
propagated toward a global solution. Global soundness and completeness
(i.e. consistency) follows from the soundness and completeness of each
local reasoner [WSG+04]. The performance of such reasoning is claimed
to be linear in the tree structure in most cases [AM04].

Borgida and Serafini have proposed in [BS03] an extension to description
logics to enable more sophisticated distributed reasoning. Objects in
distributed and autonomous data sources are connected through complex
mappings. The authors claim that these mappings form a “global view” of
the connected data sources.

In [SK03] [SH05], Stuckenschmidt and Klein have proposed an approach
to ontology modularization similar to view-based data integration. A data
source (i.e. a schema and it instances) is seen as a module. All modules, as
such, are connected by conjunctive queries. The result of each mapping
query is computed and added as an axiom to the module using the result.

Chapter 4: Ontology Modularization

 78
-D

Reasoning in a module depends on the answer sets of the queries used to
connect it to other modules. A modular ontology in this approach is
defined as a set of modules that are connected by external concepts and
relation definitions.

A quite similar approach to the previous one is proposed by Oberle and
colleagues [VOS03] who defined a view language for connecting RDF
resources to each other.

A recent survey on distributed and modular knowledge representation
(towards scalable reasoning) can be found in [WSG+04].

While the approaches described above are concerned with the modularity
at the deployment phase of ontologies (i.e. distributed reasoning), Rector
[R03] has proposed another approach to modularity that is mainly
concerned with the distributed development of the TBox of an ontology.
Rector’s proposal is to decompose an ontology into a set of independent
disjoint skeleton taxonomies restricted to simple trees. Disjoint
taxonomies (i.e. modules) can then be composed using definitions and
relationships between concepts in the different modules. In contrast to
other approaches, the result of such a composition can be seen as one local
TBox. This approach is motivated by Guarino’s analyses of types [G98b].
Assuming that each type has a distinct set of identity criterion, when a
type specializes another type, it adds further identity criterion to those
carried by the subsuming type. The taxonomy of such types is always a
tree.

4.3 Our approach
In this section we introduce our approach to ontology modularization and
composition on an abstract level. The formal and technical details will be
provided in the following sections.

In our approach, we are mainly concerned with the modularity at the
development phase of an ontology. Similar to Rector’s proposal, our goal

Chapter 4: Ontology Modularization

 79
-D

is to enable the “TBox” of an ontology to be developed as a set of
modules and to later be composed to form one TBox.

However, unlike Rector’s approach, we do not restrict a module to
taxonomic relations between concepts. Modules are expected to include
concepts, relations, and constraints (i.e. a typical TBox). In other words,
we do not distinguish modules according to their level of abstraction, or
according to the nature of their content. Recall that such a distinction (i.e.
“modularization”) is achieved by double articulating an ontology into
domain and application axiomatizations60.

The goal of the ontology modularization principle is to enable application
axiomatizations to be developed in a modular manner. A module in our
approach becomes an application axiomatization where the intended
meaning of its vocabulary is defined at the domain axiomatization level,
see fig. 4.2.

4.3.1 Modularity criterion

In what follows, we propose a modularity criterion aimed to help ontology
builders to achieve effective decomposition and to guide them in
why/when to release a part of an axiomatization into a separate module.
The effectiveness of a decomposition can be seen as the ability to achieve
a distributed development of modules and maximize both reusability and
maintainability.

Subject: subject-oriented parts should be released into separate
modules61. For example, when building an axiomatization for
university applications, one should separate between the financial
aspects (e.g. salary, contract, etc.) and the academic aspects (e.g.

60 While partitioning an ontology based on the abstraction level of the parts might be
called “ontology layering”, we use the term “ontology modularization” to refer to
modules of the same nature and abstraction level.
61 This criteria is similar to, the so called “information hiding”, in software engineering,
[P72].

Chapter 4: Ontology Modularization

 80
-D

course, exams, etc.). Encapsulating related axioms (on a certain
subject) into one module will not only improve the reusability and
maintainability of modules, but also enable the distributed
development of modules by different people with a distinct expertise

Purpose: the general-purpose (or maybe called task-oriented) parts of
an axiomatization could be released into separate modules. The notion
of “general purpose” axiomatization refers to a set of axioms that are
expected to be repeatedly used by different kinds of applications. For
example, the axiomatization of “payment”, “shipping”, “person”,
“address”, “invoicing”, is often repeated in many e-commerce
applications. The reusability of such application axiomatizations is not
based necessarily on their ontological foundation or abstraction levels
but may be recognized simply from the experience of the creator and
from best practices. For example, the wide adoption (i.e. repeatability)
of the Dublin Core elements62 is based mainly on the simplicity of the
encoding of descriptions (i.e. metadata) of networked resources.

Specific-purpose parts could also be modularized and released
separately. In this way, the application-specificity of other modules
will be decreased.

Stability: The parts that are expected to be frequently maintained or
replaced could be released in separate modules. This affords other
parts more stability and the unstable parts will themselves be easier to
maintain and replace.

The criterion suggested above cannot be followed rigidly, as it is based on
builders’ best practice and expectation of the reuse, maintenance, and
distributed development of modules. In chapter 7 we present a case study
that illustrates an application of these modularity criterion in the
development of a customer complaint ontology.

62 http://www.dublincore.org (June 2004).

Chapter 4: Ontology Modularization

 81
-D

4.3.2 Module composition

To compose modules we define a composition operator. All concepts and
their relationships (i.e. lexons) and all constraints, across the composed
modules, are combined together to form one axiomatization. In other
words, the resultant composition is the union of all axioms in the
composed modules.

As shall be discussed later, a resultant composition might be incompatible
in case this composition is not satisfiable, e.g. some of the composed
constraints might contradict each other.

Our approach to composition is constrained by the following consistency
argument. An ontology builder, when including a module into another,
must expect that all constraints in the included module are inherited by
the including module, i.e. all axioms in the composed modules must be
implied in the resultant composition. Formally speaking, the set of
possible models for a composition is the intersection of all sets of possible
models for all composed modules. In other words, we shall be interested
in the set of models that satisfy all of the composed modules.

In fig. 4.3, we illustrate the set of possible instances (i.e. possible models)
for a concept constrained differently in two modules composed together.
Fig. 4.3(a) shows a compatible composition where the set of possible
instances for M.c is the intersection of the possible instances of M1.c and
M2.c. Fig. 4.3(b) shows a case of incompatible composition where the
intersection is empty.

Chapter 4: Ontology Modularization

 82
-D

Fig. 4.3. (a) Compatible composition, (b) Incompatible composition.

Notice that our approach to module composition is not intended to
integrate or unite the extensions (i.e. ABoxes) of a given set of modules,
as several approaches to ontology integration63 aim to do [SP94]
[SK03][BS03]. Our concern is to facilitate ontology builders (at the
development phases) with a tool to inherit (or reuse) axiomatizations
without “weakening” them. In other words, when including a module into
another module (using our composition operator, which we shall
formalize in the next section) all axioms defined in the included module
should be inherited by (or applied in) the including module.

63 This might be seen as a designation between composition verses integration of
ontological modules.

Chapter 4: Ontology Modularization

 83
-D

4.4 Formal framework
In this section, we introduce the formal framework of our approach to
module composition. The approach is illustrated, in section 4.5, by
developing an algorithm for the automatic composition of modules
specified in ORM.

4.4.1 Definition (Module)

A module is an application axiomatization of the form 0 = <5, :>, where
5 is a non empty set of lexons, i.e. the set of atomic concepts and their
relationships; : is a set of constraints which declares what should
necessarily hold in any possible world of M. In other words : specifies
the legal models of M.

4.4.2 Definition (Model, Module satisfiability)

Using the standard notion of an interpretation of a first order theory, an
interpretation I of a module M, is a model64 of M iff each sentence of M
(i.e. each U � 5 and each Z � �) is true for I.

Each module is assumed to be self-consistent, i.e. satisfiable. Module
satisfiability demands that each lexon in the module can be satisfied
[BHW91]. For each lexon U in a given module 0, U is satisfiable w.r.t. to
M if there exists a model I of M such that UI � �.

Notice that we adopt a strong requirement for satisfiability, as we require
each role in the schema to be satisfiable. A weak satisfiability requires
only the module itself (as a whole) to be satisfiable [H89][BHW91].

4.4.3 Definition (Composition operator)

Modules are composed by a composition operator, denoted by the symbol
‘�’. Let 0 = 01 � 02, we say that M is the composition of 01 and 02.

64 Also called “legal model”, see section 3.2.1

Chapter 4: Ontology Modularization

 84
-D

0 typically is the union of all lexons and constraints in both modules. Let
01 = <51, :1> and 02 = <52, :2>, the composition of (01 � 02) is
formalized as 0 = < 51 � 52, :1 � :2>.

A composition (01 � 02) should imply both 01 and 02. In other words,
for each model that satisfies (01 � 02), it should also satisfy each of 01
and 02. Let (01)I and (02)I be the set of all possible models of 01 and
02 respectively. The set of possible models of (01 � 02)I = (01)I �
(02)I. A composition is called incompatible iff this composition cannot be
satisfiable, i.e. there is no model that can satisfy the composition, or each
of the composed modules.

In what follow we specify how sets of lexons and sets of constraints can
be composed together.

Composing lexons

When composing two sets of lexons (5 = 51 � 52), following [M99a], a
concept M1.J(7) in module M1 and a concept M2.J(7) in module M2 are
considered exactly the same concept65 iff they are referred to by the same
term T and context J. Formally, (01.J(7) = 02.J(7)) iff (01.J = 02.J) and
(01.7 = M2.7). Likewise, two lexons are considered exactly the same
(M1.<J: T1, r, r’, T2> = M2.<J: T1, r, r’, T2>) iff (M1.J = M2.J), (M1.71 =
M2.71), (M1.r = M2.r), (M1.r’ = M2.r’), and (M1.72 = M2.72). Indeed, the
combination of two sets of lexons can be easily achieved as all lexons
share the same definitions of the intended meanings of their vocabularies
at the ontology base level66, see fig. 4.6.

65 i.e. refer to the same intended models, see section 3.2. and 3.3.
66 One may notice that another difference between ontology (or schema) integration and
composition is in the homogeneity of the integrated/composed modules. In case of
integration, all ontologies are expected to be totally heterogeneous. However, in case of
composition, modules are expected to have some degree of homogeneity (i.e. evolve
within a certain framework). In our approach, modules are assumed to share the same
ontology base.

Chapter 4: Ontology Modularization

 85
-D

In case that M1 and M2 do not share any concept between them (i.e. two
disjoint sets of lexons), the composition (M1 � M2) is considered an
incompatible operation67, as there is no model that can satisfy both M1 and
M2.

Composing constraints

When composing two sets of constraints, first, all constraints need to be
combined together (: = :1 � :2). Second, a satisfiability reasoning
should be performed in order to find out whether the composition (M =
M1 � M2) is satisfiable. Finally, an optional step is to perform an
implication reasoning to eliminate all implied constraints (also called
“entailments”) from the composition.

In the first step, the combination of all constraints (:1 � :2) should be
syntactically valid according to the syntax of the constraint specification
language. For example, some constraints need to be syntactically
combined into one constraint. The combination of a set of constraints
should imply all of them. To provide an insight into such combinations, in
fig. 4.4, we show the combination of two UML cardinality constraints.
Fig. 4.5 illustrates several combinations of ORM constraints. Notice that
in case of a constraint contradiction, the composition is terminated and
considered an incompatible operation, as in fig. 4.5 (d).

Fig. 4.4. Combining UML constraints.

67 In some practice cases, we weaken this requirement to allow the composition of
disjoint modules. For example, in case one wishes to compose two disjoint modules and
later compose them within a third module that results in a joint composition.

Chapter 4: Ontology Modularization

 86
-D

Fig. 4.5. Examples of several combinations of ORM constraints: (a) combination of two

value constraints, (b) combination of uniqueness, and frequency, (c) combination of
subset and equality, and (d) combinations of equality and exclusion constraints.

The ability to automate this process depends on the complexity of the
constraint specification language. Section 4.5 illustrates how all ORM
constraints can be combined automatically.

4.4.4 Definition (Modular axiomatization)

A modular axiomatization M = {M1, … , Mn, �} is a set of modules with
a composition operator between them, such that P = (P1 � … � Pn) and :
= (:1 �… � :n).

Notice that cyclic compositions are null operations, as the repetition of the
same proposition has no logical significance. For example, the
composition M = ((M1 � M) � M2) equals (M1 � M2) and the
composition M= ((M1 � M2) � (M2 � M1)) also equals (M1 � M2).

Chapter 4: Ontology Modularization

 87
-D

4.5 Composition of ORM conceptual schemes
As an illustration of our formal framework defined in the previous
section, in this section we present an algorithm for automatic composition
of modules specified in ORM68. An implementation of this algorithm will
be presented in chapter 6, as part of our DogmaModeler tool prototype69.

Each ORM conceptual schema is seen as a module. A concept in the
ORM terminology is called an object type, and a relationship is called a
predicate. The later consists of a set of roles played by object types. In
ORM, a predicate with its associated object types (which we call a lexon),
is called a fact type. Other ORM constructs are called constraints, such as
Value, Mandatory, Uniqueness, Subset, Equality, Exclusion, Totality,
Exclusive and Ring.

We adopt the ORM formalization and syntax as found in [H89][H01],
excluding three things. First, although ORM supports n-ary predicates,
only binary predicates are considered in our approach. Second, our
approach does not support objectification, or the so-called nested fact
types in ORM. Finally, our approach does not support the derivation
constraints that are not part of the ORM graphical notation70.

A composition of two modules (M = M1 � M2) is performed in the
following steps: 1) Combine the two sets of fact types (5 = 51 � 52). 2)
Combine the two sets of constraints, : = :1 � :2. 3) Reason to find out
whether the composition is satisfiable. Optionally, 4) Reason to eliminate

68 It is worth to mention that Vermeir [V83] has proposed an approach for modularizing
large ORM diagrams based on heuristic procedures. However, this approach is not
related to ours, as it is only concerned with how to “view” a one large ORM diagram in
different degrees of abstraction or viewpoints. Another similar approach is proposed by
Shoval [S85]. Other approaches for viewing large EER diagrams can be found e.g. in
[G85] [RS93] [S96]; such approaches are also called clustering methods.
69 See our motivation on why choosing ORM to illustrate modeling and representing
application axiomatization, a long the thesis, in section 5.1.1 and section 3.4.1.
70 A textual representation of the ORM notation (called ORM markup language) will be
presented in chapter 5.

Chapter 4: Ontology Modularization

 88
-D

all implied constraints from the composition. The last step is not presented
in this thesis as it is quite lengthy. We refer to [H89] for a comprehensive
specification of constraint implication in ORM71.

The composition is considered an incompatible operation (and thus
terminated) iff the result cannot be satisfied.

Remark: Although we assume in our formal framework, in section 4.4,
that the composition is terminated in case of unsatisfiability, determining
whether a composition is satisfiable depends on the decidability of the
specification language of the composed modules. In case this language is
decidable (it has a complete semantic reasoning tableaux), such as OWL,
our algorithm can then be called a complete algorithm. Otherwise, it is
called incomplete. In our algorithm of composing ORM schemes, though
we reason about the most common unsatisfiability cases, we do not claim
this algorithm to be complete, i.e. it is not necessary for the resultant
composition to be satisfiable. This is because the general problem of
determining consistency for all possible constraint patterns in ORM is
undecidable [H97]. A complete semantic tableaux algorithm for deciding
the satisfiability of ORM schemes (a research topic by itself) is not a goal
of this thesis. We shall build our unsatisfiability cases in this algorithm
based on the so-called “ORM formation rules” proposed by Halpin in
[H89]. We will also base them on the RIDL-A [DMV], and on the
formalization found in [BHW91]. Although these efforts are based on
heuristics and do not claim completeness, they cover the most common
unsatisfiability cases in practice. As an upcoming effort, we plan to map
ORM into the DLR Description Logic [CDLNR98], which is a powerful
and decidable fragment of first order logic. In this way, the satisfiability of
ORM schemes can be completely verified.

71 These steps can also be trivially applied for composing EER and UML schemas.

Chapter 4: Ontology Modularization

 89
-D

Step 1: Composing fact types.

In what follows, and for the sake of simplicity, we assume that all object
types in all modules have the same context. Two object types of the same
terms are considered the same object type. Two fact types of the same
terms of the two object types and the two roles are considered the same
fact type, i.e. the same lexons. In this way, combing object and fact type
across two modules becomes a simple and direct operation, (5 = 51 � 52),
see figure 4.6.

Fig. 4.6. Combining ORM fact types.

Notice that in case an object type is specified as “lexical” in one module
and as “non-lexical” in another (e.g. ‘Account’), then in the composition,
this object type is considered “non-lexical”. Lexical object types in ORM
are depicted as dotted- ellipsis.

Chapter 4: Ontology Modularization

 90
-D

Step 2: Composing constraints.

The goal of this step is to syntactically combine the two sets of
constraints, i.e. (: = :1 � :2). Some logical (i.e. satisfiability and
implication) validations are also performed in this step, e.g. in case of
combining two constraints that contradict or imply each other.

In the following, we show how all ORM constraints can be combined.

Step 2.1: Combining value constraints

The value constraint in ORM indicates the possible values (i.e. instances)
for an object type. A value constraint is denoted as a set of values {s1, ,

sn} depicted near an object type, see fig 4.7. The formalization of the value
constraint is }]...,,{[nssxAxx 1�{� . A value in this set can be either a number

or a string. The following are some examples: {1,2,3,4}, {2..30},
{1,3,4,9..21,25,30..10}, {‘Male’, ‘Female’}, {1..10,‘2’,‘3’,‘a’,‘b’}, etc.

Given two value constraints T.v1 and T.v2 on the same object type T, (notice
that v1 and v2 are two sets of values), their combination is the intersection
T.v = v1 � v2, see fig. 4.7(a). If v1 � v2 is empty, then the composition
(M1 � M2) is considered as incompatible operation, because the value
constraints contradict each other and thus the object type cannot be
satisfied, see fig. 4.7(b).

Fig. 4.7. Combining value constraints.

Chapter 4: Ontology Modularization

 91
-D

Step 2.2: Combining mandatory constraints

The mandatory constraint in ORM is used to constraint a role (played by
an object type) such that each instance of that object type must play this
role at least once. See the mandatory constraint in fig. 4.8, which is
depicted as a dot on the line connecting the role “IssuedBy” with the
object type “Order”.

Fig. 4.8. An example of a mandatory constraint.

When composing two modules, all mandatory constraints are included in
the composition without any specific combining operation.

Step 2.3: Combining disjunctive mandatory

Disjunctive mandatory constraint is used on a set of two or more roles
connected to the same object type. It means that each instance of an object
type’s population must occur in at least one of the constrained roles. For
example, the disjunctive mandatory in fig. 4.9 means that “each account
must be owned by a person or a company”.

Fig. 4.9. An example of a disjunctive mandatory constraint.

Chapter 4: Ontology Modularization

 92
-D

When composing two modules, all disjunctive mandatory constraints are
included in the composition without any specific combining operation.
See fig. 4.10.

Fig. 4.10. An example of combining disjunctive mandatory constraints.

Step 2.4: Combining uniqueness and frequency constraints

There are three patterns of specifying uniqueness constraints in ORM. An
arrow spanning a single role is called “internal” uniqueness, see fig.
4.11(a). It means that “each instance of a book has at most one ISBN”, i.e.
each occurrence is unique. An arrow spanning the two roles in a predicate
is called “predicate” uniqueness, see fig. 4.11(b). It means that “no book
can be written by the same author more than once and that no author can
write the same book more than once”, i.e. a many-to-many constraint72.
“Inter-predicate” uniqueness constraints, see fig. 4.11(c), apply to roles
from different predicates that have a common object type. The roles that
participate in a uniqueness constraint uniquely refer to an object type. For
example, different values of (author, title, and edition) refer to different

72 Although this constant has some significance in data modeling, but it is not really a
constraint as repetition of a proposition has no logical significance [H89] especially in
ontology modeling.

Chapter 4: Ontology Modularization

 93
-D

books. In other words, a book can be identified by the values of its author,
title, and edition all together.

Fig. 4.11. Example of uniqueness constraints.

The frequency constraint (min-max) on a role is used to specify the
number of occurrences that this role can be played by its object type. For
example, the frequency constraint in fig. 4.12 means, if a car has wheels
then it must have at least 3 and at most 4 wheels. Notice that a frequency
constraint of maximum 1 is equivalent to an internal uniqueness constraint
on this role.

Fig. 4.12. Example of a frequency constraint.

When composing modules, uniqueness and frequency constraints are
combined as follows:

1. As internal uniqueness implies predicate uniqueness [H89], the
combination of these two constraints is internal uniqueness (see
fig. 4.13. (a) and (b)).

2. In case of internal uniqueness and frequency constraints on the
same role (see fig. 4.13(c)), the composition of (M1 � M2) is
considered an incompatible operation, because the two
constraints contradict each other [H89], and thus the role cannot be

Chapter 4: Ontology Modularization

 94
-D

satisfied. Recall that a frequency of maximum 1 is considered
internally uniqueness (see fig. 4.13(d)).

3. In case of two frequency constraints on the same role, FC1(min-max)
and FC2(min-max), the combination FC(min-max) is calculated as
FC.min = Max(FC1.min, FC2.min) and FC.max = Min(FC1.max, FC2.max), see
fig. 4.13(e). In case the FC.min > FC.max, see fig. 4.16(f), then the
composition of (01 � 02) is considered an incompatible
operation, because the two constraints are in conflict each other,
and the role cannot be satisfied.

Fig. 4.13. An example of combining uniqueness and frequency constraints.

4. In other cases, all constraints are included in the composition
without any specific combining operation. Fig. 4.14 shows an
example of combining inter-predicate uniqueness constraints.

Chapter 4: Ontology Modularization

 95
-D

Fig. 4.14. An example of combining inter-predicate uniqueness constraints.

Step 2.5: Combining set-comparison constraints

The set-comparison constraints (subset, equality, and exclusion) are used
to restrict the way role(s) is/are populated with respect to other role(s).
Fig. 4.15 shows several examples of these constraints. Notice that (only
one) set-comparison constraint can be declared either between single roles
or between sequences of roles.

Chapter 4: Ontology Modularization

 96
-D

Fig. 4.15. Examples of set-comparison constraints.

Combining set-comparison constraints across two modules is performed
in the following steps:

1. Each exclusion constraint that spans more than two singles or
sequences of roles (called “multiple” exclusion) is converted into
pairs of exclusions73, such in Fig. 4.16.

73 This conversion is temporary for reasoning purposes, so it will not appear in the final
result of the composition. Notice that “a single exclusion constraint a cross n roles
replaces n(n-1)/2 separate exclusion constraints between two roles” [H01].

Chapter 4: Ontology Modularization

 97
-D

Fig. 4.16. Converting multiple exclusions into pairs of exclusions.

2. When combining a subset (or equality) in one module and an
exclusion in another, the composition of (01 � 02) is considered
an incompatible operation, because the two constraints contradict
each other, and so both roles cannot be satisfied. See fig. 4.17.

Fig. 4.17. Combining subset (or equality) with exclusion.

3. As equality implies subset (but not vice versa) [H89], when
combining a subset in one module and equality in another module,
or when combining two subset constraints that are opposite to each
other, the combination is always equality. See Fig. 4.18.

Chapter 4: Ontology Modularization

 98
-D

 Fig. 4.18. Combining subset and equality constraints.

Step 2.6: Combining subtype constraints (total, exclusive)

Total and exclusive constraints can only be declared on a set of subtypes
sharing the same supertype, see fig 4.19.

 Fig. 4.19. Examples of subtype constraints: (a) total, (b) exclusive.

When composing two modules, all subtype constraints are included in the
composition without any specific combining operation, see fig. 4.20.

Chapter 4: Ontology Modularization

 99
-D

 Fig. 4.20. Combining subtype constraints.

Notice that constraint implications, such as the exclusive constraint
between (C, D) that is implied by the exclusive constraint between (B, C,
and D), are not resolved in this step.

Step 2.7: Combining ring constraints

ORM allows ring constraints to be applied to a pair of roles that are
connected directly to the same object type in a fact type, or indirectly via
supertypes. Six types of ring constraints are supported by ORM:
antisymmetric (ans), asymmetric (as), acyclic (ac), irreflexive (ir),
intransitive (it), and symmetric (sym) [H01][H99]. Fig. 4.21 shows
several examples of these constraints. Combinations of ring constraints on
the same pair of roles are also allowed, such as in fig. 4.21 (a) and (e).

Chapter 4: Ontology Modularization

 100
-D

 Fig. 4.21. Examples of ring constraints.

The relationships between the six ring constraints are formalized by [H01]
using the Eular diagram as in fig. 4.22. This formalization helps one to
visualize the implication and incompatibility between the constraints. For
example, one can see that acyclic implies reflexivity, intransitivity implies
reflexivity, the combination between antiasymmetric and reflexivity is
exactly asymmetric, and acyclic and symmetric are incompatible.

Chapter 4: Ontology Modularization

 101
-D

Fig. 4.22. Relationships between ring constraints [H01].

When composing two modules, ring constraints are combined based on
the formalization in fig. 4.22. Any combination of ring constraints should
be compatible, i.e. there is an intersection between their zones in the Eular
diagram. Otherwise, the composition of (01 � 02) is considered an
incompatible operation, because the combined rings constraints conflict
each other, and thus the role cannot be satisfied.

Based on the Eular diagram, in table 4.1 we derive all possible compatible
combinations of the six ring constraints. Combinations that do not appear
in the table are incompatible, such as (ans) and (ac), (Sym, it) and (Ans),
(Sym, it) and (It, ac), or (Ans, it) and (Ir, sym), etc.

Chapter 4: Ontology Modularization

 102
-D

Table 4.1. All possible combatable combinations or ring constraints.

Step 3: Reasoning about the satisfiability of ORM modules74

Some unsatisfiability cases were detected in the previous step, in
particular those that emerged when two or more constraints were
combined. In this step, we reason about other cases that may emerge
between different constraints in the composition.

As we noted earlier, as the completeness of our algorithm depends on the
decidability of the modules’ language, it is not necessary for the resultant
composition in this algorithm to be completely satisfiable. This is because
the general problem of determining consistency for all possible constraint
patterns in ORM is un-decidable [H97]. See our discussion on this issue in
the previous section.

In what follows, we present six cases of constraint patterns that lead to
unsatisfiability. These patterns are compiled from [H89][H03][BHW91]
[DMV] and refined to suit our reasoning about module satisfiability.
Although we do not claim completeness, these patterns - in addition to the

͹Ͷ Later, this section was revised in and extended, see [JS06] and [JH08].

Chapter 4: Ontology Modularization

 103
-D

unsatisfiability cases that we have shown in the previous step - cover the
most common unsatisfiability cases in practice.

Pattern 1 (Top common supertype)

In this pattern, subtypes that do not have a top common supertype are
detected. In ORM, all object types are assumed by definition to be
mutually exclusive, except those that are subtypes. Thus, if a subtype has
more than one supertype, these supertypes must share a top supertype;
otherwise, the subtype cannot be satisfied. In fig. 4.23, the object type C
cannot be satisfied because its supertypes A and B do not share a common
supertype, i.e. A and B are mutually exclusive.

Fig. 4.23. Subtype without a top common supertype.

Formally, for each subtypeT , let persT.DirectSu be the set of all direct

supertypes of T . Let .SuperspersT.DirectSu i be the set of all possible

supertypes of ipersT.DirectSu . If

) �� .supers)ers.DirectSupsupersupers(T.DirectS n1 T , then the object

typeT cannot be satisfied. In this case, the composition (21 MM �) is

considered an incompatible operation.

For implementation purposes, the following algorithm is another
presentation75 of the above formalisms.

Algorithm:

75 We use the object-oriented data structure to write our algorithms for the sake of
brevity, and for the simplicity of implementation in modern programming languages. The
algorithms are written in a simple JAVA-alike pseudo language. We present the
implementation of the six patterns in DogmaModeler in section 6.4.

Chapter 4: Ontology Modularization

 104
-D

For each subtype T[x] {
 Let T[x].DirectSupers = the set of all direct supertypes of T[x].
 n = T[x].DirectSupers.size
 If (n > 1) {
 For (i = 1 to i=n) {
 Let T[x].DirectSupers[i].Supers = the set of all possible supertypes
 of T[x].DirectSupers[i] }
 // if the intersection of all T[x].DirectSupers[i].supers is not empty,
 then the composition is not satisfiable.
 if (Intersection(T[x].DirectSupers[1].supers, T[x].DirectSupers[n].supers))
 is empty {
 Composition.Satisfiability = false
 Message= (“The subtype T[x].DirectSupers[i] cannot
 be satisfied as its supertypes do not have a top common supertype.“)
 }}
}

Pattern 2 (Exclusive constraint between types)

In this pattern, subtypes of mutually exclusive supertypes (caused by an
exclusive constraint) are detected. Fig. 4.24 shows a case where D cannot
be satisfied because its supertypes are mutually exclusive. The set of
instances of D is the intersection of the instances of B and C, which is an
empty set according to the exclusive constraint between B and C.

Fig. 4.24. Subtype with exclusive supertypes.

Formally, for each exclusive constraint between a set of object types
}T,{T T n1 } , let .SubsTi be the set of all possible subtypes of the object

Chapter 4: Ontology Modularization

 105
-D

type iT , and .SubsTj be the set of all possible subtypes of the object

type jT , where ji z , the set (.SubsT.SubsT ji �) must be empty. Otherwise

members in this set are not satisfiable; and hence, the composition of (M1
� M2) is considered an incompatible operation.

For implementation purposes, the following algorithm is another
presentation of the above formalisms.

Algorithm:

For each exclusive constraint Exv[x] {
 Let Exv[x].T = the set of the object types participating in Exv[x].
 //For each pair of object types participating in the exclusion constraint:
 For (i = 1 to i = Exv[x].T.size) {
 For (j = 1 to j = Exv[x].T.size) {
 If (i not equal j) {
 Let Exv[x].T[i].Subs = the set of subtypes of the object type Exv[x].T[i].
 Let Exv[x].T[j].Subs = the set of subtypes of the object type Exv[x].T[j].
 S = IntersectionOf(Exv[x].T[i].Subs, Exv[x].T[j].Subs)
 If (S is not empty) {
 Composition.Satisfiability = false
 Message = (“all subtypes in <S> cannot be
 instantiated because of <Exv[x]>“) }}}}
}

Pattern 3 (Exclusion-Mandatory)

In this pattern, contradictions between exclusion and mandatory
constraints are detected. In Fig. 4.25, we show three examples of
unsatisfiable schemes.

Chapter 4: Ontology Modularization

 106
-D

 Fig. 4.25. Unsatisfiable schemes because of the mandatory and exclusion conflicts.

In the first case (a), the role r3 will never be played. The mandatory and
exclusion constraints restrict that each instance of A must play r1 and the
instance that plays r1 cannot play r3. In the second case (b), both r1 and r3
will never be played. According to the two mandatory constraints, each
instance of A must play both r1 and r3. At the same time, according to the
exclusion constraints, an instance of A cannot play r1 and r3 together.
Likewise, in the third case (c), r3 and r5 will never be played. As B is a
subtype of A, instances of B inherit all roles and constraints from A. For
example, if an instance of B plays r5, then this instance - which is also an
instance of A - cannot play r1 or r3. However, according to the mandatory
constraint, each instances of A must play r1 and according to the
exclusion constrain, it cannot play r1, r3 and r5 all at the same time.

In general, a contradiction occurs if an object type that plays a mandatory
role participates in an exclusion constraint with other roles played by this
object type or one of its subtypes.

Formally, for each exclusion constraint between a set of single roles R ,
let .TRi be the object type that plays the role iR , RRi � . For each (iR , jR),

where ji z and iR is mandatory, if TRTR ji .. or SubsTRTR ij ... � -where

SubsTRi .. is the set of all subtypes of the object type .TRi - then some

roles in R cannot be populated. Hence, the composition of (M1 � M2) is
considered an incompatible operation.

Chapter 4: Ontology Modularization

 107
-D

For implementation purposes, the following two alternative algorithms are
another presentation of the above formalism.

Algorithm:

For each exclusion constraint Exs[x] between a set of single roles {
 Let Exs[x].roles = the set of all roles participating in Exs[x].
 For (i=1 to Exs[x].roles.size)
 If (Exs[x].roles[i].Mandatory = true) {
 For (j=1 to Exs[x].roles.size) {
 If (I not equal j){
 Let Exs[x].roles[i].T = the object type that plays the role Exs[x].roles[i]
 Let Exs[x].roles[j].T = the object type that plays the role Exs[x].roles[j]
 Let Exs[x].roles[i].T.Subs = the set of all subtypes of Exs[x].roles[i].T
 If (Exs[x].roles[i].T = Exs[x].roles[j].T) OR
 In(Exs[x].roles[j].T, Exs[x].roles[i].T.Subs) {
 Composition.Satisfiability = false
 Message = (“There are some roles in <Exs[x].roles> that cannot
 be instantiated because of the <Exv[x]>“)}}}}}

An alternative but more compact algorithm can be:

For each exclusion constraint Exs[x] between a set of single roles {
 Let Exs[x].roles = the set of all roles participating in Exs[x].
 Let MandRoles = the set of all mandatory roles from Exs[x].roles.
 If (MandRoles is not empty)
 For (i=1 to ManRoles.size)
 For (j=1 to Exs[x].roles.size)
 Let MandRoles[i].T = the object type that plays the role MandRoles[i]
 Let Exs[x].roles[j].T = the object type that plays the role Exs[x].roles[j]
 Let Exs[x].roles[j].T.Subs = the set of all subtypes of Exs[x].roles[j].T
 If Not In(MandRoles[i].T, Exs[x].roles[j].T.Subs)
 Composition.Satisfiability = false
 Composition.Satisfiability.reason= (“There are some roles in
 <Exs[x].roles> that cannot be populated because of the <Exv[x]>“)}}}}
}

Pattern 4: (Frequency-Value)

In this pattern, contradictions between value and frequency constraints are
detected.

Chapter 4: Ontology Modularization

 108
-D

Fig. 4.26. Contradiction between value and frequency constraints.

In fig. 4.26, the role r1 cannot be populated. If the frequency constraint (3-
5) on r1 is satisfied, each instance of A must play r1 at least three times,
and thus three different instances of B are required. However, there are
only two possible instances of B, which are declared by the value
constraint {‘x1’, ‘x2’}.

For each fact type (BrA), let c be the number of the possible values of B
that can be calculated from its value constrain, and let (mn �) be a
frequency constraint on the role r , c must be equal or more than n .
Otherwise, the role r cannot be satisfied, as the value and the frequency
constraints contradict each other. Hence, (M1 � M2) is considered an
incompatible operation.

For implementation purposes, the following algorithm is another
presentation of the above formalisms.

Algorithm:

For each frequency constraint F[x] {
 Let F[x].min = the lower bound of the frequency constraint F[x].
 Let T = the object type that is played by the role holding F[x].
 Let T.Values = the value constraint on T.
 // if there is no value constraint on T, then T.Values = null
 If (T.Values is not null) and (T.Values.size < F[x].min) {
 Composition.Satisfiability = false.
 Message =(“the role <T.r> cannot be instantiated because the
 <F[x]> and the <T.Values> contradict each other”). }
}

Pattern 5 (Value-Exclusion)

Chapter 4: Ontology Modularization

 109
-D

Contradictions between value and exclusion constraints are detected in
this pattern. Fig. 4.27 shows a contradiction between the exclusion and the
value constraints. This contradiction implies that one of the roles that is
connected to A cannot be populated. According to the exclusion
constraint, there should be at least three different values of A to play r1, r3
and r5. However, according to the value constraint, there are only two
possible values of A.

Fig. 4.27. Contradiction between value and exclusion constraints.

For each exclusion constrain, let }R , ,{R R n1 } be the set of roles

participating in this constraint, and let n be the number of the roles in R .
Let T be the object type that plays all roles in R . Let C be the number of
possible values of T , according to value constraint. C must always be
more than or equal n. Otherwise, some roles in R cannot be satisfied, and
hence, the composition of (M1 � M2) is considered an incompatible
operation.

For implementation purposes, the following algorithm is another
presentation of the above formalisms.

Algorithm:

For each exclusion constraint Exs[x] between a set of single roles {
 Let Exs[x].Roles = the set of roles participating in the exclusion Exs[x].
 Let O = the object type that plays all roles in Exs[x].Roles.
 Let O.Values = the value constraint on O.
 // if there is no value constraint on O, then O.Values = null
 If (O.Values is not null) and (O.Values.size < Exs[x].Roels.size) {
 Composition.Satisfiability = false.

Chapter 4: Ontology Modularization

 110
-D

 Message =(“Some roles in <Exs[x].Roles> cannot be instantiated because
 the <Exs[x]> and the <O.Values> contradict each other”).}
 }

Pattern 6 (Set-comparison constraints)

In this pattern, contradictions between exclusion, subset, and equality
constraints are detected. Fig. 4.28 shows a contradiction between the
exclusion and the subset constraints. This contradiction implies that both
predicates cannot be populated.

 Fig. 4.28. A non fact type populatable schema.

The exclusion constraint between the two roles r1 and r3 means that their
populations should be distinct. However, in order to satisfy the subset
constraint between (r1, r2) and (r3, r4), the populations of r1 and r3 should
not be distinct. In other words, the exclusion constraint between r1 and r3
implies an exclusion constraint between (r1, r2) and (r3, r4) [H89], which
contradicts any subset or equality constraint between both predicates.

Fig. 4.29 shows the implications for each set-comparison constraint that
might be declared between parts of role sequences. These implications are
taken into account when reasoning for contradictions between the three
set-comparison constraints.

Fig. 4.29. Main set-comparison implications [H01].

Chapter 4: Ontology Modularization

 111
-D

In addition, an equality constraint is equivalent to two subset constraints.
Hence, we refer to a subset or an equality constraint as a SetPath.

For each exclusion constraint between A and B: If A and B are two
predicates, there should not be any (direct or implied) SetPath between
these predicates; If A and B are single roles, there should not be any
(direct or implied) SetPath between both roles or between the predicates
that include these roles.

Otherwise, the two predicates cannot be populated, as the two constraints
contradict each other. In this case, the composition of (M1 � M2) is
considered an incompatible operation.

Algorithm:

For each exclusion constraint Exs[x] {
 If (Exs[x] between predicates) {
 Let Exs[x].predicates = the set of all predicates participating in Exs[x].
 \\ For each pair of predicates participating in the exclusion
 For (i = 1 to i = Exs[x].predicates.size) {
 For (j = 1 to j = Exs[x].predicates.size) {
 If (i not equal j) {
 Sp = GetSetPathsBetween(Exs[x].Predicates[i], Exs[x].Predicates[j])
 // Sp is the set of all subset or equality constraints that specify or imply a
 // SetPath between the current tuple of predicates.
 If (Sp is not empty) {
 Composition.Satisfiability = false.
 Message = (“the exclusion constraint <Exs[x]> contradicts some subset
 and/or equality constraints on the predicates in <Sp>”).}}}}}
 Else { // then the Exs[x] is between roles
 Let Exs[x].roles = the set of all roles that participate in Exs[x].
 \\ For each pair of roles participating in the exclusion constraint
 For (i = 1 to i = Exs[x].roles.size) {
 For (j = 1 to j = Exs[x].roles.size) {
 If (i not equal j) {
 Sr = GetSetPathsBetween(Exs[x].roles[i], Exs[x].roles[j])
 // Sr is the set of all subset or equality constraints that specify or imply a
 // SetPath between the current tuple of roles.
 Sp = GetSetPathsBetween(Exs[x].Predicates[i], Exs[x].Predicates[j])

Chapter 4: Ontology Modularization

 112
-D

 // Sp is the set of all subset or equality constraints that specify or imply a
 // SetPath between the predicates of the current tuple of roles.
 If (Sr is not empty) OR (Sp is not empty) {
 Composition.Satisfiability = false.
 Message = (“the exclusion constraint <Exs[x]> contradicts some Subset
 and/or equality constraints on the predicates in Sp”). }}}}}}
}

Chapter 4: Ontology Modularization

 113
-D

4.6 Discussion and conclusions
In this chapter, we have presented the ontology modularization principle.
We have shown how application axiomatizations can be developed as
modules and later composed to form one modular axiomatization. In the
following paragraphs, we summarize the main advantages of the ontology
modularization principle:

x Modules are easy to reuse in other kinds of applications. In
addition to our contribution towards the reusability of domain
axiomatizations (which can be achieved by the double-articulation
principle), the reusability of application axiomatizations can also
be improved by modularizing it into a set of compose-able
modules. The two engineering principles indeed complement each
other. By the double-articulation principle, the ontology reusability
is improved by separating between domain and application
axiomatizations based on the abstraction level of axioms.
Correspondingly, the modularization principle contributes to
ontology reusability by enabling parts of application
axiomatizations to be isolated and reused among other application-
kinds. Hence, we fulfill the R1 engineering requirement:
Ontologies should be engineered in a way that allows the isolation
and identification of the reusable parts of an ontology.

x Enable distributed development of modules over different
locations, expertise, and stakeholders. The double-articulation and
modularization principles complement each other also in the
distributed development of ontologies. While the double
articulation principle enables (domain experts, lexicographers,
knowledge engineers, etc.) to contribute to the development of
domain axiomatizations, the modularization principle enables the
application axiomatization development to be distributed among

Chapter 4: Ontology Modularization

 114
-D

different application-oriented expertise, stakeholders, etc. As we
have shown in our example in section 4.1.1, while the “Payment”
module might be developed and released by a company
specialized in online payment services, the “BookOrder” module
can be developed and released by bookstore companies. Such
modules can be composed later to form one book-shopping
axiomatization. Hence, we claim to fulfill the R4 engineering
requirement: The ontology representation model should be
capable of distributed and collaborative development.

x Modules are easier to build, maintain, and replace. This is
because the internal couplings (e.g. the number of relationships
between concepts) in small modules are fewer than the internal
couplings in large axiomatizations. The development and
maintenance of small modules enable ontology builders a better
focus and easy understanding than large and multi-domain
axiomatizations76. The modularity of an axiomatization also
enables ontology users and maintainers to interchange some parts
with others that are for example, more relevant, reliable or
accurate. In short, the modularization principle indeed enables the
evolution life cycle of axiomatizations to be more efficient.
Hence, modularization assists in fulfilling the R5 and R6
engineering requirement. Ontologies should be engineered in a
way that enables smooth and efficient evolution (R5). Ontologies
should be engineered in a way that allows easy replacement of the
axiomatization of ontology parts (R6).

76 The reader may noticed that our contribution towards ontology maintainability is not
concerned with the consequences of ontology evolution (on running applications), as
versioning mechanisms (cf. [Hj01], [KKOF02], [MMS03])) are intended to resolve. Our
main concern is on how to make the ontology evolution process itself easy and more
efficient. Nevertheless, it would be easier for versioning mechanisms to keep track of
changes in modules than changes in the whole ontology. As we have discussed earlier,
unsteady part of an ontology can be realized into a separate module, which steadies the
other modules.

Chapter 4: Ontology Modularization

 115
-D

x Enable effective management and browsing of modules. Modules
are easier to store, retrieve, search, index, and master than large
and multi-domain axiomatizations. In chapter 5 and 6, we show a
prototype of a library of modular axiomatizations, where modules
are annotated and indexed using Dublin-Core metadata. In
addition, we will show how axiomatizations can be effectively
browsed and viewed as modules.

This chapter concludes our discussion of the methodological principles of
our thesis. Next, we proceed to present the implementation .

 116
-D

Part III

Implementation

Implementation (WordNet 1.7.1):

[1]-The act of accomplishing some aim or executing some
order. E.g. “the agency was created for the

implementation of the policy”

[2]-The act of implementing (providing a practical means
for accomplishing something); carrying into effect.”

-(http://wordnet.princeton.edu)

In this part, we present the implementation part of the thesis. The next
chapter defines a conceptual markup language of the ORM graphical
notation. In chapter 6, we present an ontology engineering tool called
DogmaModeler. In chapter 7, we present our experience and
achievements on applying our methodological principles and tool in
building a -medium size- costumer complaint ontology.

 117
-D

Chapter 5: ORM Markup Language

 118
-D

Chapter 5

ORM Markup Language

 “… Quite a number of knowledge representation
techniques are supported by some kind of graphical

formalism, usually called a "semantic network" of
sorts…..Semantic nets allow to construct an explicit

connection between on the one hand “Al-style”
knowledge representation and on the other hand

“classical” database design. ...”.

-(R. Meersman, [M86])

In this chapter, we define a conceptual markup language (ORM-ML) for
the ORM graphical notation. In section 5.1 we provide a brief introduction
and discuss our motives for constructing the ORM markup language
before we present the language itself in section 5.2. To end, section 5.3
draws some conclusions and summarizes the main advantages of ORM-
ML.

Chapter 5: ORM Markup Language

 119
-D

5.1 Introduction and motivation77
In this chapter, we define a conceptual markup language for the ORM
graphical notation. This language will be used in our DogmaModeler tool
prototype (in chapter 6) for representing application axiomatizations.

The ORM markup language presented in this chapter is an intensively
improved version (Version 2.0) of the language that we have published in
[DJM02a][DJM02b][JDM03].

Although application axiomatizations might be specified in different
specification languages (see section 3.4), we have chosen to illustrate our
approach using ORM.

Indeed, successful conceptual data modeling approaches, such as ORM or
EER, became well known because of their methodological guidance in
building conceptual models of information systems. They are semantically
rich disciplines and support quality checks at a high level of abstraction
[V82] and they provide modeling constructs like integrity, taxonomy, and
derivation rules [H01] [F02]. Merely, conceptual data schemes -also
called semantic data models - were developed to capture the meaning of
an application domain as perceived by its developers [WSW99] [M99a].
This meaning is being represented in diagram formats (which are
proprietary and therefore are limited to use inside specific CASE tools),
and typically used in an off-time mode, i.e. used during the design phases.
Nowadays, the Internet and the open connectivity environments create a
strong demand for sharing and exchanging not only data but also data
semantics. By defining a conceptual markup language (ORM-ML) that
allows for the representation of ORM conceptual diagrams in an open,
textual syntax, we enable ORM schemes to be shared, exchanged, and
processed at run-time.

77 Later, this section was revised and extended, see [J07a].

Chapter 5: ORM Markup Language

 120
-D

5.1.1 Why ORM

ORM (Object-Role Modeling) [H01] is a conceptual modeling approach
that was developed in the early 70's. It is a successor of the NIAM
(Natural-language Information Analysis Method) [VB82]. Based on
ORM, several conceptual modeling tools exist, such as Microsoft's
VisioModeler™ and the older InfoModeler. This has the functionality of
modeling a certain Universe of Discourse (UoD) in ORM while
supporting the automatic generation of a consistent and normalized
relational database schema.

ORM schemas can be translated into pseudo natural language statements.
The graphical representation and the translation into pseudo natural
language make it a lot easier, also for non-computer scientists, to create,
check and adapt the knowledge about the UoD needed in an information
system.

The ORM conceptual schema methodology is fairly comprehensive in its
treatment of many "practical" or "standard" business rules and constraint
types. Its detailed formal description, (we shall take ours from
[H01][H89]) makes it an interesting candidate to non-trivially illustrate
our XML based ORM-markup language as an exchange protocol for
representing ORM conceptual models (seen as application
axiomatizations).

Of course, similar to ORM-ML, a markup language could be defined for
any other conceptual modeling method. We have chosen ORM to
illustrate the adoption of conceptual data modeling methods for ontology
engineering purposes because ORM has several strengths over other
methods [H01]: ORM is fairly comprehensive in its treatment of many
“practical” and “standard” rules, (e.g. identity, mandatory, uniqueness,
subtyping, subset, equality, exclusion, frequency, transitive, acyclic, etc.).
Furthermore, ORM has an expressive and stable graphical notation since
it captures many rules graphically and it minimizes the impact of change

Chapter 5: ORM Markup Language

 121
-D

on the models78. ORM has well-defined formal semantics (see e.g. [H89]
[BHW91] [HPW93] [T96] [TM95] [HP95]). In addition, it is perhaps
worthwhile to note that ORM derives from NIAM (Natural Language
Information Analysis Method), which was explicitly designed to play the
role of a stepwise methodology, to arrive at the "semantics" of a business
application's data based on natural language communication.

5.2 ORM-Markup Language
This section presents the ORM markup language (ORM-ML). ORM-ML
is based on the XML syntax, and is defined in an XML-Schema (provided
in Appendix A) that acts as its complete and formal grammar. Hence, any
ORM-ML document should be valid according to this XML-Schema.

ORM-ML is not meant to be written by hand or interpreted by people. It is
meant to be implemented for example, as a “save as” or “export to”
functionality in ORM tools. This shall be illustrated in the next chapter as
a functionality of our tool prototype.

In what follows, we describe the main elements of the ORM-ML grammar
and demonstrate it using a few elementary examples. A more complete
example is provided in Appendix A3. We chose to respect the ORM
structure as much as possible by not “collapsing” it through the usual
relational transformer that comes with most ORM-based tools. ORM-ML
allows the representation of any ORM schema without a loss of
information or a change in semantics, except for the geometry and
topology (graphical layout) of the schema (e.g. location and shapes of the
symbols) We include this in a separate graphical style sheet from that of
the ORM Schema (see Appendix B2).

78 In comparison with other approaches (e.g. ER, UML), ORM models are attribute-free;
so they are immune from changes that cause attributes to be remodeled as entity types or
relationships.

Chapter 5: ORM Markup Language

 122
-D

We represent the ORM document as a one node element called the
ORMSchema, which consists itself of two nodes: ORMMeta and
ORMBody. Fig. 5.1 shows an “empty” instance of this schema.

Fig. 5.1. An empty instance of the ORMSchema, as an example of ORM-ML document.

5.2.1 ORM-ML metadata

As a header to an ORM-ML document, an ORMMeta node includes
metadata elements about the ORM document, such as ‘Title’, ‘URI’,
‘Creator’, ‘Version’, etc. A ORMMeta node consists of a set of Meta
elements. Each Meta element has two attributes: name and content. The
main idea of this elementary structure is to enable the flexibility of
adopting existing metadata standards. For example, one may use the 15
well-known Dublin Core Meta elements79 - an example of their use
appears in fig. 5.12.

79 The Dublin Core Metadata Initiative (http://www.dublincore.org , June 2004) is a
cross-disciplinary international effort to develop mechanisms for the discovery-oriented
description of diverse resources in an electronic environment. The Dublin Core Element
Set comprises 15-elements which together capture a representation of essential aspects
related to the description of resources. These 15-elements are namely: title, creator,
subject, description, publisher, contributor, date, type, format, identifier, source,
language, relation, coverage and rights.

Chapter 5: ORM Markup Language

 123
-D

Fig. 5.2. An example of an ORMMeta node, using Dublin Core metadata elements.

To enable the foundation of libraries of application axiomatizations, we
have developed a decent set of 25 metadata elements that better suit the
description of ontological content. These elements are a specialization and
extension of the Dublin Core elements. An example of this metadata
appears in fig. 5.14. Appendix B1 presents a definition of these metadata
elements80. We shall come back to this issue in the section 6.5 where we
discuss the enabling of the development of “axiomatization libraries”.

80 It is perhaps worthwhile to note that our metadata elements (and their definitions) are
adopted in the KnowledgeWeb Network of excellence project (KWEB EU-IST-2004-
507482), and will be proposed as a standard for Ontology Metadata (or also called
Ontology Registries). For more details, see [SGG+05].

Chapter 5: ORM Markup Language

 124
-D

Fig. 5.3. An example of an ORMMeta Node, using DogmaModeler metadata elements.

5.2.2 ORM-ML Body

The ORMBody node consists of these five different (meta-ORM)
elements: Object, Subtype, Predicate, Predicate_Object and Constraint.

Object Types

Object elements are abstract XML elements that are used to represent
Object Types. They are identified by an attribute ‘Name’, which is the
name of the Object Type in the ORM Schema, see fig. 5.4. Objects are
implemented by two XML elements: LOT (Lexical Object Type, called
Value Types in [H01]) and NOLOT (Non-Lexical Object Type, called
Entity Types in [H01])81. LOT elements may have a numeric attribute,
which is a boolean and indicates whether we deal with a numeric Lexical
Object Type. NOLOT elements have a boolean attribute called
independent, which indicates whether the Non Lexical Object Type is
independent. NOLOT elements may also have a reference element. A

81 Informally speaking, the idea of LOT and NOLOT in ORM, is similar the idea of
ValueProperty and ObjectProperty in OWL. LOT represents ValueProperty, and NOLOT
represents ObjectProperty.

Chapter 5: ORM Markup Language

 125
-D

reference element would indicate how this NOLOT is identified by LOTs
and other NOLOTs in a given application environment. A reference
element has two attributes: ref_name (the name of the reference and
numeric) and a boolean (to indicate whether it is a numeric reference).

Fig. 5.4. ORM-ML representation of an Object Type.

Subtypes

Subtype elements are used to represent subtype relationships between
(non-lexical) object types. A subset element is required to have two
elements: parent and child, where both refer to predefined object type
elements. See fig. 5.5.

Fig. 5.5. ORM-ML representation of subtypes.

Predicates

Predicates consist of at least one Object_Role element. Such an element
contains a reference to an object and may contain a role. They actually
represent the rectangles in an ORM schema. Every Object_Role element
needs a generated attribute 'ID' which identifies the Object_Role (see fig.
5.6). By using this ID attribute, we can refer to a particular Object_Role
element in the rest of the XML document, which for example, we will
need to do when we define constraints.

Chapter 5: ORM Markup Language

 126
-D

Predicates can have one or more rule elements. These elements can
contain extra rules that are defined for the predicate.

Predicates also have two boolean attributes that are optional: ‘Derived’
and ‘Derived_Stored’ which indicate whether a predicate respectively is
derived, or derived and stored, or not.

Fig. 5.6. A simple binary predicate and its representation in ORM-ML.

Predicate Objects

Predicate_Objects are actually objectified predicates, which are used in
nested fact types. They contain a predicate element and have an attribute
called ‘Predicate_Name’. So in fact, they are merely predicates that have
received new object type names. In building Object_Roles, the
Predicate_Name can be referenced. In this way we build predicates that
contain objectified predicates instead of object types. See fig. 5.7.

Chapter 5: ORM Markup Language

 127
-D

Fig. 5.7. ORM-ML representation of nested fact types (Objectified predicates).

Constraints

Constraint elements represent the ORM constraints. The Constraint
element itself is abstract, but it is implemented by different types of
constraints, viz. Mandatory, Uniqueness, Subset, Equality, Exclusion,
Value, Frequency, and Ring constraints. As mentioned above, we use the
IDs of the Object_Role elements to define constraints.

Uniqueness and mandatory constraint elements possess only Object_Role
elements. These elements are the object_roles in the ORM diagram on
which the constraint is placed. In this way, there is no need to make a
distinction between the ORM-ML syntax of "external" and "internal"
uniqueness constraints (see [H01]), or between mandatory and disjunctive
mandatory constraints, see fig. 5.8.

Chapter 5: ORM Markup Language

 128
-D

Fig. 5.8. ORM-ML representation of Uniqueness and Mandatory constraints.

The representation for subset, equality, and exclusion constraints is
analogous, so we will only discuss them in general terms. Each of these
constraints has references to (combinations of) object_role elements. For
instance, to represent a subset constraint between two roles, we create a
Subset element, containing two elements, Parent and Child. In the Parent
element, we put references to the subsumed object_role, and in the Child
element, we put references to the subsuming object_role. For equality and
exclusion, we use First and Second elements instead of Parent and Child
elements. Fig. 5.9., fig. 5.10, and fig. 5.11 show the ORM-ML
representation of subset, equality, and exclusion constraints respectively.

Chapter 5: ORM Markup Language

 129
-D

Fig. 5.9. ORM-ML representation of the Subset constraint.

Fig. 5.10. ORM-ML representation of the Equality constraint.

Fig. 5.11. ORM-ML representation of the Exclusion constraint.

The representation for Exclusive and Totality constraints is analogous, and
very simple. Each constrain has one supertype elements and (at least two)
subtypes elements. See fig. 5.12.

Fig. 5.12. ORM-ML representation of the Exclusive and Totality constraint.

Chapter 5: ORM Markup Language

 130
-D

The Value constraint is represented in ORM-ML using the Value and
ValueRange elements. The ValueRange element has two attributes: begin
and end, with obvious meanings. Each of the Value and ValueRange
elements have an additional attribute called “datatype” to indicate the
datatype of the value. See fig. 5.13.

Fig. 5.13. ORM-ML representation of the value constraint.

The Frequency constraint is represented in ORM-ML by two attributes:
Minimum and Maximum, which can defined on Object_Roles. See fig.
5.14.

Fig. 5.14. ORM-ML representation of the Frequency constraint.

Finally, ring constraint elements are: antisymmetric (ans), asymmetric
(as), acyclic (ac), irreflexive (ir), intransitive (it), symmetric (sym),
acyclic+intransitive (ac+it), asymmetric+intransitive (as+it),
intransitive+symmetric (it+sym), and irreflexive+symmetric (ir+sym).
Ring constraint elements contain references to the object_roles they are
put on. See Fig 5.15.

Chapter 5: ORM Markup Language

 131
-D

Fig. 5.15. ORM-ML representation of the Ring constraints.

Remark: ORM-ML also supports modular ORM schemes, which allows
the representation of sub ORM schemes (seen as composed modules). We
postpone the discussion of this issue to section 6.6.

5.3 Discussion and conclusions
In this chapter, we have presented the ORM markup language that
represents ORM conceptual diagrams in an XML-based syntax. Our main
goals of doing this are:

x Enable the ORM conceptual diagrams to be shared, exchanged,
and processed at run-time. ORM-ML as a standardized syntax for
ORM models may assist interoperation tools to exchange, parse or
understand the ORM schemas. Like ORM-ML, any conceptual
modeling approach (e.g. EER, UML, etc.) could have a markup
language.

x Enable conceptual data modeling methods to be (re)used for
ontology engineering purposes. Indeed, as we have discussed in
section 3.4, conceptual data modeling methods suit many (or
maybe most) application scenarios and usability perspectives. In
addition, the large set of existing conceptual modeling methods,
graphical notations, and tools can make ontologies better
understandable, and easier to adopt, construct, visualize and
verbalize. Legacy conceptual schemes can be mined and/or
“ontologized”. In the next chapter, we illustrate these issues by
using ORM for modeling and representing application

Chapter 5: ORM Markup Language

 132
-D

axiomatizations, which shall be defined in terms of domain
axiomatizations (ontology base).

In addition, by standardizing such a markup language, several other
advantage are worth noting:

x Interoperability for exchanging and sharing conceptual data
models over the Internet. Facilities are needed to share and
exchange ORM conceptual models in terms of a networked,
distributed computing-driven, and collaborative environment, and
to allow users to browse and edit shared knowledge over the
Internet, intranets and other channels. A conceptual schema
markup language provides a standardizable method to achieve
interoperability among CASE tools that use the conceptual
modeling technique.

x Implementing a conceptual query language over the Web. In open
and distributed environments, the building of queries should be
possible regardless of the internal representation of the data. Query
languages based on ontologies (seen as shared conceptual models)
help users not only to build queries, but also make them easier,
more expressive, and more understandable than corresponding
queries in a language like SQL. Exchanging, reusing, or sharing
such queries efficiently between agents over the web is
substantially facilitated by a standardized markup language.
Consequently, ORM-based query languages (e.g. RIDL [VB82]
[M81], ConQuer [BH96]) would gain from ORM-ML by
representing queries in such an exchangeable representation.

x Building transformation style sheets. Building transformation style
sheets for a given usage or need, for example, for the first order
rewriting of formalisms of ORM-ML documents, or to transform
the XML-based representation into another XML-based
representation. Another important and strategic issue is that one

Chapter 5: ORM Markup Language

 133
-D

could write a style sheet to generate the given ORM model
instance into a given rule-engine’s syntax, to allow for run-time
interpretation by that rule engine. It could for instance, perform
instance validation and integrity checks.

x Generating Verbalizations. The verbalization of a conceptual
model is the process of writing its facts and constraints in pseudo
natural language sentences. This assumedly allows non-experts to
check, validate, or even build conceptual schemas. In the next
chapter, we show how to generate the verbalization of ORM
models by building a verbalization template (built as separate
XML-based style sheets) parameterized over ORM-ML
documents.

Having concluded this section, we proceed to present the DogmaModeler
ontology engineering tool that constitutes the implementation section of
this thesis.

Chapter 6: DogmaModeler Ontology Engineering Tool

 134
-D

Chapter 6

DogmaModeler Ontology
Engineering Tool

“The new tools of ontological engineering might help us
to realize Peirce’s vision of a time when operations upon
diagrams will take the place of the experiments upon real

things that one performs in chemical and physical
research.”

-(Barry Smith, [S02])

In this chapter we present a prototype of an ontology engineering tool. In
section 6.1, we give a quick overview of the tool. The illustration of how
to model a domain and application axiomatizations will be presented in
section 6.2 and section 6.3 respectively. In section 6.4, we give an
overview of the validation types that are supported in the DogmaModeler.
The DogmaModeler’s support of axiomatization libraries is presented and
discussed in section 6.5. In section 6.6., we present the implementation of
module composition. The other functionalities of DogmaModeler will be
briefly explained in section 6.7. To end, some conclusions and final
remarks are made in section 6.8.

Chapter 6: DogmaModeler Ontology Engineering Tool

 135
-D

6.1 Introduction, a quick overview of DogmaModeler
This section briefly outlines our DogmaModeler tool prototype for
ontology engineering. Its implementation is based on the methodological
principles described in this thesis.

The DogmaModeler supports the following functionalities (among other
things that shall be illustrated later):

x Modeling, browsing, and managing both domain and application
axiomatizations;

x Modeling application axiomatizations using the ORM graphical
notation, and generating the corresponding ORM-ML
automatically;

x Verbalizing application axiomatizations into pseudo natural
language (supporting flexible verbalization templates, for e.g.
English, Dutch, Arabic, and Russian);

x Automatic composition of axiomatization modules;

x Validations of the syntax and semantics of axiomatizations;

x An illustration is given of the process of incorporating lexical
resources in ontology modeling; in order to the support the
modeling process of glosses;

x A simple approach to support the multilingual lexicalization of
ontologies;

x Automatic mapping of ORM schemes into X-Forms and HTML-
Forms.

Fig. 6.1 shows a screenshot of DogmaModeler. Notice its three main
windows: the ontology base window, the commitment modeling window,
and the commitment library window.

Chapter 6: DogmaModeler Ontology Engineering Tool

 136
-D

Fig. 6.1. A general screenshot of DogmaModeler.

Ontology base window (the top left side of fig. 6.1)

Before building ontological commitments (i.e. application
axiomatization), ontology builders should define their lexons in the
ontology base window, in case it is empty. This window presents the set
of lexons -{< J: Term1, Role, InvRole, Term2>}- in a tree-like structure82.
The first level, (:) represents ontology bases (e.g. Dogma-Ontologybase).
In the second level, each node (J) represents a context (e.g. Bibliography).

82 The ontology base tree has advanced features, so it can also be browsed and seen as a
graph.

Chapter 6: DogmaModeler Ontology Engineering Tool

 137
-D

Notice that level 0 () in the tree represents the ontology base server,
where the content of the ontology bases is hosted and managed. All
transactions carried out at the ontology base (e.g. creating contexts,
editing lexons) will be transmitted, verified and executed on the server.

Notice that level 0 () in the tree represents the ontology base server,
where the content of ontology bases is hosted and managed. All
transactions on the ontology base (e.g. creating contexts, editing lexons)
will be transmitted, verified and executed on the server.

Commitment modeling window (the right side of fig. 6.1)

This window consists of three panels: ORM, ORM-ML, and Pseudo NL.
To build an application axiomatization, ontology builders can drag and
drop lexons from the ontology base window into the ORM panel (to
define the ontological view). When doing so, lexons will be mapped
automatically into ORM fact types. Then, in order to define constraints on
these lexons, ontology builders can use the ORM family of constraints
(see icons in the top of the ORM panel).

Commitment library window (Under the ontology base window)

The purpose of this window is to enhance the reusability, management,
and organization of application axiomatizations. The current
implementation allows ontology builders to access and browse application
axiomatizations stored in a library (4). Each node () in the first level of
the tree represents an application axiomatization. By expanding an
axiomatization node, the set of lexons and the set of constraints that are
subject to this axiomatization will appear in the second level.

Remark: Although in this chapter, we sometimes describe “how” to model
an ontology using the DogmaModeler, our description is intended neither
to be a stepwise methodology nor to serve as a manual of the
DogmaModeler.

Chapter 6: DogmaModeler Ontology Engineering Tool

 138
-D

6.2 Modeling domain axiomatizations in the Ontology Base
In this section we present how domain axiomatizations can be developed
and represented in the ontology base. We present how, for modeling
purposes, the DogmaModeler supports: Context, Lexon, Term, Gloss, and
Role/InvRole. These are the main building blocks of a domain
axiomatization.

6.2.1 Context Modeling

The first step to developing a domain axiomatization is to specify the
context(s) of the domain. In other words, providing information about the
scope of the axiomatization, in which the interpretation (i.e. the intended
meaning) of the ontology terminology is bounded. In the DogmaModeler,
each context should have a Context ID, and a Context Description. Fig.
6.2 shows the context modeling window and an example of modeling the
‘CustomerComplaint’ context of the CContology83.

Fig. 6.2. Context modeling window.

83 This ontology, and its ‘CustomerComplaint’ context, shall be present in more detail in
chapter 7.

Chapter 6: DogmaModeler Ontology Engineering Tool

 139
-D

In the Context Description field, one may refer to sources such as a set of
documents, laws, regulations and informal descriptions of “best
practices”. The idea is that the interpretation of the terms that will appear
in the lexons within this context is bounded to concepts that might be
referred to (explicitly or intuitively) within these resources. Lexons are
assumed to be “true within their context’s source”.

If an ontology is mined from a corpse of documents, the recommended
best practice is to cite these documents in the context description. In case
an ontology is developed based on (or conforming to) a set of laws,
regulations or constitutions, these rules should be cited.

From a methodological viewpoint, by describing their context, ontology
builders will be encouraged to decide the scope and coverage of their
axioms, especially in the early development phases. A context description
(and the resources cited in it) can be also used for investigating the
correctness of glosses and lexons.

The “Deployed” flag, at the bottom of the context modeling window
indicates whether the lexons in this context are “being used” or are still
“under development”. If a context is flaged as deployed, the
DogmaModeler disables all delete and change functions over the
properties of all terms, roles, and lexons.

6.2.2 Concept Modeling

When introducing a new concept (i.e. a term within a given context),
ontology builders should define its gloss. Fig. 6.3 shows the concept-
modeling window with an example of the term ‘Book’ and its gloss,
within the context of a ‘Bibliography’. See our methodological guidelines
for gloss-modeling in section 3.3.6.

Chapter 6: DogmaModeler Ontology Engineering Tool

 140
-D

Fig. 6.3. Concept modeling window.

Incorporating existing lexical resources in gloss modeling

As we have discussed in section 3.5, many existing lexical resources (such
as lexicons, glossaries, thesaurus, dictionaries, etc.) are indeed important
sources of glosses. To enable the adoption and reusability of such
resources, fig. 6.4 shows a screenshot of a menu of glosses of the term
‘City’, which are retrieved from WordNet. The idea is that after
introducing a new term, the DogmaModeler automatically offers a menu
of glosses for this term. Ontology builders can then, choose or define a
new gloss. If an existing gloss has been chosen, a reference to this gloss is
recorded in the “Namespace” field84.

84 Because of time limitations, this functionality is not yet fully implemented in the
DogmaModeler.

Chapter 6: DogmaModeler Ontology Engineering Tool

 141
-D

Fig. 6.4. Incorporating existing lexical resources in gloss modeling.

Recall that the notion of gloss is not intended to catalog general
information or to provide morphological issues about a term, as
conventional dictionaries usually do. As we have discussed in section
3.3.6, a gloss has a strict intention in our appraoch and not just any lexical
resource can be adopted. The lexicon should provide a clear
discrimination of word/term meaning(s) in a machine-referable manner,
much like the synsets in WordNet.

The “Upper Form” field in the concept-modeling window serves to
declare the term-upper-form of the concept. For example, the Upper Form
of ‘Book’ is ‘Substantial’ according to the DOLCE foundational ontology.
See our earlier discussion on this issue in section 3.3.7. The full
incorporation of upper level (foundational) ontologies in the
DogmaModeler is considered a future development task.

6.2.3 Lexon Modeling

Lexons are the main axioms in a domain axiomatization. Recall that a
lexon has the form: <Context: Term1, Role, InvRole, Term2> (see section
3.3.). After having introduced a term and its informal definition (i.e. gloss)

Chapter 6: DogmaModeler Ontology Engineering Tool

 142
-D

into the ontology base, ontology builders can introduce lexons. Fig. 6.5
shows a simplified lexon-modeling window85. In this window, for a Term,
within a Context, ontology builders may declare a lexon by introducing its
Role, InvRole, Term2, and then choose the LexonUpperForm of this
lexon.

Fig. 6.5. Lexon-modeling window.

The “lexonUpperFrom” field allows ontology builders to declare the
primitive lexon type (Subsumption, Parthood, Dependence, Property-of,
Attribution etc.), thus committing to an upper level ontology of
relationship kinds, also known as “basic primitive relationships” (see our
discussion on this issue in section 3.3.7.). As the incorporation of upper
level ontologies in our approach is still in progress, the DogmaModeler’s
full support of the LexonUpperForm, is considered a future development
task. At this stage, the DogmaModeler does not impose any restriction on
this field.

Lexon notation and visualization

85 DogmaModeler supports another more sophisticated window for modeling lexons,
which allows faster and more scalable (search and retrieval) of existing terms and roles.
However, this feature is not presented in this section for the sake of simplicity.

Chapter 6: DogmaModeler Ontology Engineering Tool

 143
-D

To simplify the lexon modeling process, the DogmaModeler allows users
to customize the lexon graphical notation. As apparent in the left side of
fig. 6.6, users may choose to hide Role/InvRole labels; and/or they may
introduce their own graphical notation (i.e. lexon icons).

Fig. 6.6. Lexon graphical notation.

In the current version of the DogmaModeler, users have the freedom to
upload and change any lexon icons according to their preference.
However, we plan to restrict this facility by reserving an icon for each
lexon kind. Each lexon notation will have fixed semantics and this will
commit to an upper level ontology of relationship kinds.

To simplify the lexon browsing process, DogmaModeler allows users to
customize the browsing settings of the lexon tree. As shown in the left
side of fig. 6.7, users may choose to expand lexon nodes, so that one can
browse the tree as one browses a graph. In the same way, users may also
choose to expand only a specific kind(s) of lexons. For example, one may

Chapter 6: DogmaModeler Ontology Engineering Tool

 144
-D

wish to expand only lexons that denote transitive-alike relationships such
as subsumption or parthood.

Fig. 6.7. Lexon browsing.

By selecting “Allow expanding lexons…”, users will be able to expand T2
of the Lexon. The expansion will show all lexons where this T2 is T1 for
other lexons, and so on. In this way, users will be able to browse the tree
as they browse a graph. Note that expanding a node that is already
expanded in the same sub-tree (i.e. cycle) is not possible. If such an
attempt is made, the focus of the window will be moved to the previous
sub-tree. As a result, users will be able to visit all lexons starting from any
Term (see the right side of fig. 6.7.).

Remark: although the tree-alike representations of lexons are very simple
and easy for ontology builders to understand, the main disadvantage of
such a representation is scalability. Browsing large-scale ontology bases

Chapter 6: DogmaModeler Ontology Engineering Tool

 145
-D

in this way is obviously not convenient as it requires ontology builders to
perform many search and expand operations and browsing tree-alike
representations is scalable up to several hundred terms or lexons.

Nevertheless, several techniques can be used for modeling, browsing, and
visualizing ontology bases, but these are major research topics on their
own. A promising technique that we plan to incorporate in future is called
LexoVis [P05] as this technique seems to allow scalable visualization of
lexons.

6.3 Modeling application axiomatizations
While an ontology base is intended to be a shared and public
axiomatization (characterizing its intended models) at the domain level,
application axiomatizations are intended to be local and highly usable at
the task/application-kind level. Given an ontology base, applications that
are interested only in a subset of the intended models of a concept in
accordance with their usability perspective are supposed to provide some
rules to specialize these intended models. As we have discussed in chapter
3, we require that the vocabulary used in application axiomatizations be
restricted to the vocabulary defined in its ontology base. An application
axiomatization becomes a set of rules to constrain the particular use of the
domain vocabulary.

As particular applications commit to the ontology base through
application axiomatization(s), such axiomatizations are seen as (and also
called) the application’s ontological commitment (see section 3.4.).

The process of modeling such ontological commitments in the
DogmaModeler is designed to be very simple. As appears in fig. 6.8,
ontology builders can drag and drop lexons from the ontology base
window into the ORM Diagram panel. These lexons are mapped and
drawn automatically as fact-types, according to the ORM notation.
Ontology builders then can define new constraints on these lexons (see the

Chapter 6: DogmaModeler Ontology Engineering Tool

 146
-D

icons of the ORM family of constraints in the top of the ORM Diagram
panel).

Fig. 6.8. Modeling application axiomatizations.

The mapping of lexons as intuitive domain axioms into ORM fact-types
that have predefined formal semantics [V82] is done as follows: a Term
within a context is mapped directly into an Object-Type in ORM and
Roles within a lexon are also mapped directly into ORM Roles within a
fact-type. In the case of ORM Subtype relations that have specific “build-
in” semantics, ontology builders need to customize the “Graph settings”
window in order to specify which roles should be mapped (see fig. 6.9.).

Chapter 6: DogmaModeler Ontology Engineering Tool

 147
-D

The DogmaModeler does not support ORM unary roles and nested fact
types.

Fig. 6.9. Mapping to ORM Subtype relationship.

6.3.1 Generating ORM-ML

Fig. 6.10 shows the ORM markup language corresponding to the ORM
diagram in Fig. 6.1. This language is automatically generated by the tool.
The DogmaModeler supports import-export ORM-ML into text files, and
downloads or uploads it into the ontology server.

Chapter 6: DogmaModeler Ontology Engineering Tool

 148
-D

Fig. 6.10. The ORM-ML panel window.

The graphical layout of the ORM diagrams (shapes, positions, color, etc.)
is generated by the DogmaModeler into a separate XML-based document,
called the ORM graphical style-sheet. The XML-schema of these
graphical style-sheets is presented in Appendix B2.

6.3.2 Verbalization86

Fig. 6.11 shows a verbalization of the ORM diagram presented in Fig. 6.1.
This verbalization is a pseudo natural language (fixed-syntax English
sentences) generated automatically by the DogmaModeler. The

86 Later, this section was revised and extended, see [JKD06].

Chapter 6: DogmaModeler Ontology Engineering Tool

 149
-D

DogmaModeler generates such a verbalization by applying predefined
verbalization templates parameterized over an ORM-ML document.

Fig. 6.11. The Pseudo NL panel window.

In our experience87, verbalizations greatly assists non-ontology-experts in
building and validating axiomatizations. It is indeed an easily understood
language for domain experts, especially those who are not trained to
understand technical or formal languages. Although it is not a formal

87 ie: Specifically, our experience in building the CContology in cooperation with many
domain experts (about 40 layers, application expertise, etc.). We shall report this
experience in greater detail in chapter 7.

Chapter 6: DogmaModeler Ontology Engineering Tool

 150
-D

language, verbalization templates should be unambiguous and well
structured.

The DogmaModeler supports flexible and multilingual verbalization
techniques. We have developed an easy-to-customize verbalization
template to verbalize ORM-ML documents. We have translated this
template into several languages. If the content of an ORM-ML document
is lexicalized in Italian for example, the DogmaModeler is able to
generate the verbalizations in Italian. Appendix B3 presents five
verbalization templates in English, Dutch, Arabic and Russian88. In the
following paragraphs, we illustrate our English verbalization template
using selected examples.

Fig. 6.12 shows the verbalization template of the Mandatory constraint.
Given this template, the verbalization of the mandatory constraint in fig.
6.13 is: “Each Book must Has at least one ISBN”.

Fig. 6.12. Verbalization template for the ORM Mandatory constraint.

Fig. 6.13. Example of ORM mandatory constraint.

Keeping in mind the verbalization template of Exclusive constraint in fig.
6.14, the verbalization of the constraint in fig. 6.15 reads: “Each

88 The support of more languages is designed to be very simple. It requires just the
provision of a new temple for the language.

Chapter 6: DogmaModeler Ontology Engineering Tool

 151
-D

Complaint Resolution should be either Economic Resolution or Symbolic
Resolution or Information Correction”.

Fig. 6.14. Verbalization template for the ORM Exclusive constraint.

Fig. 6.15. Example of an ORM Exclusive constraint.

Given the verbalization template of the Subset constraint in fig. 6.16, the
verbalization of the constraint in fig. 6.17 should read: “If a Person Drives
a Car then this Person must be AuthorizedWith a Driving License”.

Chapter 6: DogmaModeler Ontology Engineering Tool

 152
-D

Fig. 6.16. Verbalization template for the ORM Subset constraint.

Fig. 6.17. Example of ORM Subset constraint.

The complete verbalization templates of all ORM constraints are
illustrated with examples from each of the five translated languages and
presented in appendix B3.

Notice that the verbalization templates (which are typically attached with
the DogmaModeler as “setting-files”) are not intended to be customized
by “normal” ontology builders. Rather, the idea is to equip ontology
engineers and experts with an easy to translate (or improve) verbalization
mechanism.

6.4 Validation of application axiomatization89

89 Later, this work was revised and extended ([JS06] and [JH08]). In addition,
DogmaModeler was extended to allow description logic based reasoning (See [J07],
[J07b], and [JD06]).

Chapter 6: DogmaModeler Ontology Engineering Tool

 153
-D

DogmaModeler supports various types of validations. These are logical
validations, ontological validations as well as syntax and lexical
validations.

Logical validations typically are “satisfiability” and “implication
reasoning” validations, which can be used to validate application
axiomatizations. Fig. 6.18 displays these patterns as a menu in the
DogmaModeler Validator Settings window. Users can choose to enable or
disable the enforcement of these validation patterns when reasoning about
the satisfiability of an application axiomatization. The DogmaModeler
typically implements the algorithms of the satisfiability patterns that we
have developed in section 4.5. The specification of the last three
implication patterns is adopted from [H89].

Fig. 6.18. DogmaModeler’s support of Logical validations.

Chapter 6: DogmaModeler Ontology Engineering Tool

 154
-D

Ontological validation is concerned with ensuring that all fact-types in a
commitment correspond to lexons in a given ontology base. See fig. 6.19.

If an application axiomatization is developed using DogmaModeler, the
result of this validation is always positive, as users are unable to introduce
new terminologies or fact-types unless they are defined in the ontology
base. This validation is important in case application axiomatizations are
modeled or modified using other tools.

Fig. 6.19. DogmaModeler’s support of ontological validations.

Fig. 6.20 shows the menu of the syntax and lexical validations. As is
apparent from the figure, these validation patterns are concerned with
issues relating to grammar and formatting.

Chapter 6: DogmaModeler Ontology Engineering Tool

 155
-D

Fig. 6.20. DogmaModeler’s support of syntax and lexical validations.

Outlook: Validations at the ontology base level are not yet supported in
the DogmaModeler. This topic is considered in an upcoming paper related
to this thesis (see section 8.3). Validations at the ontology base level
should include, mainly the ontological quality and precision of an
axiomatization. One example is how precisely a given set of lexons
capture all aspects of the intended meaning of the ontology vocabularies
and nothing else (i.e. all and only the intended meaning). As we have
discussed in section 3.3.7 (and illustrated by examples), systematic quality
and precision at the ontology base level can be achieved by incorporating
primitives of upper level or foundational ontologies. Furthermore, some
lessons on how to validate and deal with the lexical issues of the ontology
vocabulary can be learned from the “lexical semantics” research

Chapter 6: DogmaModeler Ontology Engineering Tool

 156
-D

community90, such as, the use of nouns and adjectives verses terms, verbs
verses roles, the modeling of idioms, the specific uses of metaphors,
singulars, plurals, etc.

6.5 Axiomatization libraries
In this section, we present the DogmaModeler’s support of axiomatization
libraries.

As the number of axiomatizations is expected to grow rapidly, developing
axiomatization library systems is a recognized need [DF01] [SGG+05].
The main goals of such libraries are to facilitate the reusability,
organization, and management of axiomatizations. Metadata is the key
infrastructure that enables the development of such axiomatization
libraries [SGG+05]. Metadata is a systematic method (used by both
human and machines) for describing axiomatization resources. It provides
potential users of an axiomatization with basic knowledge of this
resource.

A metadata record generally consists of a set of pre-defined elements that
describe a resource (sometimes called tags, or attributes) and each element
can have one or more values.

The DogmaModeler allows different metadata standards (e.g. Dublin-
Core, LOM, etc.) to be used for describing axiomatizations. However, as
such metadata standards are very general in their description of resources
and not concerned with describing ontological resources in particular, we
have developed a set of metadata elements as an extension to (and
specialization of) the Dublin-Core metadata standard. Our metadata
elements are intended to describe ontological resources. Further, by
extending a common standard (i.e. Dublin-Core) we aim to gain more

90 Specially from the emerging WordNet-alike (or so called “mental lexicons”)
communities, such as http://www.globalwordnet.org/ (January, 2005).

Chapter 6: DogmaModeler Ontology Engineering Tool

 157
-D

adoptability of our elements and compatibility with legacy resources and
systems.

In fig. 6.21, we present an ORM representation of our metadata elements.
This specification is used in the DogmaModeler as a meta-model of the
axiomatization library. For the sake of brevity, the definitions of these
elements (i.e. metadata glossary) are presented in appendix B1. Section
5.2.1 shows how these elements can be used in ORM-ML.

Fig. 6.21. DogmaModeler’s a meta-model of the axiomatization library.

In fig. 6.22, we show the commitment library widow. In this window,
DogmaModeler users can add, delete, manage, and brows application
axiomatizations. Notice that an axiomatization may include other
axiomatizations. For example, the “BookShopping” axiomatization is a

Chapter 6: DogmaModeler Ontology Engineering Tool

 158
-D

composition of the “BookOrder” and the “e-Payment” axiomatizations91.
Such an axiomatization is called a modularized axiomatization (see
section 4.4.3).

Fig. 6.22. DogmaModeler’s support of axiomatization libraries.

91 See fig. 4.2.

Chapter 6: DogmaModeler Ontology Engineering Tool

 159
-D

6.6 Composition of axiomatization modules
The DogmaModeler supports the automatic composition of
axiomatization modules. It typically implements the composition
algorithm we presented in chapter 4.

When dragging or dropping an axiomatization from the commitment
library window to the commitment modeling window, a menu appears
asking the user whether he/she want to Open, Add, or Compose this
commitment (see fig. 6.23.).

Fig. 6.23. DogmaModeler’s support of axiomatization libraries.

The “Add” choice is merely a copy-paste operation that copies all lexons
and constraints to the axiomatization that is being edited in the
commitment-modeling window. No reasoning steps are attached or
associated with the Add operation.

Chapter 6: DogmaModeler Ontology Engineering Tool

 160
-D

When choosing “Compose”, the DogmaModeler composes the “dragged
axiomatization” with the “opened axiomatization(s)” in the modeling
window. During this composition, the DogmaModeler implements the
composition algorithm and the associated reasoning steps that we
specified in chapter 4. If the result cannot be satisfied, the composition is
considered an incompatible operation and thus terminated.

To facilitate simplicity in the viewing and editing of a modular
axiomatization, the DogmaModeler allows users to draw each module in a
different color. Users are also prevented from modifying any of the
composed modules. In other words, users cannot delete or change any
fact-types or constraints that originate from any of the composed
axiomatizations.

When generating the ORM-ML (of a modular axiomatization), the
DogmaModeler allows the users to choose to either 1) refer to the
axiomatizations composed by their URIs, or 2) include the content of
these composed axiomatizations (as sub-commitment) inside the ORM-
ML document. Fig. 6.24 illustrates the ORM-ML representation of a
modular axiomatization using RUIs as references to the composed
modules. In this way, each of the composed modules will be fetched when
opining (or using) the modular axiomatization. The main disadvantage of
this method is that any changes to the modules may influence the
satisfiability of the composition.

Fig. 6.24. An example of the ORM-ML representation of a modular axiomatization,

using URIs.

Chapter 6: DogmaModeler Ontology Engineering Tool

 161
-D

In the second choice, users can choose to include “a copy” of each module
as a subpart of the ORM-ML document (see fig. 6.25.). In this way,
several problematical issues are prevented, such as the influence of
module changes and broken links. However, the main disadvantage of this
method is that some useful changes, to the original modules, will not be
captured.

The DogmaModeler allows users to decide on the most appropriate
method, given their application scenario, the steadiness of their module
evolution and whether their usage is on or off-line etc.

Fig. 6.25. An example of an ORM-ML representation of a modular axiomatization,

where the content of a module is included as a sub-commitment.

Chapter 6: DogmaModeler Ontology Engineering Tool

 162
-D

6.7 Other functionalities
This section briefly touches on a few other functionalities of
DogmaModeler, for example, those that deal with ontology-driven forms,
and ontology multilingualism.

6.7.1 Ontology-driven forms

DogmaModeler supports the automatic generation of a web form based on
a given ORM-ML axiomatization. This functionality first generates an
XForm92 from the given axiomatization, before generating a HTML-form
out of the generated XForm. The purpose of generating an intermediate
XForm is to allow changes to the layout of a form before generating the
HTML-form. This functionality has been successfully used in the
CCFORM thematic-network project for generating customer complaint
web-forms based on the CContology (see chapter 7).

In the following paragraphs, we present this functionality at the abstract
level. For more details, please refer to [JLVM03].

To map an ORM schema into Xform, users should first select the main
Object-Type that they want to build a form about (see fig. 6.26.).
DogmaModeler then maps the ORM schema into a hierarchal structure
based on the previously selected Object-Type that functions as a root. For
example, fig. 6.27 shows the generated hierarchy of the e-Payment
axiomatization that we have presented in fig 4.2.

92 The classical design of Web forms does not separate the purpose of a form from its
layout. Conversely, Xforms are comprised of separate sections that describe what the
form does, and how it looks. XForms are considered the next generation of web forms
but XForm technology is still a work in progress and is not yet standardized. In the
DogmaModeler, we use the NanoWorks XForm XML form specification (webpage
http://xform.nanoworks.org , January 2005). Some of the preferable features of
NanoWorks XForm are that (1) it generates standard HTML and javascript that works
with any browser, (2) it is open source and requires no special plug-ins (3) it significantly
reduces the coding necessary to build and maintain complex form interfaces, (4) it
insures data integrity by validating user input on the client-side and the server-side, (5) it
reduces the likelihood of error by encapsulating form structure and validation, and (6) it
creates a record of user data as an XML document.

Chapter 6: DogmaModeler Ontology Engineering Tool

 163
-D

Fig. 6.26. The step of generating an ontology-based web form.

Before generating the Xform specification, the “Xform Tree” window in
fig. 6.27 enables users to delete the unwanted nodes (so they do not
appear in the generated form), and to sort the nodes according to a desired
order (in the form).

Fig. 6.27. the “Xform Tree” window.

We have adopted the approach presented in [EWHLF02] for mapping an
ORM schema into a hierarchy, and for eliminating the possible cycles in
the schema. This approach is used for generating an XML-scheme out of a
given EER diagram.

In the last step, the DogmaModeler maps the generated hierarchy into the
Xform specification which then can be directly mapped into an HTML
specification using a NanoWorks web server.

In fig. 6.28 we show the resultant web form from the above example. For
the sake of brevity, the Xfrom specification is not presented here.

Chapter 6: DogmaModeler Ontology Engineering Tool

 164
-D

Fig. 6.28. The resultant web form of e-Payment axiomatization.

HTML does not allow for the encoding of all ORM constraints at the
client-side (e.g. to apply integrity constraints when populating a web
form). The NanoWorks server however, does allow the other constraints
to eforced at the server-side. In the DogmaModeler, mandatory constraints
are mapped into (and so can be enforced) using JavaScript at the client-
side. A value constraint is mapped into the “Select” HTML element. In
case the value constraint is not companied with an internal uniqueness,
then the “Multiple” HTML attribute is added. Depending on the
companion of the totality and exclusive constraints, subtypes are mapped
into radio buttons or check boxes. See [JLVM03] for more details and
examples.

6.7.2 Ontology Multilingualism

The DogmaModeler supports the multilingual lexicalization of ontologies.
Given an ontology base (lexicalized in a certain language, called the
ontology native language), the DogmaModeler allows ontology builders
to build a list of one-to-one translations into other languages. This list is

Chapter 6: DogmaModeler Ontology Engineering Tool

 165
-D

not seen as part of the ontology itself. Rather, it belongs to a certain
application scenario or a group of users.

We postpone the discussion on this issue and its DogmaModeler’s support
to section 7.4. We shall illustrate our approach to multilingual
lexicalization of the CContology, discuss multilingual ontologies verses
multilingual lexicalization of ontologies, and provide some
methodological guidelines on the translation of ontology terms.

6.8 Discussion and conclusions
In this chapter, we have presented the DogmaModeler, our prototype
ontology engineering tool. We have shown how to model and represent
both domain and application axiomatizations. We have shown also how
existing lexical resources can be incorporated in concept/gloss modeling.
The adoption of conceptual data modeling techniques for ontology
engineering is illustrated through the use of ORM as a modeling and
specification language of application axiomatizations. We have presented
an easy to customize verbalization template that allows non-ontology
experts to (help) check, validate, or even build application
axiomatizations. DogmaModeler supports and implements the automatic
composition of modules as well as the representation and validation of
modular axiomatizations. A set of carefully defined ontology metadata is
proposed to enable the implementation of axiomatization libraries.

Although the DogmaModeler introduced in this chapter is a prototype, it
has been successfully applied in a number of real-life and large projects
such as CCFORM, FFPOIROT, SCOP, etc. It has been acknowledged as
an intuitive tool for non-ontology experts, particularly because of the
graphical and verbalization support it provides. In the next chapter, we
proceed to report our experiences and main achievements in using the tool
in the CCFORM project, specifically, for developing a Customer
Complaint ontology (CContology).

Chapter 6: DogmaModeler Ontology Engineering Tool

 166
-D

Acknowledgement: I would like to express my sincere gratitude to all my
master’s students and colleagues who have helped me in the
implementation of DogmaModeler. Particularly, I’d like to thank Andriy
Lisovoy who programmed the main architecture and components of the
tool, Jan Demey for his help in programming some components of the
early version, Hai Nguyen Hoang who helped me in the implementation
of the verbalization functionality, and Quoc Hung for implementing
WordNet mapping to DogmaModeler. I am also in debt to all colleagues
and project partners who so generously shared their comments and made
suggestions to improve the tool.

Chapter 6: DogmaModeler Ontology Engineering Tool

 167
-D

Chapter 7: The CCFORM Case Study

 168
-D

Chapter 7

The CCFORM Case Study

“If customers do not hesitate to use on-line service, it will
facilitate their day to day life. The development of

electronic commerce must not be limited to a group of
people and to an experimental stage. It can, for instance,
become a huge facility for house bound citizens, such as

mothers with small children, or handicapped persons…”

(The CCFORM Project)

*Later,�this�chapter�was�revised�and�published�in�[J08]�

In this chapter, we outline our experience in applying the methodological
principles and the tool for developing a Customer Complaint ontology
(CContology). This ontology has been developed within the EU
CCFORM thematic-network project93 which is introduced in section 7.1.
The CContology itself is presented in section 7.2, while section 7.3
provides a discussion of the application and the lessons learned in the
process. A methodology for multilingual lexicalization of ontologies is
presented in section 7.4 before conclusions are drawn in section 7.4.

93 (IST-2001-34908), 5th framework.

Chapter 7: The CCFORM Case Study

 169
-D

7.1 Introduction
The use of the Internet for cross-border business is growing rapidly.
However, in many cases, the benefits of electronic commerce is not
exploited fully by customers because of the frequent lack of trust and
confidence in online cross-border purchases. To achieve fair trading and
transparency in commercial communications and transactions, effective
cross-border complaint platforms need to be established and involved in e-
business activities [CIHF02] [CW87] [ABA02].

The CCFORM project aims to study and reach a consensus about the
foundation of online customer complaint mechanisms by developing a
standard but extensible form (called CC-form94) which has widespread
industry and customer support. This CC-form must facilitate cross-
language communication to support cross-border e-commerce and should
be easy to implement in software tools. The CC-form will raise the basic
standard of complaints management, and should be extended in vertical
markets to provide sector-wide solutions to allow service providers to gain
competitive advantages.

There are several challenges involved in establishing and standardizing
such a CC-form: (1) Legal bases: the sensitivity of cross-border business
regulations and privacy issues. (2) The diversity of language and culture:
controlling and standardizing the semantics of the complaint terminology
so that the intended meaning of the term gets across, even in the different
languages. (3) Consumer sensitivity and business perspectives. (4)
Extensibility: the flexibility of extending the CC-form (perhaps
dynamically) according to market needs and standards. This would mean
for example, extending the kinds of problems that a complainant can

94 We refer to the project as CCFORM and to a customer complaint form as " CC-form".
One may imagine a CC-form as one page web-form, or several pages that can be filled in
several steprs.

Chapter 7: The CCFORM Case Study

 170
-D

complain about and extending the kinds of resolutions, managing who
may extend what, etc.

In order to tackle such challenges and to perfect the reference model for
the complaint form, the major work in the CCFORM project has been
divided into six topic panels (TPs), each consisting of 10-15 specialized
members. Each panel has been intensively discussing different issues:
TP1- Legal Affairs, TP2 - Consumer Affairs, TP4 - Standards for SMEs,
TP5 -Alternative Dispute Resolution Systems, TP6 - Ontology and
Extensibility, TP7 - Vertical markets.

This work outlines our main achievements in the “Ontology and
extensibility, including multilingual and cultural issues” topic panel. The
goal of this topic panel, TP6, is to undertake extensibility and multilingual
demands. To approach this, a customer complaint ontology (CContology)
has been developed and lexicalized in multiple languages.

7.2. Customer Complaint ontology
The customer complaint ontology (CContology) intends to capture the
main concepts in the “customer complaint management” domain. Its core
covers a semantic description of complaints that could be issued by any
legal person against any other legal person (NGO, company, natural
person, etc.). The CContology comprises classifications of complaint
problems, complaint resolutions, complainant, complaint-recipient, “best-
practices”, rules of complaint, etc.

The main intended impact of the CCFORM project is the future initiation
of a European online complaint platform that will provide a trusted portal
between consumers and business entities. In this respect, the ontology is
intended to become the basis for a future core ontology in the domain of
customer complaint management (for both humans and machines).
Applying the CContology in such an European online complaint platform
will facilitate further refinements of the CContology.

Chapter 7: The CCFORM Case Study

 171
-D

The main uses of such an ontology are 1) to enable consistent
implementation (and interoperation) of all software complaint
management mechanisms based on a shared background vocabulary,
which can be used by many stakeholders. 2) to play the role of a domain
ontology that encompasses the core complaining elements and that can be
extended by either individuals or groups of firms; and 3) to generate CC-
forms based on its ontological commitments and to enforce the validity
(and/or integrity) of their population.

Although this CContology has been developed and reviewed by six topic
panels, in its current state, it can only be considered a proposal. The
CCFORM community is representative of a sizable cross-section of the
domain but is not a standardization body. Nor is it in the position to insist
on a de facto enforcement of this ontology as a generally agreed semantic
specification. However, the approach presented in this paper is designed
to initiate and drive such a process.

The CContology consists of a domain axiomatization (i.e. the ontology
base that represents the lexons and the term glossary) and seven
application axiomatization modules: Complaint Problems, Complaint
Resolutions, Complaint, Complainant, Complaint-Recipient, Address, and
Contract.

7.2.1 Customer-complaint domain axiomatization

This axiomatization consists of about 220 concepts and 300 lexons, which
characterize the core concepts in the customer-complaint domain. The
three representation units of this domain axiomatization (i.e. the ontology
base) are: context, terms and their glosses, and the set of lexons.

“Customer Complaint” Context

As we have discussed in section 3.3.5 and in section 6.2.1, context is the
first building block for developing a domain axiomatization. It plays a

Chapter 7: The CCFORM Case Study

 172
-D

scoping role, through which the interpretation of the intended meaning of
the ontology terminology is bounded.

In the CContology, the “Content ID” is called the “Customer Complaint”
context, or the CCcontext in short. The “Context Description” is defined
as follows:

Background knowledge (i.e. explicit, implicit, or tacit
assumptions) about all (activities, communications,
institutions, people, places, objects, etc.) that are involved
in consumer-provider relationships, regarding contractual
and non-contractual complaining issues.

These assumptions can be understood (i.e. can be found
explicitly or intuitively) in the following sources:

x European Distance Selling Directive (97/7/EC), on the
promotion of consumers in respect of distance
contracts.

x European e-Commerce Directive (2000/31/EC) on
certain legal aspects of information society services, in
particular, electronic commerce, in the Internal Market

x European Data Protection Directives (95/46/EC and
97/66/EC) on the protection of individuals with regards
to the processing of personal data and on the free
movement of such data.

x European Directive (99/44/EC) on aspects of the sale
of consumer goods and associated guarantees.

x European Directive (98/27EC) on Injunctions for the
Protection of Consumers’ Interests.

x CEN/TC331 Postal Services EN 14012:2002 Quality of

Chapter 7: The CCFORM Case Study

 173
-D

Service – Measurement of complaints and redress
procedures.

x “Best practice” guidelines, The Nordic Consumer
Ombudsmen’s position paper on trading and marketing
on the Internet and other similar communication
systems(http://econfidence.jrc.it, June 2002)

x CCFORM Annex 1, (IST-2001-34908, 5th framework).

x CCFORM Report On Copyright And Privacy
Recommendations (Deliverable D.5.3).

x CCFORM user guide and business complaints
(Deliverable D.5.1.1).

x CCFORM Company user guide (Deliverable D.5.1.2).

x CCFORM Web publication of CCform User Guides in
11 languages (Deliverable D6.11).

x Code of Conduct (CCFORM deliverable).

Remark: For the sake of brevity, many resources (regulations
at the European and national levels, best practices, existing
online complaining (plat)forms, etc.) are not mentioned here.
However, references to these resources can be found inside the
resources listed above.

We have learned during the definition process of the above CCcontext
that it is not an easy task, and it cannot be defined rigidly in the early
phases of the development of the CContology. As none of our team was
an ontology expert, we provided a draft definition and investigated by
providing many different examples of application scenarios that this

Chapter 7: The CCFORM Case Study

 174
-D

context should cover95. For example, we have questioned whether the
context should cover applications such as customer-relationship-
management, market analyses, sales force automation and so forth;
whether it should cover all consumer regulations in any country or only in
Europe; whether it should cover all commercial activity, in any place and
at any time; which documents, laws and regulations should be our main
references, etc. Such questions led not only to the CCcontext definition
(which was achieved after several iterations), but also propelled the team
to discuss deeply and even redefine the scope of the CCFORM goals.

Vocabularies and their glosses

Within the “Customer Complaint” context, we define 220 terms. These
terms and their glosses (Called CCglossary) are provided in appendix C1.

The CCglossary was developed (and reviewed) over several iterations.
The first iteration was accomplished by a few (selected) experts before the
lexon modeling process was started. Further iterations have been carried
out in parallel with the lexon modeling process. The final draft was
reviewed and approved by several topic panels. It is probably worth
noting that intensive discussions were carried out (by legal experts,
market experts, application-oriented experts) for almost every gloss. We
have found that the gloss modeling process is a great mechanism for
brainstorming, domain analyses, domain understanding and for reaching
(and documenting) consensus. Furthermore, it allowed non-ontology
experts to participate actively in the ontology modeling process96.

As shall be discussed in section 7.4, this CCglossary, which has been
developed in English, has played the role of the key reference for
lexicalizing the CContology into 11 other European languages.

95 This investigation was done to prevent the CContology from being dependent on the
CC-form application scenario which the team had in mind during the early phases.
96 Some CCFORM partners have noted that the CCglossary is the most useful component
in the CContology.

Chapter 7: The CCFORM Case Study

 175
-D

Translators have acknowledged that it guided their understanding of the
intended meanings of the terms and allowed them to achieve better
translation quality.

Lexons

Stemming from the 220 terms within the “Customer Complaint” context,
we have developed 300 lexons, which can be found in appendix C2. Most
of these lexons represent taxonomies of complaint problems, complaint
resolutions, complainant, complaint recipient, etc.

The first draft of the lexons has been developed based on presentations
and discussions between the members of Topic Panel 6 (Ontology and
Extensibility). One of the most important inputs, for the first draft, was the
complaint categorization survey [VS03] that was performed by two of the
panel members. Further, refinements and investigations were performed
during meetings and workshops that we organized in cooperation with
other topic panels.

7.2.2 Customer-complaint application axiomatization

Given the previously presented “customer complaint” domain
axiomatization, seven application axiomatization modules have been
developed. The intended meaning of the terminology used in these
application axiomatization modules is restricted to the terminology
defined at the domain axiomatization level.

The application axiomatization modules are intended to play the role of
conceptual data schema(s) for CC-forms development. Any CC-form,
including its population, should be based on (i.e. commit to) the
CContology through those axiomatization modules. A CC-from can be
constructed manually or generated automatically (as has been illustrated
in section 6.7.1); nevertheless, the semantics of all elements in this CC-
from (i.e. the data fields) should be defined in the CContology.

Chapter 7: The CCFORM Case Study

 176
-D

As stated earlier in this chapter, the seven application axiomatization
modules are: Complaint problems, Complaint resolutions, Contract,
Complaint, Complainant, Complaint Recipient, and Address. Depending
on an application’s usability requirements, these modules can be used
individually or composed to form a modular axiomatization(s).

In the following section, we provide a brief description of each module,
including its ORM graphical representation. The ORM-ML representation
of all modules, and their verbalization into pseudo natural language, are
presented in appendix C3.

Complaint Problems

Fig. 7.1 shows the “Complaint Problems” axiomatization module. It
represents a taxonomy of complaint problems.

Chapter 7: The CCFORM Case Study

 177
-D

Fig. 7.1. The “Complaint Problems” application axiomatization module.

We distinguish between a ‘Complaint’ and a ‘Problem’. A ‘Complaint’
describes one or more ‘Problems’. While the concept ‘Problem’ is defined
as “A source of difficulty or dissatisfaction”, the concept ‘Complaint’ is

Chapter 7: The CCFORM Case Study

 178
-D

defined as “An expression of grievance or resentment issued by a
complainant against a compliant-recipient, describing a problem(s) that
needs to be resolved”.

Within the “customer complaint” domain, a ‘Problem’ can be a ‘Privacy
Problem’, or either a ‘Contract Problem’ or a ‘Non-contract Problem’. A
‘Contract Problem’ can be a ‘Purchase Phase Problem’, or either a ‘Pre-
purchase Phase Problem’ or a ‘Post-purchase Phase Problem’. It is
mandatory for both ‘Purchase Phase Problems’ and ‘Post-purchase Phase
Problems’ to be associated with a ‘Contract’. For any type of problem,
‘Evidence’ might be provided for investigation purposes.

Remark: In this “Complaint Problems” module, only four classification
levels are presented, all of which are the popular categories in most CC-
forms. Further classifications of complaint problems can be found at the
ontology base level.

Complaint resolutions

Fig. 7.2 illustrates the “Complaint Resolution” module, which present a
taxonomy of ‘Complaint Resolutions’. A ‘Complaint Resolution’ is
defined the CCglossary as “A determination for settling or solving a
complaint problem(s)”. It can be requested by a complainant or offered by
a complaint-recipient. A ‘Complaint Resolution’ can be an ‘Economic
Resolution’, a ‘Symbolic Resolution’, or an ‘Information Correction’.

Chapter 7: The CCFORM Case Study

 179
-D

Fig. 7.2. The “Complaint Resolutions” application axiomatization module.

Contract

A ‘Contract’ is defined in the CCglossary as “a binding agreement,
between two or more legal persons, that is enforceable by law”. Under this
definition, an invoice can also be a contract. Fig. 7.3 illustrates the
“Contract” axiomatization module, which specifies the information that
should be provided for a contract associated with a ‘Purchase Phase
Problem’ or ‘Post-purchase Phase Problem’. Notice that, for a CC-form,
we speak of a ‘Contract’ from the moment there is a ‘Contract Order
Date’.

Chapter 7: The CCFORM Case Study

 180
-D

Fig. 7.3. The “Contract” axiomatization module.

Complaint

A ‘Complaint’ is defined in the CCglossary as “An expression of
grievance or resentment issued by a complainant against a compliant-
recipient, describing a problem(s) that needs to be resolved”.

Fig. 7.4 illustrates the “Complaint” axiomatization module, which
specifies the main concepts that can be associated with the concept
‘Complaint’. A ‘Complaint’ must be issued by a ‘Complainant’ against a
‘Complaint-Recipient’, on a certain ‘Date’. It must describe at least one
‘Problem’, and may request one or more ‘Complaint Resolutions’. A
‘Complaint’ might be identified by a ‘Complaint Number’, which is
typically used as a unique reference in a court or a complaint system.

Chapter 7: The CCFORM Case Study

 181
-D

Fig. 7.4. The “Complaint” application axiomatization module.

Complainant

Fig. 7.5 illustrates the ‘Complainant’ axiomatization module. A
‘Complainant’ is defined in the CCglossary as “A legal person97 who
issues a complaint”. In the customer complaint domain, and as commonly
understood in most consumer regulations, a complainant must either be a
‘Natural Person Complainant’98 or a ‘Non-Natural Person Complainant’99,
each implying a different legal basis for the handling of the complaint.

Fig. 7.5. The “Complainant” application axiomatization module.

The distinction between natural and non-natural person complainants is
not only based on the variation of their complaint handling regulations,

97 The concept ‘Legal Person’ is defined in the CCglossary as : “An entity with legal
recognition in accordance with law. It has the legal capacity to represent its own interests
in its own name, before a court of law, to obtain rights or obligations for itself, to impose
binding obligations, or to grant privileges to others, for example as a plaintiff or as a
defendant. A legal person exists wherever the law recognizes (as a matter of policy). This
includes the personality of any entity, regardless of whether it is naturally considered to
be a person. Recognized associations, relief agencies, committees, and companies are
examples of legal persons”.
98 Such as a normal consumer.
99 Such as a business customer.

Chapter 7: The CCFORM Case Study

 182
-D

but also on the legal preference (in any CC-from) for not obligating the
inquiry of private information about the ‘Natural Person Complainant’,
such as his/her ‘Name’, ‘Birth Date’, ‘Mailing Address’, ‘Religion’ etc.

Each ‘Natural Person Complainant’ must have ‘Contact Details’. The
mandatory contact details are an ‘eMail’ and his/here ‘Country’ of
residence. A ‘Non-Natural Person Complainant’ must be denoted by a
certain ‘Registration’100 that identifies him.

Complaint recipient

Fig. 7.6 illustrates the “Complaint Recipient” axiomatization module. A
‘Complaint Recipient’ is any legal Person to whom a complaint is
addressed. Typically, when a ‘Complaint’ is issued against a ‘Complaint
Recipient’, the ‘Contact Details’ or the ‘Registration’ of this ‘Complaint
Recipient’ should be denoted101.

Fig. 7.6. The “Recipient” application axiomatization module.

Address

Fig. 7.7 illustrates the “Address” axiomatization module. The concept
‘Contact Details’, which is a channel of communication, is attributed by

100 The concept ‘Registration’ is defined in the CCglossary as: “A certification, issued by
an Administrative authority or an accredited registration agency, declaring the official
enrollment of an entity. Typically, it includes the official name, mailing address,
registration number, VAT number, legal bases, etc.”.
101 Usually, all online customer complaint platforms provide a searchable database of
many “Complaint Recipients”, which enables complainants to easily find the official
names and addresses of ‘complaint recipients’

Chapter 7: The CCFORM Case Study

 183
-D

both ‘Name’ and ‘Address’. An ‘Address’102 must be either an ‘Electronic
Address’ or a ‘Mailing Address’. An ‘electronic Address’ can be either a
‘Web Site’, ‘Telephone’, ‘eMail’, or ‘Fax’. A ‘Mailing Address’ can have
all the traditional information of postal addresses in the European Union.

Remark: The notion of ‘Address’ can be specified in many different
ways103, especially since each country has its own postal information
structure. Hence, this “Address” axiomatization module is considered an
“unsteady” module, and should be replaced by a more sophisticated
module – one that does, for example, consider the compatibility with
online national, European, or international address servers104.

Fig. 7.7. The “Address” application axiomatization module.

102 The concept ‘Address’ is defined in the CCglossary as: “A construct describing the
means by which contact may be made with, or messages or physical objects may be
delivered to a legal entity. An address may contain indicators for a physical or virtual
(i.e. accessed electronically) location or both”.
103 Due to epistemological differences.
104 Such address servers are: http://www.afd.co.uk/tryit/ (February 2004),
http://www.postdirekt.de (February 2004), http://www.usps.com, (February 2004), etc.

Chapter 7: The CCFORM Case Study

 184
-D

7.3 Discussion and lessons learnt
This section provides a further discussion on the application of our
methodological principles and tool for the development and engineering
of the CContology.

Extensibility is one of the main requirements (and one of the most
challenging issues) for the development of any CC-form. As we have
mentioned earlier, the main goal of the CCFORM is to reach consensus
about the foundation of a trusted customer complaint portal. Once such a
portal is implemented as a centralized CC-form between customers and
companies, companies may wish to extend "their" CC-form to inquire
about more specific complaint details, e.g. delivery conditions, certain
product attributes, or they might wish to offer the customer a particular
resolution, etc105. Such extensions may be a necessity not only for
individual companies but also in so called vertical markets applications
(covered in the “vertical market” topic panel, TP7). In the CCFORM
project, the intention is to allow companies to extend the CC-form content
themselves, within given (e.g. legal) constraints on those extensions. On
the one hand, this will help to achieve a wider adoption of complaint
mechanisms in e-commerce applications. On the other hand, this will
create new challenges such as keeping the new extensions consistent with
the existing CC-form and preventing the misuse of the CC-form. For
example, a company might try to misuse the CC-form by inquiring private
information that violates the privacy regulations, or it may introduce new
terminology and rules that are semantically inconsistent with the existing
content terminology and rules.

As a solution, we propose that the CC-form not be altered directly.
Instead, extensions should be introduced first into the CContology and the

105 One can imagine a company providing a link to the CC-form portal. When the link is
clicked, the CC-form appears with the company’s information filled and the details of the
complaints (that are specific to this company) attached to the basic complaint questions.

Chapter 7: The CCFORM Case Study

 185
-D

base of CC-form. Moreover, our modularization of the application
axiomatization part of the CContology offers simplified methodologies for
extending, maintaining, and managing the CC-form:

x Extensions will not be allowed on all axiomatization modules. For
example, the “Complainant” and “Address” axiomatization
modules may be “locked”, so companies will be prevented from
for example, asking privacy-rule-violating questions. Or perhaps,
we can only allow extensions to be made into the “Complaint
Problems” and “Complaint Resolutions” modules. In this way, we
can achieve a “relatively” systematic management of the kinds of
extensions allowed.

x Extensions can be made and treated as separate modules. If a
company wishes to extend one of the seven core modules to
inquire details about, for example, a certain kind of product, a new
module can be constructed to capture these details. Both the core
module(s) and the new module can be composed automatically.
Notice that the specification of our composition operator (see
section 4.4.2) guarantees that the constraints and the complaining
details introduced in a core module will never be dismissed or
weakened. In other words, the constraints and complaint details in
the resultant composition will always imply the constraints and the
complaint details in the core module.

This is in fact a nice illustrative application of our composition
mechanism, especially in the legal domain. From a “legal”
viewpoint, our composition operator means that when including a
module into another module (that has a higher authority, or also
called legal weight), all rules and fact-types in the included
module will be inherited by (or applied in) the including module.

x Efficient maintenance and management. A CC-form platform may
need to manage a large number of extensions that target many

Chapter 7: The CCFORM Case Study

 186
-D

different complaining issues. Releasing and treating these
extensions as separate modules will make managing, maintaining
and indexing them more scalable.

x The development of the modules can be distributed among
ontology experts, domain experts and application-oriented experts.
In the case of a vertical market application where one wishes to
develop a set of extensions (i.e. modules), the development and the
review processes can be distributed according to the expertise of
the developers and the subject of the modules.

In the development of the seven core modules we have distributed
the development and review between several specialized topic
panels in accordance with their expertise. Bistra Vassilev acted as
domain expert for the development of the complaint problem and
resolutions modules, even though she was based several thousand
kilometers away. Members from TP1 (legal affairs) have
contributed to the development and review of the “Complaint”,
“Complainant”, “Complaint Recipient”, “Address” and “Contract”
modules. Members from TP2 (consumer affairs) have similarly
contributed to the development and review of the “Complaint”,
“Complainant”, “Complaint Problem” and “Complaint
Resolution” modules, etc.

x Module Reusability. Modularizing the application axiomatization
of the CContology indeed simplifies the reusability of this
axiomatization. One may wish to reuse some of these
axiomatization modules in application scenarios other than the
CC-form. For example, the ‘Address’ module can easily be reused
for tasks in other domains such as Mailing, Marketing and Sales
Force Automation. The `Complaint Problems’ module is in the
domains of market analysis, qualitative statistics, etc.

Chapter 7: The CCFORM Case Study

 187
-D

7.4 Multilingual lexicalization of the CContology
As our role in the CCFORM (through Topic Panel 6) was also to
undertake the multilingual and cultural demands of customer complaint
forms, a methodology for multilingual lexicalization of ontologies had to
be developed. This methodology has been applied to lexicalize the
CContology into several natural languages in order to support the
development of a software platform providing cross-language CC-forms.
For complaint platforms, this helps to systematize the translation of all
terms in the generated and filled-in CC-forms that do not contain “free”
text.

As shall be clear later in this section, we distinguish between a
multilingual ontology and multilingual lexicalization of an ontology. The
former refers either: 1) to different monolingual ontologies with an
alignment layer to map between them. Such an alignment layer may
include different kinds of relationships (e.g. ‘equivalence’, ‘subtype-of’,
‘part-of’, etc.) between concepts across the aligned ontologies. All of
these ontologies, in addition to the alignment layer, form a multilingual
ontology. A multilingual ontology can also be 2) a one ontology in which
the terminology (i.e. concept labels) is a mixture of terms from different
languages. For example, some concepts are lexicalized in language L1,
and others are lexicalized in language L2, or maybe even in both L1 and
L2. Yet other concepts may not have terms to lexicalize them. See
[KTT03] for a methodology (called “termontography”) that supports such
a process of multilingual ontology engineering106.

Multilingual lexicalization of an ontology is our aim in this section. It is
an ontology lexicalized in a certain language (we call this the “native
language”) and a list of one-to-one translations of the ontology terms into

106 The processes of modeling, engineering, or using multilingual ontologies are still
open (and difficult) research issues. Some related works can be found in
[LWP+02][A97a][V98][B01].

Chapter 7: The CCFORM Case Study

 188
-D

other languages. This list is not seen as part of the ontology itself; rather,
it belongs at the application level or to a group of users.

Our approach to the multilingual lexicalization of ontologies is motivated
by Avicenna’s argument on the strong relationship/dependency between
concepts and linguistic terms107, and by the belief [G98a] that an ontology
is language-dependent. Indeed, conceptual equivalence108 between terms
in different languages is very difficult to find at the domain level. Hence,
from an engineering viewpoint, multilingual lexicalization (i.e. one-to-one
translation) of ontology terms should not be preserved or generalized at
the domain axiomatization level. Instead, such translations can be fairly
established at the application level for a certain application (e.g. CC-form)
or group of users.

The main goal of providing the multilingual lexicalization of an ontology
is to maximize the usability of this ontology for several cross-language
applications. We believe that this is of ever increasing importance in
today’s global, networked economy.

In the following paragraphs, we describe our approach to the multilingual
lexicalization of ontologies using the CContology as an illustrative
example.

Our approach requires an ontology to be built and lexicalized completely
in one language, namely, the ontology’s native language. In the case of
the CContology, English is chosen as the native language that then acts as
the reference for translating ontology terms into other languages.

Given the CCglossary (all the terms in the CContology and their glosses),
and given the CC-form as a certain application scenario109, the

107 See our discussion on this issue in section 3.2
108 Conceptual equivalence between terms in two different languages, means that the two
terms refer exactly to the same concept. This must be the case in all possible applications
and/or situations where the terms appear.
109 Notice that changing this application scenario may yield different translations.

Chapter 7: The CCFORM Case Study

 189
-D

CContology has been lexicalized into 11 European languages110. In fig.
7.8, we provide a sample of these translations, illustrating one-to-one
translation between terms in English, Dutch, and French languages.

Fig. 7.8. An example of multilingual lexicalization of the CContology.

A CC-form can easily switch between different natural languages by
substituting the terms and using the corresponding terms in such a
translation list.

It is important to note that the CCglossary has played a critical role during
the translation process of the CContology. The CCglossary has been used
as the principal reference, by the translators111, for understanding the
intended meaning of the terms, and thus achieving better quality
translations.

While it is a scalable, pragmatic, easy to use, and systemized approach,
one-to-one translations are not as simple as they appear – they do
sometimes yield imperfect translations. The translator needs to perform
further searches in order to acquire more elegant translations. In the
section that follows, we present some issues and guidelines for greater
convenience and accuracy in the multilingual lexicalization of ontologies:

x Cultural issues. There is a great interdependency between the
language and culture (social activities, religion, region, weather,

110 These translations are not provided in this thesis as the distribution of the knowledge
is restricted, and its intellectual property is owned by the CCFORM project.
111 It is maybe worth mentioning that the translation process has been subcontracted to an
a translation company whose personnel have been trained to follow our approach.

Chapter 7: The CCFORM Case Study

 190
-D

interests, etc.) of a people. Thus, within a community of people
speaking the same language, we can find different usage of terms,
even within the same context and situation. For example, within
the “Customer Complaint” and CC-form application scenario,
when translating the term “Complaint” into Arabic, there are two
possible terms: “Mathalem” and “Shakaoa”. In Palestine, the most
commonly used term is “Shakaoa”, while in Saudi Arabia, people
prefer the term “Mathalem”. Seemingly, the ideal solution for such
a problem is to provide a set of rules for the usage of each term,
considering all cultural issues [C98]. However, this does not yield
a scalable approach for our purposes. Thus, we advise that if such
cultural variations are important for a certain application scenario,
it is better to treat each variation as a distinct language e.g.
English-UK, English-USA, Dutch-Belgium, Dutch-Netherlands,
Old-Arabic, Modern-Arabic.

x Word to word translation is not our goal. Usually, the purpose of
building an ontology is to formally represent an agreed
conceptualization of a certain domain, and share its among a
community of users. Thus, lexicalizing the concepts in an ontology
into multiple languages is a way of maximizing the usability of
this ontology. It does not result in a multilingual lexicon. In
lexicons or dictionaries, the purpose is to list only the common
words (e.g. based on the corpus of a language) with a description
and some lexical information. In ontologies, it is normal to find a
concept lexicalized by an expression. For example, “Total Amount
Paid”, “Trying to obtain data improperly”, etc. Such concepts
cannot, in general, be lexicalized into one word - at least not in
English.

To conclude, with the methodology we have presented in this chapter, we
aim to maximize the usability of an ontology over several cross-language
applications. This methodology is useful and easily applicable in

Chapter 7: The CCFORM Case Study

 191
-D

information systems that comprise forms, database schemes, XML and
RDF tags, etc. However, our methodology is not suited for ontology-
based information retrieval and natural language processing applications.
For such application scenarios, multilingual ontologies might be more
suitable. See [GGV97][BCFF04].

7.5 Conclusions
In this chapter we have presented our experiences and main achievements
in the Ontology, Extensibility multilingualism topic panel, a special
interest group in the EU Thematic Network project, CCFORM.

Using ontologies as a foundation for cross-border online complaint
management platforms can greatly improve the effectiveness, scope and
extensibility of such platforms. While offering individual companies,
organizations or associations the possibility of advanced customization
(by including ontology extension capabilities) semantic consistency is
maintained through the complaint management terminology. Furthermore,
by restricting extensions to certain parts of the ontology, some legal
constraints such as privacy regulations may be enforced systematically.

The proposed methodology for the multilingual lexicalization of
ontologies is a pragmatic one. It offers a scalable way of offering
multilingual services – a necessity for cross-border complaint
management within the EU. An important goal in our future research is to
develop a formal approach for developing multilingual ontologies which
would for example, allow computers to interpret and disambiguate terms
in different languages.

Chapter 8: Conclusions and Future Work

 192
-D

Chapter 8

Conclusions and Future Work

The term ‘Conclusion’ has 9 meanings in WordNet:

“[1] The act of ending something. [2] The act of making
up your mind about something. [3] A position or opinion

or judgment reached after consideration. [4] The
proposition arrived at by logical reasoning (such as the
proposition that must follow from the major and minor

premises of a syllogism). … ”

(WordNet 1.7.1)

This final chapter concludes the thesis. We provide some discussion and
concluding remarks in section 8.1 and suggest a list of related topics for
future research in section 8.2.

Chapter 8: Conclusions and Future Work

 193
-D

8.1 Summary
In this thesis we have specified three foundational challenges in ontology
engineering, (viz. ontology reusability, ontology application-
independence, and ontology evolution). Based on these challenges, we
have derived six engineering requirements (see section 3.5). To fulfill
these requirements we have proposed two methodological principles for
ontology engineering viz. ontology double articulation and ontology
modularization. We have presented, the ORM-ML, the DogmaModeler
tool prototype, and the CCFORM case study to illustrate the
implementation of our methodological principles112.

The first methodological principle suggests that an ontology be built as a
domain axiomatization and its application axiomatizations. While a
domain axiomatization focuses on the characterization of the intended
meaning (i.e. intended models) of a vocabulary at the domain level,
application axiomatizations mainly focus on the usability of this
vocabulary according to certain application/usability perspectives. An
application axiomatization is intended to specify the legal models - a
subset of the intended model - of an application’s interest.

The second methodological principle suggests that application
axiomatizations be built and used in a modular manner. Axiomatizations
should be developed as a set of small modules and later composed to
form, and be used as, one modular axiomatization. Module composition
can be performed automatically through a composition operator to
combine (and imply) all axioms introduced in the composed modules.

112 A prioritized summary of our main contributions to ontology engineering has been
presented in section 1.2.

Chapter 8: Conclusions and Future Work

 194
-D

8.2 Discussion and concluding remarks
In the following tables, we present each of the six ontology-engineering
requirements and summarize our methodological and implementation
fulfillments.

R1

Ontologies should be engineered in a way that allows the
isolation and identification of the reusable parts of the
ontology.

Fulfilling this requirement contributes to resolving
the ontology reusability challenge (see section 2. 1)

Methodological fulfillment:

1. The modularization principle enables application axiomatizations to
be developed and used as a set of compose-able modules, which are
easier to reuse for other types of applications and tasks. (See chapter
4)

2. The double articulation principle isolates the most reusable part of an
ontology (i.e. domain axiomatization) from the (more specific)
application axiomatizations. (See chapter 3)

Implementation and illustration:

- The implementation of the composition operator for automating
module composition, simplifies and encourages module reusability.
(See section 6.6)

- Two scenarios for representing modular axiomatizations have been
developed. (See section 6.6)

- The metadata that we have proposed is the key infrastructure for
building axiomatization libraries, which enable the search, browse,
management, and reuse of modules. (See our implementation of an

Chapter 8: Conclusions and Future Work

 195
-D

axiomatization library in section 6.5)

- The CCFORM case study illustrates the development of the
CContology in a modular manner. (See chapter 7). Application
axiomatizations in CCFORM consists of seven modules, called core
modules, extensions can be made and treated as separate modules. If a
company wishes to extend one of the seven core modules to inquire
details about, for example, a certain kind of product, a new module
can be constructed to capture these details. Both the core module(s)
and the new module can be composed automatically (i.e. reuse of the
core modules). Notice that the specification of our composition
operator (see section 4.4.2) guarantees that the constraints and the
complaining details introduced in a core module will never be
dismissed or weakened. In other words, the constraints and complaint
details in the resultant composition will always imply the constraints
and the complaint details in the core module. This is in fact a nice
illustrative application of our composition mechanism, especially in
such a legal application. From a “legal” viewpoint, our composition
operator means that when including a module into another module
(that has a higher authority, or also called legal weight), all rules and
fact-types in the included module will be inherited by (or applied in)
the including module.

Chapter 8: Conclusions and Future Work

 196
-D

R2

The influence of usability perspectives on ontology axioms
should be well articulated, in pursuit of both reusability and
usability.

Fulfilling this requirement contributes to the resolution of the
ontology application-independence challenge (see section 2. 2)

Methodological fulfillment:

The double articulation principle increases the reusability of domain
axiomatizations and the usability of application axiomatizations.
Usability perspectives have a neglectable influence on the
independency of a domain axiomatization, because ontology builders
are prevented from encoding their application-specific axioms. In
other words, domain axiomatizations are mainly concerned with the
characterization of the “intended models” of concepts, while
application axiomatizations are mainly concerned with the
specification of the legal models -for a certain use- of these concepts.
(See chapter 3)

Implementation and illustration:

- The DogmaModeler illustrates an intuitive approach for double-
articulating axiomatizations. It shows how domain axiomatizations
can be captured in the ontology base and later used to develop
application axiomatizations, i.e. mapping lexons into ORM fact-types
(see section 6. 2 and section 6.3).

- We have also shown how OWL can be used for representing
application axiomatizations. (see section 3.4.1)

- The CCFORM case study illustrates a real-life axiomatization double-
articulated as domain and application axiomatizations (see chapter 7).
The CContology is engineered as a domain axiomatization, and seven

Chapter 8: Conclusions and Future Work

 197
-D

modules of application axiomatization. The intended meaning of the
terminology used in these application axiomatization modules is
restricted to the terminology defined at the domain axiomatization
level. The application axiomatization modules are intended to play the
role of conceptual data schema(s) for CC-forms development. So that,
any CC-form, including its population, should be based on (i.e.
commit to) the CContology through those axiomatization modules. A
CC-from can be constructed manually or generated automatically (as
has been illustrated in section 6.7.1). The semantics of all elements in
this CC-from (i.e. the data fields) should be defined in the
CContology.

- Furthermore, modularizing the application axiomatization of the
CContology indeed simplifies the reusability of this axiomatization.
One may wish to reuse some of these axiomatization modules in
application scenarios other than the CC-form. For example, the
‘Address’ module can easily be reused for tasks in other domains such
as Mailing, Marketing and Sales Force Automation. The `Complaint
Problems’ module is in the domains of market analysis, qualitative
statistics, etc.

- Note on the CCcontext: we have learned during the definition process
of the CCcontext that it is not an easy task, and it cannot be defined
rigidly in the early phases of the development of the CContology. As
none of our team was an ontology expert, we provided a draft
definition and investigated by providing many different examples of
application scenarios that this context should cover. For example, we
have questioned whether the context should cover applications such as
customer-relationship-management, market analyses, sales force
automation and so forth; whether it should cover all consumer
regulations in any country or only in Europe; whether it should cover
all commercial activity, in any place and at any time; which

Chapter 8: Conclusions and Future Work

 198
-D

documents, laws and regulations should be our main references, etc.
Such questions led not only to the CCcontext definition (which was
achieved after several iterations), but also propelled the team to
discuss deeply and even redefine the scope of the CCFORM goals.

Chapter 8: Conclusions and Future Work

 199
-D

R3

Critical assumptions that make clear the factual meaning of an
ontology vocabulary should be rendered as part of the
ontology, even if informally, to facilitate both users' and
developers' commonsense perception of the subject matter.

Fulfilling this requirement contributes to resolving the
ontology evolution challenge (see section 2. 3)

Methodological fulfillment:

1. The notion of gloss as an auxiliary informal account of the intended
meaning of a linguistic term is introduced as part of an ontology. It is
intended to render clearly the critical assumptions, especially those
that are implausible, unreasonable, or very difficult to formalize and
articulate explicitly. See the definition, examples, and guidelines on
how to develop a gloss in section 3.3.6.

2. The importance of using linguistic terms in investigating and rooting
domain concepts is discussed and clarified. The reuse of existing
lexical resources in gloss modeling is emphasized. (See section 3.2.2
and section 6.2.2).

Implementation and illustration:

- The DogmaModeler illustrates the incorporation of existing lexical
resources in gloss modeling. (See section 6.2.2).

- The CCFORM case study illustrates the development of the
CCglossary as part of the CContology (see appendix C1). The
CCglossary indeed shows how critical assumptions about a concept
can be rendered informally as part of a CContology. For example,
compare the gloss of (e.g. ‘Legal Person’, etc.) with its formal
definition within the lexons. Our experience is reported in chapter 7. It
is probably worth noting that intensive discussions were carried out

Chapter 8: Conclusions and Future Work

 200
-D

(by legal experts, market experts, application-oriented experts) for
almost every gloss. We have found that the gloss modeling process is
a great mechanism for brainstorming, domain analyses, domain
understanding and for reaching (and documenting) consensus.
Furthermore, it allowed non-ontology experts to participate actively in
the ontology modeling process. Some partners have even noted that
the CCglossary is the most useful component in the CContology. The
CCglossary, which has been developed in English, has played the role
of the key reference for lexicalizing the CContology into 11 other
European languages. Translators have acknowledged that it guided
their understanding of the intended meanings of the terms and allowed
them to achieve better translation quality.

Chapter 8: Conclusions and Future Work

 201
-D

R4

The ontology representation model should be capable of
distributed and collaborative development.

Fulfilling this requirement contributes to resolving
the ontology evolution challenge (see section 2. 3)

Methodological fulfillment:

1. The double articulation principle allows different communities to
create and maintain domain and application axiomatizations. Indeed,
domain experts, lexicographers, knowledge engineers, and even
philosophers may contribute to the development, maintenance, and
review phases of domain axiomatizations, without knowing why and
how these axiomatizations will be used. Application-oriented experts
may contribute to and focus on the development phases of application
axiomatizations, without having any knowledge about the ontological
correctness of domain axioms.

2. The modularization principle enables the distributed development of
modules over different locations, expertise, and stakeholders.

Implementation and illustration:

- The DogmaModeler and ORM-ML illustrate how domain and
application axiomatizations can be captured and represented in a
modular and distributable manner (see chapter 5 and 6).

- Our real-life experience in the distribution and collaborative
development of the CContology is reported in chapter 7. The
development of the CContology modules have been distributed among
ontology experts, domain experts and application-oriented experts. In
the case of a vertical market application where one wishes to develop
a set of extensions (i.e. modules), the development and the review
processes are distributed according to the expertise of the developers

Chapter 8: Conclusions and Future Work

 202
-D

and the subject of the modules. In the development of the seven core
modules we have distributed the development and review between
several specialized topic panels in accordance with their expertise.
Bistra Vassilev acted as domain expert for the development of the
complaint problem and resolutions modules, even though she was
based several thousand kilometers away. Members from TP1 (legal
affairs) have contributed to the development and review of the
“Complaint”, “Complainant”, “Complaint Recipient”, “Address” and
“Contract” modules. Members from TP2 (consumer affairs) have
similarly contributed to the development and review of the
“Complaint”, “Complainant”, “Complaint Problem” and “Complaint
Resolution” modules, etc.

Chapter 8: Conclusions and Future Work

 203
-D

R5

&

R6

Ontologies should be engineered in a way that enables smooth
and efficient evolution.

Ontologies should be engineered in a way that allows easy
replacement of the axiomatization of ontology parts.

Fulfilling these two requirements contribute to resolving
the ontology evolution challenge (see section 2. 3)

Methodological fulfillment:

1. The modularization principle enables application axiomatizations
to evolve as modules which are easier to build, maintain, and replace.
This is because the internal couplings (e.g. the number of relationships
between concepts) in small modules are fewer than the internal
couplings in large axiomatizations. The development and maintenance
of small modules allows ontology builders a better focus and easier
understanding than large and multi-domain axiomatizations. The
modularity of an axiomatization also enables ontology users and
maintainers to interchange some parts with others that are for
example, more relevant, reliable and accurate. In short, the
modularization principle indeed enables the evolution life cycle of
axiomatizations to be more efficient.

2. The double articulation principle enables domain axiomatizations
to grow (i.e. add lexons and glosses) without influencing application
axiomatizations. (See section 6.2)

3. Glosses are a great mechanism for understanding concepts
individually, without having to browse, reason, and understand them
within an axiomatized theory. Further, compared with formal
definitions, glosses help to build a “deeper” intuition about concepts
by denoting implicit or tacit assumptions. This indeed makes the

Chapter 8: Conclusions and Future Work

 204
-D

evolution and maintenance of the ontology easier, especially when the
ontology is particularly large-scaled, has different maintainers, or is
developed over different periods (See section 3.3.6).

Implementation and illustration:

- DogmaModeler illustrate how axiomatization modules can be
(de/)composed (see chapter 6).

- Our discussion and experience in the CCFORM case study illustrates
the extensibility (i.e. smooth evolution) of our approach. A CC-form
platform may need to manage a large number of extensions that target
many different complaining issues. Releasing and treating these
extensions as separate modules will make managing, maintaining and
indexing them more scalable. See our discussion and lessons learnt in
chapter 7.

- The unsteadiness of the “Address” axiomatization and the aim of
replacing this module with other alternatives is discussed in section
7.2.

In short, our methodological principles guide ontology builders by
enabling their product, i.e. ontologies, to be highly reusable and usable
and easier to both build and maintain.

Chapter 8: Conclusions and Future Work

 205
-D

Contribution to ORM

Although it was not a goal of the thesis to contribute to conceptual data
modeling approaches, we have encountered several possible
improvements and extensions to ORM which might be used outside the
ontology engineering context. These include: composition of ORM
schemes; including constraint patterns for reasoning about the
satisfiability of ORM schemes; developing ORM-ML for representing
ORM schemes in a textual manner; developing verbalization templates for
verbalizing ORM schemes into English, Dutch, Arabic, and Russian; the
mapping of ORM schemes into web forms; enabling ORM to be reused
for other purposes than database modeling, viz. ontology engineering.

In the same way, we believe that other conceptual data modeling
approaches (such as EER and UML) can benefit from theses
developments.

Chapter 8: Conclusions and Future Work

 206
-D

8.3 Future Research
In relation to the subject matter of this thesis, the following are suggested
as worthy future research topics:

1. Incorporate primitives of Upper Level Ontologies in domain
axiomatizations. As we have shown in section 3.3.7, the
formalization of lexons might be not enough for achieving
systematic ontological quality on the specification of the intended
meanings of linguistic terms. These specifications might need to
receive further formal restrictions. For this, in section 3.3.7 we
have proposed to incorporate upper level ontologies at the domain
axiomatization level. We have introduced the notions of “Term
upper-forms” and “Lexon upper-forms”, so that the formal
definitions of superior types of concepts and relationships (that can
be found in upper level ontologies) can be induced into Terms and
Lexons, respectively. In an upcoming effort, we plan to extend our
DogmaModeler tool by developing a library of upper-ontology
components (especially for DOLCE), so that ontology builders
will be able to plug-in and automatically reason about the quality
of their lexons. See section 6.2.2, and section 6.2.3.

2. Investigate how to validate and deal with the lexical issues of
ontology terms. For example, in the following lexon <Bibliography:

Book, issuedBy, Issues, Publish>, one can spot, lexically, that the
term “Publish” is improper as it is a “verb”. Some lessons on how
to validate and deal with the lexical issues of the ontology
vocabulary can be learned from the “lexical semantics” research
community113, such as, the use of nouns and adjectives verses
terms, verbs verses roles, the modeling of idioms, the specific uses
of metaphors, singulars, plurals, classification of ontology roles

113 Specially from the emerging WordNet-alike (or so called “mental lexicons”)
communities, such as http://www.globalwordnet.org/ (January, 2005).

Chapter 8: Conclusions and Future Work

 207
-D

verses classification of verbs, term stemming, spell checking, etc.
See section 6.4.

3. Include more lexical resources into DogmaModeler (or its
DogmaStudio114 successor) to support the gloss modeling process.
As we have discussed in section 3.5, many existing lexical
resources (such as lexicons, glossaries, thesaurus, dictionaries,
etc.) are indeed important sources of glosses. For adaptation and
reusability of such resources: 1) we would plan to implement a full
adaptation of WordNet-alike lexicons into DogmaModeler. See
section 6.2 for the current support and illustration of this
functionality. In addition, as gloss has a strict intention in our
approach and so that not every lexical resource can be adopted (i.e.
it should provide a clear discrimination of word/term meaning(s)
in a machine-referable manner), 2) we plan to investigate how
other kinds of lexicons and dictionaries such as the Cambridge
dictionary can be ontologized and adopted: extract and re-engineer
their meaning descriptions into machine-referable glosses, and so
excluding the typical morphological and lexical issues. See section
3.5 and section 6.2.

4. Develop a methodology for developing multilingual ontologies.
The methodology that we have presented in section 7.4 is aimed
with the maximization of the usability of an ontology over cross-
language applications. This methodology is useful and easily
applicable in information systems that comprise forms, database
schemes, XML and RDF tags, etc. However, this methodology is
not suited for other application scenarios such as ontology-based
information retrieval, natural language processing, etc. For such
application scenarios, multilingual ontologies might be more
suitable. A multilingual ontology is an ontology in which the

114 DogmaStudio is an initiative to re-implement DogmaModeler using the Eclipse
environment.

Chapter 8: Conclusions and Future Work

 208
-D

terminology (i.e. concept labels) is a mixture of terms from
different languages. In the future, we plan to develop a
methodology for building such multilingual ontologies, and we
plan to extend DogmaModeler for this regard. See section 7.4.

5. Develop a step-wise methodology for ontology development. The
ontology engineering approach that have been presented in this
thesis is not yet equipped with a step-wise methodology. Such a
methodology is supposed to provide guide for ontology builders
by dividing the ontology development process (of both domain
and application axiomatizations) into a set of phases and a series
of steps and guidelines to be followed in each phase. This
methodology should take into account 1) the simplicity of the
ontology modeling process, 2) the quality of the ontology content
being modeled (perusing both usability and reusability), 3) the
distribution of ontology evolution, etc. Some lessons can learnt
from the AKEM Methodology [ZKK+04] or other existing
methodologies such as Methontology, On-To-Knowledge [S03b],
Methontology [FGJ97], etc. See section 1.2.

6. Include other languages in the DogmaModeler or its successor for
representing application axiomatizations. At this stage,
DogmaModeler supports the modeling of application
axiomatizations using only ORM as a specification langauge. To
increase the usability of application axiomatizations,
DogmaModeler should allow these axiomatizations to be specified
in multiple specification languages, such as DAML+OIL, OWL,
RuleML, EER, UML, �-RIDL, etc. Indeed, ORM is mainly
suitable for database and XML (-based) application scenarios since
it is quite comprehensive in its treatment of the integrity of data
sets. For inference and reasoning application scenarios, description
logic based languages (such as OWL, DAML, etc.) seem to be
more applicable than other languages, as they focus on the

Chapter 8: Conclusions and Future Work

 209
-D

expressiveness and the decidability of axioms. See section 3.4.1.
As an upcoming activity, we plan to extend DogmaModeler to
support, at least OWL-Lite, and import-export functionalities into
several languages.

7. Map ORM into the DLR Description Logic. In this way, the
satisfiability of ORM schemes can be completely verified. As we
have noted earlier in section 4.5, the general problem of
determining the consistency for all possible constraint patterns in
ORM is un-decidable [H97], and hence neither our ORM
composition algorithm nor our logical validations in
DogmaModeler can be complete. Therefore, a complete semantic
tableaux algorithm for deciding the satisfiability of ORM schemes
is needed. To achieve this we plan to reformalize ORM by
mapping all of its primitives and constraints into the DLR
Description Logic [CDLNR98]. DLR is a powerful and decidable
fragment of first order logic. It supports general inclusion axioms,
inverse roles, number-restrictions, reflexive-transitive closure of
roles, fixpoint constructs for recursive definitions, relations of
arbitrary arity, etc.

Appendix A

 210
-D

Appendices

Appendix A

 211
-D

Appendix A

 212
-D

Appendix A: ORM Markup Language
This appendix presents the XML-Schema for the ORM Markup
Language, as the grammar reference of ORM-ML documents. This
schema is an intensively improved version (Ver.2) of the ORM-ML
XML-schema that we have published earlier in [DJM02a][DJM02b] and
[JDM03]. In appendix A1 we present a tree view of the ORM-ML XML-
schema, and in appendix A2 we present the ORM-ML XML-schema.
Appendix A3 presents a complete example, as an instance of this schema.

Appendix A1 (tree view of the ORM-ML XML-Schema)

A tree view of the elements in the XML Schema is given in Appendix A2.
Please note the attributes of the elements are omitted here for clarity of
presentation.

Fig. A.1. A tree view of the elements in the ORM-ML XML Schema.

Appendix A2 (ORM-ML XML-Schema)

 213
-D

Appendix A2 (ORM-ML XML-Schema)

 <?xml version="1.0" encoding="UTF-8" ?>
- <!-- edited with XMLSPY v5 rel. 3 U (http://www.xmlspy.com) by rth77 (rth77)
 -->
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dc="http://purl.org/dc/elements/1.1/" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="http://purl.org/dc/elements/1.1/"
schemaLocation="http://www.ukoln.ac.uk/metadata/dcmi/dcxml/xmls/dc.xsd" />
- <xs:element name="ORMSchema">
- <xs:annotation>
 <xs:documentation>Root</xs:documentation>
 </xs:annotation>
- <xs:complexType>
- <xs:complexContent>
- <xs:extension base="ORMType">
- <xs:sequence>
- <xs:element name="ORMMeta" minOccurs="0">
- <xs:complexType>
- <xs:sequence>
- <xs:element name="Meta">
- <xs:complexType>
 <xs:attribute name="Name" type="xs:string" use="required" />
 <xs:attribute name="Content" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="ORMBody">
- <xs:complexType>
- <xs:sequence>
- <xs:element name="Object" type="Object" maxOccurs="unbounded">
- <xs:annotation>
 <xs:documentation>Object: LOT or NOLOT</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Subtype" type="Subtype" minOccurs="0" maxOccurs="unbounded"
/>
 <xs:element name="Predicate" type="Predicate" minOccurs="0"
maxOccurs="unbounded" />
- <xs:element name="Predicate_Object" type="Predicate_Object" minOccurs="0"
maxOccurs="unbounded">
- <xs:annotation>
 <xs:documentation>Objectified Predicate</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="Constraint" type="Constraint" minOccurs="0"
maxOccurs="unbounded" />
- <xs:element name="Subcommitment" minOccurs="0">
- <xs:complexType>
- <xs:sequence>
 <xs:element ref="ORMSchema" />

Appendix A2 (ORM-ML XML-Schema)

 214
-D

 </xs:sequence>
 <xs:attribute name="order" type="xs:integer" use="optional" />
 <xs:attribute name="URI" type="xs:string" use="optional" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="OntologyBase" type="xs:string" use="required" />
 <xs:attribute name="Context" type="xs:string" use="required" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
- <xs:complexType name="Object" abstract="true">
- <xs:annotation>
 <xs:documentation>Object: LOT or NOLOT</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Translation" minOccurs="0" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="Language" type="xs:string" use="required" />
 <xs:attribute name="Name" type="xs:string" use="required" />
 <xs:attribute name="Description" type="xs:string" use="required" />
 <xs:attribute name="Reference" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Name" type="xs:ID" use="required" />
 <xs:attribute name="Gloss" type="xs:string" use="optional" />
 <xs:attribute name="Datatype" type="xs:string" use="optional" />
 <xs:attribute name="TermUpperForm" type="xs:string" use="optional" />
 <xs:attribute name="NameSpace" type="xs:string" use="optional" />
 </xs:complexType>
- <xs:complexType name="LOT">
- <xs:annotation>
 <xs:documentation>Lexical Object Type</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Object">
 <xs:attribute name="numeric" type="xs:boolean" use="optional" default="false" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="NOLOT">
- <xs:annotation>
 <xs:documentation>Non Lexical Object Type</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Object">
- <xs:sequence>
- <xs:element name="Reference" minOccurs="0">
- <xs:complexType>

Appendix A2 (ORM-ML XML-Schema)

 215
-D

 <xs:attribute name="Ref_Name" use="required" />
 <xs:attribute name="numeric" type="xs:boolean" use="optional" default="false" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="Independent" type="xs:boolean" use="optional" default="false" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Object_Role">
- <xs:annotation>
 <xs:documentation>Object + Role</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="Object" type="xs:IDREF" use="required" />
 <xs:attribute name="Role" type="xs:string" use="optional" />
 </xs:complexType>
 <xs:complexType name="ORMType" />
- <xs:complexType name="Predicate">
- <xs:sequence>
 <xs:element name="Object_Role" type="Object_Role" maxOccurs="unbounded" />
 <xs:element name="Rule" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Derived" type="xs:boolean" default="false" />
 <xs:attribute name="Derived_Stored" type="xs:boolean" default="false" />
 </xs:complexType>
- <xs:complexType name="Constraint" abstract="true">
- <xs:annotation>
 <xs:documentation>Abstract element for constraints</xs:documentation>
 </xs:annotation>
 </xs:complexType>
- <xs:complexType name="Predicate_Object">
- <xs:annotation>
 <xs:documentation>Objectified Predicate</xs:documentation>
 </xs:annotation>
- <xs:sequence>
 <xs:element name="Predicate" type="Predicate" />
 </xs:sequence>
 <xs:attribute name="Predicate_Name" type="xs:ID" use="required" />
 </xs:complexType>
- <xs:complexType name="Subtype">
- <xs:annotation>
 <xs:documentation>SubType</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Parent">
- <xs:complexType>
 <xs:attribute name="Object" type="xs:IDREF" />
 <xs:attribute name="Role" type="xs:string" />
 </xs:complexType>
 </xs:element>
- <xs:element name="Child">
- <xs:complexType>
 <xs:attribute name="Object" type="xs:IDREF" />

Appendix A2 (ORM-ML XML-Schema)

 216
-D

 <xs:attribute name="Role" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
- <xs:complexType name="Mandatory">
- <xs:annotation>
 <xs:documentation>Mandatory Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Uniqueness">
- <xs:annotation>
 <xs:documentation>Uniqueness Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Subset">
- <xs:annotation>
 <xs:documentation>SubSet Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="Parent">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Child">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

Appendix A2 (ORM-ML XML-Schema)

 217
-D

- <xs:complexType name="Equality">
- <xs:annotation>
 <xs:documentation>Equality Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="First">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Second">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Exclusion">
- <xs:annotation>
 <xs:documentation>Exclusion Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="First">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="Second">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Frequency">
- <xs:annotation>
 <xs:documentation>Frequency Constraint</xs:documentation>
 </xs:annotation>

Appendix A2 (ORM-ML XML-Schema)

 218
-D

- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Minimum" type="xs:integer" />
 <xs:attribute name="Maximum" type="xs:integer" />
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Irreflexive">
- <xs:annotation>
 <xs:documentation>Irreflexive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Intransitive">
- <xs:annotation>
 <xs:documentation>Intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Transitive">
- <xs:annotation>
 <xs:documentation>Transitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Acyclic">
- <xs:annotation>
 <xs:documentation>Acyclic Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Type" type="xs:IDREF" maxOccurs="unbounded" />

Appendix A2 (ORM-ML XML-Schema)

 219
-D

 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Asymmetric">
- <xs:annotation>
 <xs:documentation>Assymetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Antisymmetric">
- <xs:annotation>
 <xs:documentation>Antisymmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Symmetric">
- <xs:annotation>
 <xs:documentation>Symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Reflexive">
- <xs:annotation>
 <xs:documentation>Reflexive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
 <xs:extension base="Constraint" />
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Total">
- <xs:annotation>
 <xs:documentation>Total constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">

Appendix A2 (ORM-ML XML-Schema)

 220
-D

- <xs:sequence>
 <xs:element name="Supertype" />
 <xs:element name="Subtype" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Exclusive">
- <xs:annotation>
 <xs:documentation>Exclusive constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Supertype" />
 <xs:element name="Subtype" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Value">
- <xs:annotation>
 <xs:documentation>Exclusive constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
- <xs:element name="Value" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="datatype" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
- <xs:element name="ValueRange" maxOccurs="unbounded">
- <xs:complexType>
 <xs:attribute name="datatype" type="xs:string" use="required" />
 <xs:attribute name="begin" type="xs:string" use="required" />
 <xs:attribute name="end" type="xs:string" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Partition">
- <xs:annotation>
 <xs:documentation>Partition constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Subtype" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="Supertype" type="xs:IDREF" use="required" />
 </xs:extension>

Appendix A2 (ORM-ML XML-Schema)

 221
-D

 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Intransitive_symmetric">
- <xs:annotation>
 <xs:documentation>Intransitive + symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Acyclic_intransitive">
- <xs:annotation>
 <xs:documentation>Acyclic+intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Asymmetric_intransitive">
- <xs:annotation>
 <xs:documentation>Asymmetric+intransitive Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
- <xs:complexType name="Irreflexive_symmetric">
- <xs:annotation>
 <xs:documentation>Irreflexive + symmetric Ring Constraint</xs:documentation>
 </xs:annotation>
- <xs:complexContent>
- <xs:extension base="Constraint">
- <xs:sequence>
 <xs:element name="Object_Role" type="xs:IDREF" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:schema>

Appendix A3: A complete example

 222
-D

Appendix A3: Complete Example

A complete example of an ORM schema diagram (Appendix A3.1), with
the associated ORM-ML document (Appendix A3.2), and ORM pseudo
NL generated by the DogmaModeler (Appendix A3.3).

Appendix A3.1: ORM Schema diagram

Fig. A.2. ORM schema diagram example

Appendix A3.2: Corresponding ORM-ML

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://www.starlab.vub.ac.be/staff/alisovoy/ormml.xsd
' xmlns:dc='http://purl.org/dc/elements/1.1/' OntologyBase="Publishing"
Context="Scientific Conference">

<ORMMeta>
 <Meta name="DC.title" content="ORM ML example"/>
 <Meta name="DC.creator" content="Mustafa Jarrar"/>
 <Meta name="DC.description" content="A complete example of an ORM ML file"/>
</ORMMeta>
<ORMBody>
<Object xsi:type='NOLOT' Name='Committee'/>

<Object xsi:type='NOLOT' Name='Person'/>
<Object xsi:type='NOLOT' Name='Author'/>
<Object xsi:type='NOLOT' Name='Reviewer'/>
<Object xsi:type='NOLOT' Name='Paper'/>
<Object xsi:type='NOLOT' Name='PaperTitle' />
<Subtype>
 <Parent Object="Person" Role="Types"/>
 <Child Object="Author" Role="IsA"/>
</Subtype>
<Subtype>
 <Parent Object="Person" Role="Types"/>
 <Child Object="Reviewer" Role="IsA"/>

Appendix A3: A complete example

 223
-D

</Subtype>
<Predicate>
 <Object_Role ID='ORM ML example:42' Object='Committee' Role='Includes'/>
 <Object_Role ID='ORM ML example:43' Object='Person' Role='IsMemberOf'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:44' Object='Committee' Role='ChairedBy'/>
 <Object_Role ID='ORM ML example:45' Object='Person' Role='Chairs'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:46' Object='Reviewer' Role='Reviewes'/>
 <Object_Role ID='ORM ML example:47' Object='Paper' Role='ReviewedBy'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:48' Object='Author' Role='Writes'/>
 <Object_Role ID='ORM ML example:49' Object='Paper' Role='WrittenBy'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:50' Object='Author' Role='Presents'/>
 <Object_Role ID='ORM ML example:51' Object='Paper' Role='PresentedBy'/>
</Predicate>
<Predicate>
 <Object_Role ID='ORM ML example:52' Object='PaperTitle' Role='isOf'/>
 <Object_Role ID='ORM ML example:53' Object='Paper' Role='Has'/>
</Predicate>

<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:42</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:44</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:46</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:49</Object_Role>
</Constraint>
<Constraint xsi:type='Mandatory'>
 <Object_Role>ORM ML example:48</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:42</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:44</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:43</Object_Role>
</Constraint>
<Constraint xsi:type='Subset'>
 <Parent>
 <Object_Role>ORM ML example:42</Object_Role>
 <Object_Role>ORM ML example:43</Object_Role>

Appendix A3: A complete example

 224
-D

 </Parent>
 <Child>
 <Object_Role>ORM ML example:44</Object_Role>
 <Object_Role>ORM ML example:45</Object_Role>
 </Child>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:50</Object_Role>
 <Object_Role>ORM ML example:51</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:46</Object_Role>
 <Object_Role>ORM ML example:47</Object_Role>
</Constraint>
<Constraint xsi:type='Exclusion'>
 <First>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
 </First>
 <Second>
 <Object_Role>ORM ML example:46</Object_Role>
 <Object_Role>ORM ML example:47</Object_Role>
 </Second>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:52</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:53</Object_Role>
</Constraint>
<Constraint xsi:type='Uniqueness'>
 <Object_Role>ORM ML example:52</Object_Role>
</Constraint>
<Constraint xsi:type='Subset'>
 <Parent>
 <Object_Role>ORM ML example:48</Object_Role>
 <Object_Role>ORM ML example:49</Object_Role>
 </Parent>
 <Child>
 <Object_Role>ORM ML example:50</Object_Role>
 <Object_Role>ORM ML example:51</Object_Role>
 </Child>
</Constraint>
</ORMBody>
</ORMSchema>

Appendix A3: A complete example

 225
-D

Appendix A3.3: Corresponding ORM Verbalization

The following are Pseudo NL sentences, generated by the
DogmaModeler, as verbalizations of the ORM schema diagram.

 Each Committee must ChairedBy at least one Person.
 Each Committee must Includes at least one Person.
 Each Reviewer must Reviewes at least one Paper.
 Each Author must Writes at least one Paper.
 Each Paper must WrittenBy at least one Author.

 Each Paper must Has at most one PaperTitle.
 Each PaperTitle must isOf at most one Paper.
 Each Committee must ChairedBy at most one Person.

It is disallowed that the same Committee Includes the same Person
more then once, and it is disallowed that the same Person IsMemberOf
the same Committee more then once.
It is disallowed that the same Author Presents the same Paper more
then once, and it is disallowed that the same Paper PresentedBy the
same Author more then once.
It is disallowed that the same Author Writes the same Paper more then
once, and it is disallowed that the same Paper WrittenBy the same
Author more then once.
It is disallowed that the same Reviewer Reviewes the same Paper more
then once, and it is disallowed that the same Paper ReviewedBy the
same Reviewer more then once.

 Each Person who Chairs a Committee must also IsMemberOf that
Committee.

 Each Paper who WrittenBy a Author must also PresentedBy that
Author.

 Each Paper which is WrittenBy a Person must not ReviewedBy with that
Person.

 Each (PaperTitle, Author) as a combination refers to at most one Paper.

Appendix C1: Customer Complaint Ontology (Glossary)

 226
-D

Appendix B: DogmaModeler

Appendix B1: DogmaModeler Ontology Metadata

In this appendix we present the glossary of the DogmaModeler Metadata
elements.

Element Name Gloss

Acronym An abbreviation formed from the initial letter or
letters of words in the ontology title. E.g.
‘CCOntology’, or ‘DOLCE’.

Title The full and official heading or name of the
ontology. It gives a brief summary of the
matters it deals with. E.g. ‘Customer Complaint
Ontology’, or ‘Descriptive Ontology for
Linguistic and Cognitive Engineering’.

Version

Information about the edition of this ontology.
Typically, it includes the version number, label,
and date. Whenever the ontology is enhanced,
updated or improved, it is often assigned a new
version. Although versions represent the
different states of an ontology during its life
cycle, different versions are seen as different
ontologies.

Number A unique code assigned to the ontology for
identification. This number is usually assigned
by an ontology registration entity.

URI Uniform Resource Identifier, the W3C's

Appendix C1: Customer Complaint Ontology (Glossary)

 227
-D

codification of the address syntax of an
ontology. In its most basic form, a URI consists
of a scheme name (such as file, http, ftp)
followed by a colon, followed by a path whose
nature is determined by the scheme that
precedes it (see RFC 1630). URI is the umbrella
term for URNs, URLs, and all other Uniform
Resource Identifiers.

Genericity The level of generalization of an the ontology.
The genericity level of an ontology is typically
one of the {‘Application’, ‘task’, ‘Domain’,
‘Core’, ‘Foundational’, ‘Linguistic’,
‘Metamodel’}. Examples: The CCOntology is a
‘core’ ontology; DOLCE is a ‘foundational’
ontology; “WordNet” is a ‘Linguistic’
Ontology. etc.

Language The human language in which the ontology
terms (i.e. labels of concepts, roles, etc) is
expressed. In case this terminology is expressed
in more than one language, the value of this
attribute is ‘Multilingual’. The best practice
recommended is the use of RFC 3066
[RFC3066] which, in conjunction with ISO639
[ISO639]), defines two- and three-letter primary
language tags with optional subtags. Examples
include "en" or "eng" for English, "akk" for
Akkadian", and "en-GB" for English as it is
used in the United Kingdom.

DevelopmentStatus The completion status or condition of this

Appendix C1: Customer Complaint Ontology (Glossary)

 228
-D

ontology, typically one of {Draft, Final,
Revised, Unavailable}.

DomainSubject A heading descriptor indicating the subject
matter and the domain of the ontology. For
example, e-business, sport, book-shopping and
car-rental. Typically, doman subjects are
expressed as keywords, key phrases, or
classification codes. The recommended best
practice is to select a value from a controlled
vocabulary or formal classification scheme.

Context Information about of the scope of the ontology,
in which the interpretation (i.e. the intended
meaning) of the ontology terminology is
bounded. For example: the context of the
WordNet ontology could be the English
language, the context of the “CCOntology” is
the EU complaint regulations, etc.

Description

Further information about the ontology. It may
include but is not limited to: an abstract,
reference to a graphical representation, a free-
text account of the content, the methodology
used to build this ontology, documentation, etc.

Creator An entity primarily responsible for creating the
ontology. Examples of creators include persons,
organizations and services. Typically, the name
of a creator should be used to indicate the
entity.

Appendix C1: Customer Complaint Ontology (Glossary)

 229
-D

Contributor An entity responsible for making contributions
to the ontology content. Examples of a
Contributor include a person, an organization,
and a service. Typically, the name of a
contributor should be used to indicate the entity.

CreationDate The date that is associated with the creation of
the ontology. In other words, the first date in
the ontology lifecycle. Recommended best
practice for encoding the date value is defined
in a profile of ISO 8601 [W3CDTF] and
includes (among others) dates of the form
YYYY-MM-DD.

Rights Information about rights held in and over the
ontology. Typically, rights will contain a
copyrights statement and other restriction for
the ontology, and the cost description in case
the use of this ontology requires payment. If the
Rights element is absent, no assumptions may
be made about any rights held in or over the
resource.

SpecificationLangua
ge

The formal language in which the ontology is
being specified; for example, OWL, DAML-
OIL, ORM-ML, UML, KIF, etc.

Validation An evidence about the testing activities of the
ontological content. Such tests might be
conceptual or ontological quality, syntax
validation, etc. Typically, one should indicate
the validation methodology and comments

Appendix C1: Customer Complaint Ontology (Glossary)

 230
-D

about the results.

Tool The name of the tool by which the ontology has
been developed, e.g. Protégé, DogmaModeler,
etc.

Application Citation to the application(s) using/has used this
ontology. Typically, one should provide the
name, URL, and some description about the
application.

NumberOfConcepts Statistics about the number of concepts in the
ontology.

NumberOfRelations Statistics about the number of relations in the
ontology.

NumberOfAxioms Statistics about the number of axioms in the
ontology - an axiom is typically a formal
definition/expression.

NumberOfInstances Statistics about the number instances in the
ontology.

IncludesOntology/

IncludedInOntology

A reference to another ontology, which is
supposed to be included as part of this
ontology. Examples of such relations between
ontologies include “Imports” in OWL,
“inclusion” in Ontolingua and “Compose” in
DogmaModeler. The formal semantics of such
relationships are necessarily the same.

StepVersionOf/ A reference to the step/previous version of this

Appendix C1: Customer Complaint Ontology (Glossary)

 231
-D

PreviousVersionOf ontology.

Appendix B2: XML-Schema of ORM-ML graphical style sheets

 <?xml version="1.0" encoding="UTF-8" ?>
- <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:dc="http://purl.org/dc/elements/1.1/" elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xs:import namespace="http://purl.org/dc/elements/1.1/"
schemaLocation="http://www.ukoln.ac.uk/metadata/dcmi/dcxml/xmls/dc.xsd" />
- <xs:element name="ORMGSSchema">
- <xs:annotation>
 <xs:documentation>Root</xs:documentation>
 </xs:annotation>
- <xs:complexType>
- <xs:complexContent>
- <xs:extension base="ORMType">
- <xs:sequence>
- <xs:element name="ORMMeta" minOccurs="0">
- <xs:complexType>
- <xs:sequence>
 <xs:element ref="dc:title" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:creator" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:subject" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:description" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:publisher" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:contributor" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:date" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:type" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:format" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:identifier" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:source" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:language" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:relation" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:coverage" minOccurs="0" maxOccurs="unbounded" />
 <xs:element ref="dc:rights" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
- <xs:element name="ORMBody">
- <xs:complexType>
- <xs:sequence>
 <xs:element name="Object" type="Object" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="Predicate" type="Predicate" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="ORConnector" type="ORConnector" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="Subtype" type="Subtype" minOccurs="0" maxOccurs="unbounded"
/>
 <xs:element name="Subset" type="Subset" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="Text" type="Text" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="ExUniqueness" type="ExUniqueness" minOccurs="0"

Appendix C1: Customer Complaint Ontology (Glossary)

 232
-D

maxOccurs="unbounded" />
 <xs:element name="ExMandatory" type="ExMandatory" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="Mandatory" type="Mandatory" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="Equality" type="Equality" minOccurs="0" maxOccurs="unbounded"
/>
 <xs:element name="Exclusion" type="Exclusion" minOccurs="0"
maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
- <xs:complexType name="Object" abstract="true">
 <xs:attribute name="name" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 <xs:attribute name="width" use="required" />
 <xs:attribute name="height" use="required" />
 <xs:attribute name="ColorRGB" use="required" />
 </xs:complexType>
- <xs:complexType name="Predicate">
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 <xs:attribute name="width" use="required" />
 <xs:attribute name="height" use="required" />
 <xs:attribute name="ColorRGB" use="required" />
 </xs:complexType>
- <xs:complexType name="ORConnector">
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="1" maxOccurs="1">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
- <xs:element name="Object" minOccurs="1" maxOccurs="1">
- <xs:complexType>
 <xs:attribute name="name" type="xs:IDREF" use="required" />
 </xs:complexType>
 </xs:element>
- <xs:element name="Mandatory" minOccurs="0" maxOccurs="1">
- <xs:complexType>
 <xs:attribute name="RoleID" type="xs:IDREF" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 </xs:complexType>

Appendix C1: Customer Complaint Ontology (Glossary)

 233
-D

- <xs:complexType name="SubType">
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="ChildObjectID" type="xs:IDREF" use="required" />
 <xs:attribute name="ParentObjectID" type="xs:IDREF" use="required" />
 </xs:complexType>
- <xs:complexType name="Subset">
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 </xs:complexType>
- <xs:complexType name="Text" abstract="true">
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="content" type="xs:string" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 <xs:attribute name="width" use="required" />
 <xs:attribute name="height" use="required" />
 </xs:complexType>
- <xs:complexType name="ExUniqueness">
- <xs:annotation>
 <xs:documentation>External Uniqueness</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 </xs:complexType>
- <xs:complexType name="ExMandatory">
- <xs:annotation>
 <xs:documentation>External Mandatory</xs:documentation>
 </xs:annotation>
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />

Appendix C1: Customer Complaint Ontology (Glossary)

 234
-D

 <xs:attribute name="y" use="required" />
 </xs:complexType>
- <xs:complexType name="Mandatory" abstract="true">
 <xs:attribute name="RoleID" type="xs:IDREF" use="required" />
 </xs:complexType>
- <xs:complexType name="Equality">
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 </xs:complexType>
- <xs:complexType name="Exclusion">
- <xs:sequence>
- <xs:element name="Predicate" minOccurs="2" maxOccurs="2">
- <xs:complexType>
 <xs:attribute name="ID" type="xs:IDREF" use="required" />
 <xs:attribute name="PortType" use="required" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="ID" type="xs:ID" use="required" />
 <xs:attribute name="x" use="required" />
 <xs:attribute name="y" use="required" />
 </xs:complexType>
 </xs:schema>

Appendix C1: Customer Complaint Ontology (Glossary)

 235
-D

Appendix B3: ORM Verbalization Templates

In this appendix, we provide 3 verbalization templates for English, Dutch,
Arabic, and Russian, respectively. Each template is illustrated with an
ORM diagram and its resultant constraint verbalizations, as generated by
DogmaModeler.

English verbalization template

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://www.jarrar.info/orm/verbalization/'>
<ORMNLMeta>
 <Meta name="DC.Title" content="English verbalization template"/>
 <Meta name="DC.Version" content="0.3"/>
 <Meta name="DC.Creator" content="Mustafa Jarrar"/>
 <Meta name="DC.Language" content="English"/>
 </ORMNLMeta>

<ORMNLBody>
<Constraint xsi:type="Lexical">
 <Text> -Lexical concepts are :{</Text>
 <Object index="0"/>
 <Loop index="1">
 <Text>,</Text>
 <Object index="n"/>
 </Loop>
 <Text>}</Text>
</Constraint>

<FactType xsi:type="FactType">
 <Text> -</Text>
 <Object index="0"/>
 <Role index="0"/>
 <Text>/</Text>
 <Role index="1"/>
 <Object index="1"/>
</FactType>

<Constraint xsi:type="Mandatory">
 <Text> -[Mandatory] Each</Text>
 <Object index="0"/>
 <Text>must</Text>
 <Role index="0"/>
 <Text>at least one</Text>
 <Object index="1"/>
</Constraint>

Appendix C1: Customer Complaint Ontology (Glossary)

 236
-D

<Constraint xsi:type="Backward Mandatory">
 <Text> -[M] For each</Text>
 <Object index="0"/>
 <Text>there is at least one</Text>
 <Object index="1"/>
 <Text>that</Text>
 <Role index="1"/>
 <Text>this</Text>
 <Object index="0"/>
</Constraint>

<Constraint xsi:type="Disjunctive Mandatory">
 <Text> -[Mandatory] Each</Text>
 <Object index="0"/>
 <Text>should be</Text>
 <Role index="0"/>
 <Object index="1"/>
 <Loop index="1" >
 <Text>or</Text>
 <Role index="n"/>
 <Object index="n"/>
 </Loop>
</Constraint>

<Constraint xsi:type="Uniqueness">
 <Text> -[Uniqueness] Each</Text>
 <Object index="0"/>
 <Text>must</Text>
 <Role index="0"/>
 <Text>at most one</Text>
 <Object index="1"/>
</Constraint>

<Constraint xsi:type="Backward Uniqueness">
 <Text> -[Uniqueness] For each</Text>
 <Object index="0"/>
 <Text>there must be at most one</Text>
 <Object index="1"/>
 <Text>that</Text>
 <Role index="1"/>
 <Text>this</Text>
 <Object index="0"/>
</Constraint>

<Constraint xsi:type="Many Uniqueness">
 <Text> -[Uniqueness] It is possible that </Text>
 <Object index="0"/>
<Role index="0"></Role>
 <Text>more than one</Text>
 <Object index="1"/>
 <Text>, and vice versa</Text>

Appendix C1: Customer Complaint Ontology (Glossary)

 237
-D

</Constraint>

<Constraint xsi:type="External Uniqueness">
 <Text> -[Uniqueness] The combination of {</Text>
 <Object index="1"/>
 <Loop index="1">
 <Text>and</Text>
 <Object index="n"/>
 </Loop>
 <Text>} must refer to at most one</Text>
 <Object index="0"/>
</Constraint>

<Constraint xsi:type="Subtype">
 <Text> -[Subtype] Each instance of</Text>
 <Object index="child"/>
 <Text>is also an instance of</Text>
 <Object index="parent"/>
</Constraint>

<Constraint xsi:type="Value">
 <Text> -[Value] The possible instances of </Text>
 <Object index="0"/>
 <Text> are :{</Text>
 <Value index="0"/>
 <Loop index="1">
 <Text>,</Text>
 <Value index="n"/>
 </Loop>
 <Text> }</Text>
 </Constraint>

<Constraint xsi:type="Exclusive">
<Text> -[Exclusive] Each</Text>
<Object index="0"/>
<Text>should be either</Text>
<Object index="1"/>
<Loop index="1">
 <Text>or</Text>
 <Object index="n"/>
</Loop>
</Constraint>

<Constraint xsi:type="Total">
 <Text> -[Totality] Each</Text>
 <Object index="0"/>
 <Text>must be, at least, </Text>
 <Object index="1"/>
 <Loop index="1">
 <Text>or</Text>
 <Object index="n"/>

Appendix C1: Customer Complaint Ontology (Glossary)

 238
-D

 </Loop>
</Constraint>

<Constraint xsi:type="Partition">
 <Text> -[Partition] Each</Text>
 <Object index="0"/>
 <Text>is at least one of</Text>
 <Object index="1"/>
 <Loop index="1">
 <Text>or</Text>
 <Object index="n"/>
 </Loop>
 <Text>but not all</Text>
</Constraint>

<Constraint xsi:type="Subset">
 <Text> -[Subset] If</Text>
 <Object index="0"/>
 <Role index="child"/>
 <Object index="child"/>
 <Text>then this</Text>
 <Object index="0"/>
 <Role index="parent"/>
 <Object index="parent"/>
</Constraint>

<Constraint xsi:type="Subset FactType">
 <Text> -[Subset] If</Text>
 <Object index="0"/>
 <Role index="child"/>
 <Object index="child"/>
 <Text>then this</Text>
 <Object index="1" />
 <Role index="parent"/>
 <Text>that</Text>
 <Object index="parent"/>
</Constraint>

<Constraint xsi:type="Equality">
 <Text> -[Equality] </Text>
 <Object index="0"/>
 <Role index="first"/>
 <Object index="first"/>
 <Text>if and only if</Text>
 <Text>this </Text>
 <Object index="0"/>
 <Role index="second"/>
 <Object index="second"/>
</Constraint>

<Constraint xsi:type="Equality FactType">

Appendix C1: Customer Complaint Ontology (Glossary)

 239
-D

 <Text> -[Equality] </Text>
 <Object index="0"/>
 <Role index="First"/>
 <Object index="First"/>
 <Text>if and only if</Text>
 <Text>this</Text>
 <Object index="1"/>
 <Role index="Second"/>
 <Text>that</Text>
 <Object index="Second"/>
</Constraint>

<Constraint xsi:type="Exclusion">
 <Text> -[Exclusion] No</Text>
 <Object index="0"/>
 <Role index="first"/>
 <Object index="first"/>
 <Text>and also</Text>
 <Role index="second"/>
 <Object index="second"/>
</Constraint>

<Constraint xsi:type="Exclusion FactType">
 <Text> -[Exclusion] No</Text>
 <Object index="0"/>
 <Role index="first"/>
 <Object index="first"/>
 <Text>and also</Text>
 <Role index="second"/>
 <Text>that</Text>
 <Object index="second"/>
</Constraint>

<Constraint xsi:type="Frequency">
 <Text> -[Frequency] If </Text>
 <Object index="0"/>
 <Role index="0"/>
 <Object index="1"/>
 <Role index="0"/>
 <Text>, then this </Text>
 <Object index="0"/>
 <Role index="0"/>
 <Text>at least </Text>
 <Minimum/>
 <Text> and most most </Text>
 <Maximum/>
 <Role index="0"/>
 <Text>(s)</Text>
</Constraint>

<Constraint xsi:type="Irreflexive">

Appendix C1: Customer Complaint Ontology (Glossary)

 240
-D

 <Text> -[Irreflexive] No</Text>
 <Object index="0"/>
 <Role index="0"/>
 <Text> it/him self</Text>
</Constraint>

<Constraint xsi:type="Symmetric">
 <Text> -[Symmetric] If</Text>
 <Object index="0"/>
 <Text>X</Text>
 <Role index="0"/>
 <Object index="0"/>
 <Text>Y</Text>
 <Text>, it must be vice versa</Text>
</Constraint>

<Constraint xsi:type="Asymmetric">
 <Text> -[Symmetric] If</Text>
 <Object index="0"/>
 <Text>X</Text>
 <Role index="0"/>
 <Object index="0"/>
<Text> Y, it cannot be be vice versa</Text>
</Constraint>

<Constraint xsi:type="Acyclic">
 <Text> -[Acyclic] </Text>
 <Object index="0"/>
 <Text> cannot be directly (or indirectly through a chain)</Text>
 <Role index="0"/>
 <Text> it/him self</Text>
</Constraint>

<Constraint xsi:type="Transitve">
 <Text> -[Intransitve] If</Text>
 <Object index="0"/>
 <Text>X</Text>
 <Role index="0"/>
 <Object index="0"/>
 <Text>Y, and Y</Text>
 <Role index="0"/>
 <Text> Z, then it cannot be that X</Text>
 <Role index="0"/>
 <Text>Z</Text>
</Constraint>

</ORMNLBody>
</ORMSchema>

Appendix C1: Customer Complaint Ontology (Glossary)

 241
-D

Example (Verbalizations in English)

Fig. B.1. ORM-Diagram, English.

Verbalization

-[Mandatory] Each Person must Has at least one PassPortNr.
-[Mandatory] Each Person must Has at least one BirthDate.
-[Mandatory] Each Account should be Owned-By Person or Owned-By Company.
-[Uniqueness] Each Person must Has at most one BirthDate.
-[Uniqueness] Each Person must Has at most one Name.
-[Uniqueness] Each Person must Has at most one PassPortNr.
-[Uniqueness] Each PassPortNr must IsOf at most one Person.
-[Uniqueness] It is possible that Person teaches more than one Course , and vice versa.
-[Uniqueness] It is possible that Person Reviews more than one Book , and vice versa.
-[Uniqueness] It is possible that Person Writes more than one Book , and vice versa.
-[Uniqueness] It is possible that Person Drivers more than one Car , and vice versa.
-[Uniqueness] The combination of { Name and BirthDate } must refer to at most one Person.
-[Exlusive] Each Person should be either Woman or Man.
-[Totality] Each Person must be, at least, Woman or Man.
-[Subset] If Person Drivers Car then this Person AuthorisedWith Driving Licence.
-[Subset] If Manager manages Company then this Person WorksFor that Company.
-[Equality] Person WorksFor University if and only if this Person teaches Course.
-[Equality] Person AffiliatedWith Company if and only if this Person WorksFor that Company.
-[Exclusion] No Account Owned-By Person and also Owned-By Company.
-[Exclusion] No Person Reviews Book and also Writes that Book.

Appendix C1: Customer Complaint Ontology (Glossary)

 242
-D

-[Value] The possible instances of Country are :{ Belgium, France, Germany}
-[Irreflexive] No Person ColleagueOf it/him self.
-[Symmetric] If Person X ColleagueOf Person Y, it must be vice versa.
-[Acyclic] Person cannot be directly (or indirectly through a chain) ParentOf it/him self.
-[Acyclic] Person cannot be directly (or indirectly through a chain) SuperiorOf it/him self.
-[Asymmetric] If Person X WifeOf Person Y, it cannot be vice versa.
-[Intransitve] If Person X ParentOf Person Y, and Y ParentOf Z, then it cannot be that X ParentOf Z.
-[Frequency] If Person teaches Course, then this Person teaches at least 2 and most most 3
Course(s).

Dutch verbalization template

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://www.jarrar.info'>

<ORMNLMeta>
 <Meta name="DC.Title" content="Dutch verbalization template (Ver0.3)"/>
 <Meta name="DC.Version" content="0.2"/>
 <Meta name="DC.Creator" content="Mustafa Jarrar"/>
 <Meta name="DC.Contributor" content="Pieter Verheyden"/>
 <Meta name="DC.Language" content="Dutch"/>
</ORMNLMeta>

<ORMNLBody>

<FactType xsi:type="FactType" >
<Text>Een</Text>
<Object index="0" />
<Role index="0" />
<Text>/</Text>
<Role index="1" />
<Text> een</Text>
<Object index="1" />
</FactType>

<Constraint xsi:type="Mandatory" >
 <Text> -[Mandatory] E k(e)</Text>
 <Object index="0" />
 <Role index="0" />
 <Text> tenminste 1</Text>
 <Object index="1" />
</Constraint>

<Constraint xsi:type="Backward Mandatory" >
 <Text> -[Mandatory] Voor elk(e)</Text>
 <Object index="0" />
<Text>is er tenminste 1</Text>
<Object index="1" />
 <Text> dat</Text>
<Role index="1" />
 <Text> dit/deze</Text>
 <Object index="0" />
</Constraint>

<Constraint xsi:type="Disjunctive Mandatory" >
<Text> -[Mandatory] Elk(e)</Text>

Appendix C1: Customer Complaint Ontology (Glossary)

 243
-D

<Object index="0" />
<Text>ofwel</Text>
<Role index="0" />
<Text>een</Text>
<Object index="1" />
<Loop index="1" >
 <Text>ofwel </Text>
 <Role index="n" />
 <Text>een</Text>
 <Object index="1" />
</Loop>
</Constraint>

<Constraint xsi:type="Uniqueness" >
<Text> -[Uniqueness] Elk(e)</Text>
<Object index="0" />
<Role index="0" />
<Text> ten hoogste 1 </Text>
<Object index="1" />
</Constraint>

<Constraint xsi:type="Backward Uniqueness" >
 <Text> -[Uniqueness] Voor elke </Text>
<Object index="0" />
<Text>is er ten hoogste een </Text>
<Object index="1" />
<Text> dat/die </Text>
<Role index="1" />
<Text> dit/deze </Text>
<Object index="0" />
</Constraint>

<Constraint xsi:type="External Uniqueness" >
<Text> -[Uniqueness] Elke combinatie van</Text>
<Object index="1" />
<Loop index="1">
 <Text>en</Text>
 <Object index="n" />
</Loop>
<Text>is gerelateerd met slechts 1</Text>
<Object index="0" />
</Constraint>

<Constraint xsi:type="Many Uniqueness" >
<Text> -[Uniqueness] Het is mogelijk dat een </Text>
<Object index="0" />
<Role index="0"></Role>
<Text>meer dan 1</Text>
<Object index="1" />
<Text>, en omgekeerd </Text>
</Constraint>

<Constraint xsi:type="Subtype" >
<Text> -[Subtype] Elk(e)</Text>
<Object index="child" />
<Text>is ook een</Text>
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Exclusive" >
<Text> -[Exclusive] E k(e)</Text>

Appendix C1: Customer Complaint Ontology (Glossary)

 244
-D

<Object index="0"/>
<Text> kan ofwel een</Text>
<Object index="1"/>
<Loop index="1">
 <Text>ofwel een</Text>
 <Object index="n" />
</Loop>
<Text>zijn</Text>
</Constraint>

<Constraint xsi:type="Total" >
<Text> -[Total] Elk(e)</Text>
<Object index="0" />
<Text>is tenminste een</Text>
<Object index="1" />
<Loop index="1" >
 <Text>of een</Text>
 <Object index="n" />
</Loop>
</Constraint>

<Constraint xsi:type="Subset" >
<Text> -[Subset] Als een</Text>
<Object index="0" />
<Role index="child" />
<Text>een</Text>
<Object index="child" />
<Text>dan moet ook dit/deze</Text>
<Object index="1" />
<Role index="parent" />
<Text>een</Text>
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Subset FactType" >
<Text> -[Subset] Als een </Text>
<Object index="0" />
<Role index="child" />
<Text>een</Text>
<Object index="child" />
<Text>dan moet ook dit/deze </Text>
<Object index="1" />
<Role index="parent" />
<Text> dat </Text>
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Equality" >
<Text> -[Equality] Een </Text>
<Object index="0" />
<Role index="first" />
<Text>een </Text>
<Object index="first" />
<Text>dan en slechts dan als</Text>
<Text>dit/deze </Text>
<Object index="0" />
<Role index="second" />
<Text>een </Text>
<Object index="second" />
</Constraint>

Appendix C1: Customer Complaint Ontology (Glossary)

 245
-D

<Constraint xsi:type="Equality FactType" >
<Text> -[Equality] Een</Text>
<Object index="0" />
<Role index="0" />
<Object index="1" />
<Text>dan en slechts dan als</Text>
<Text>dit/deze </Text>
<Object index="0" />
<Role index="1" />
<Text>dat/die</Text>
<Object index="2" />
</Constraint>

<Constraint xsi:type="Exclusion" >
<Text> -[Exclusion] Geen </Text>
<Object index="0" />
<Role index="0" />
<Text>een </Text>
<Object index="1" />
<Text>en ook</Text>
<Role index="1" />
<Text>Een </Text>
<Object index="2" />
</Constraint>

<Constraint xsi:type="Exclusion FactType" >
<Text> -[Exclusion] Geen </Text>
<Object index="0" />
<Role index="0" />
<Text>een </Text>
<Object index="1" />
<Text>en ook</Text>
<Role index="1" />
<Text>datzelfde </Text>
<Object index="2" />
</Constraint>

<Constraint xsi:type="Frequency">
 <Text> -[Frequency] If </Text>
 <Object index="0"/>
 <Role index="0"/>
 <Object index="1"/>
 <Role index="0"/>
 <Text>, then this </Text>
 <Object index="0"/>
 <Role index="0"/>
 <Text>at least </Text>
 <Minimum/>
 <Text> and most most </Text>
 <Maximum/>
 <Role index="0"/>
 <Text>(s)</Text>
</Constraint>

<Constraint xsi:type="Irreflexive">
 <Text> -[Irreflexive] Geen enkel(e)</Text>
 <Object index="0"/>
 <Role index="0"/>
 <Text> zichzelf/hemzelf</Text>
</Constraint>

Appendix C1: Customer Complaint Ontology (Glossary)

 246
-D

<Constraint xsi:type="Symmetric" >
<Text>-[Symmetric] Indien</Text>
<Object index="0"/>
<Text> X</Text>
<Role index="0"/>
<Object index="0"/>
<Text> Y</Text>
<Text> , dan ook vice-versa</Text>
</Constraint>

<Constraint xsi:type="Asymmetric">
 <Text> -[Asymmetric] Indien</Text>
 <Object index="0"/>
 <Text> X</Text>
 <Role index="0"/>
 <Object index="0"/>
<Text> Y, dan kan het niet vice-versa</Text>
</Constraint>

<Constraint xsi:type="Acyclic">
 <Text> -[Acyclic]</Text>
 <Object index="0"/>
 <Text> kan niet rechtstreeks (of onrechtstreeks door een aaneenschakeling)</Text>
 <Role index="0"/>
 <Text> zichzelf/hemzelf</Text>
</Constraint>

<Constraint xsi:type="Transitve">
 <Text> -[Intransitve] Indien</Text>
 <Object index="0"/>
 <Text>X</Text>
 <Role index="0"/>
 <Object index="0"/>
 <Text>Y, en Y</Text>
 <Role index="0"/>
 <Text> Z, dan is het niet mogel jk dat X</Text>
 <Role index="0"/>
 <Text>Z</Text>
</Constraint>

</ORMNLBody>
</ORMSchema>

Appendix C1: Customer Complaint Ontology (Glossary)

 247
-D

Example (Verbalizations in Dutch)

Fig. B.2. ORM-Diagram, Dutch.

Verbalization

-[Mandatory] Elk(e) Persoon Heeft tenminste 1 PaspoortNr.
-[Mandatory] Elk(e) Persoon Heeft tenminste 1 Geboortedatum.
-[Mandatory] Elk(e) Rekening ofwel BeheerdDoor een Persoon ofwel BeheerdDoor een Bedrijf.
-[Uniqueness] E k(e) Persoon Heeft ten hoogste 1 Geboortedatum.
-[Uniqueness] E k(e) Persoon Heeft ten hoogste 1 Naam.
-[Uniqueness] E k(e) Persoon Heeft ten hoogste 1 PaspoortNr.
-[Uniqueness] E k(e) PaspoortNr IsVan ten hoogste 1 Persoon.
-[Uniqueness] E ke combinatie van Naam en Geboortedatum is gerelateerd met slechts 1 Persoon.
-[Uniqueness] Het is mogel jk dat een Persoon Onderricht meer dan 1 Vak , en omgekeerd .
-[Uniqueness] Het is mogel jk dat een Persoon Recenseert meer dan 1 Boek , en omgekeerd .
-[Uniqueness] Het is mogel jk dat een Persoon Schr jft meer dan 1 Boek , en omgekeerd .
-[Uniqueness] Het is mogel jk dat een Persoon RijdtMet meer dan 1 Wagen , en omgekeerd .
-[Exclusive] Elk(e) Persoon kan ofwel een Man ofwel een Vrouw zijn.
-[Total] Elk(e) Persoon is tenminste een Vrouw of een Man.
-[Subset] Als een Persoon R jdtMet een Wagen dan moet ook dit/deze Persoon Besch ktOver een

R jbewijs.
-[Subset] Als een Beheerder beheert een Bedr jf dan moet ook dit/deze Persoon WerktVoor dat

Bedrijf.
-[Equality] Een Persoon WerktVoor een Universiteit dan en slechts dan als dit/deze Persoon

Appendix C1: Customer Complaint Ontology (Glossary)

 248
-D

Onderricht een Vak.
-[Equality] Een Persoon GeaffilieerdMet Bedr jf dan en slechts dan als dit/deze Persoon WerktVoor
dat/die Bedrijf.
-[Exclusion] Geen enkel(e) Account Owned-By Person and also Owned-By Company.
-[Exclusion] No Person Reviews Book and also Writes that Book.
-[Value] De mogel jke instanties van Land zijn :{ Belgium, France, Germany}
-[Irreflexive] Geen enkel(e) Persoon CollegaVan zichzelf/hemzelf.
-[Symmetric] Indien Persoon X CollagaVan Persoon Y, dan ook vice-versa.
-[Acyclic] Persoon kan niet rechtstreeks (of onrechtstreeks door een aaneenschakeling) OversteVan

zichzelf/hemzelf .
 -[Acyclic] Vrouw kan niet rechtstreeks (of onrechtstreeks door een aaneenschakeling) ZusVan

zichzelf/hemzelf .
-[Asymmetric] Indien Vrouw X EchtgenoteVanVrouw Y, dan kan het niet vice-versa .
-[Intransitve] Indien Persoon X OuderVan Persoon Y, en Y OuderVan Z, dan is het niet mogelijk dat
X OuderVan Z.
-[Frequency] Indien Persoon Onderricht Vak, dan deze/dit Persoon Onderricht tenminste 2 en ten

hoogste 3 Vak.

Acknowledgement: I am very grateful to Pieter Verheyden for his help in
translating the Dutch verbalization template and the provided example.

Appendix C1: Customer Complaint Ontology (Glossary)

 249
-D

Arabic verbalization template

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://www.jarrar.info/orm/verbalization/'>

<ORMNLMeta>
 <Meta name="DC.Title" content="Arabic verbalization template"/>
 <Meta name="DC.Version" content="0.2"/>
 <Meta name="DC.Creator" content="Mustafa Jarrar"/>
<Meta name="DC.Language" content="Arabic"/>
 </ORMNLMeta>
<ORMNLBody>

<FactType xsi:type="FactType" >
<Object index="0" />
<Role index="0" />
<Text>/</Text>
<Role index="1" />
<Object index="1" />
 </FactType>

<Constraint xsi:type="Mandatory" >
 <Text> ϝϛ </Text>
 <Object index="0" />
 <Role index="0" />
 <Object index="1" />
 <Text> ϝϗϻ΍ ϰϠϋ ΩΣ΍ϭ</Text>
</Constraint>

<Constraint xsi:type="Backward Mandatory" >
 <Text>ϝϛϟ</Text>
 <Object index="0" />
<Text>ΩΟϭϳ</Text>
<Object index="1" />
<Text>ϝϗϻ΍ ϰϠϋ ΩΣ΍ϭ</Text>
<Role index="1" />
 <Text> ΍Ϋϫ</Text>
 <Object index="0" />
</Constraint>

<Constraint xsi:type="Disjunctive Mandatory">
 <Text> -[Mandatory] ϝϛ </Text>
 <Object index="0"/>
 <Text> ϥϭϛϳ ϥ΍ ΏΟϳ </Text>
 <Role index="0"/>
 <Object index="1"/>
 <Loop index="1" >
 <Text> ϭ΍ </Text>
 <Role index="n"/>
 <Object index="n"/>
 </Loop>
</Constraint>

Appendix C1: Customer Complaint Ontology (Glossary)

 250
-D

<Constraint xsi:type="Uniqueness">
 <Text> -[Uniqueness] ϝϛϟ </Text>
 <Object index="0"/>
 <Role index="0"/>
 <Object index="1"/>
 <Text> έΛϛϻ΍ ϰϠϋ ΩΣ΍ϭ </Text>
</Constraint>

<Constraint xsi:type="Backward Uniqueness" >
<Text>ϝϛϟ </Text>
<Object index="0" />
<Text> ΩΟϭϳ </Text>
<Object index="1" />
<Text> έΛϛϻ΍ ϰϠϋ ΩΣ΍ϭ</Text>
<Role index="1" />
 <Text> ΍Ϋϫ</Text>
 <Object index="0" />
</Constraint>

<Constraint xsi:type="Many Uniqueness" >
<Text>ϝϛ </Text>
<Object index="0" />
<Text>ϥ΍ ϥϛϣϳ </Text>
<Role index="0"></Role>
<Text> ϥϣ έΛϛ΍ </Text>
<Object index="1" />
<Text> ΢ϳΣλ αϛόϟ΍ϭ </Text>
</Constraint>

<Constraint xsi:type="External Uniqueness" >
<Text>ϥϣ ϝϛ ΩΎΣΗ΍</Text>
<Object index="1" />
<Loop index="1">
<Text>ϭ</Text>
<Object index="n" />
</Loop>
<Text>ϰϟ΍ έϳηϳ</Text>
<Object index="0" />
<Text> έΛϛϻ΍ ϰϠϋ ΩΣ΍ϭ</Text>
</Constraint>
<Constraint xsi:type="Subtype" >
<Text>ϝϛ</Text>
<Object index="child" />
<Text>ϭϫ</Text>
<Object index="parent" />
 </Constraint>

<Constraint xsi:type="Value">
 <Text> -[Value] ϝ Δϧϛϣϣϟ΍ ϡϳϘϳϟ΍ </Text>
 <Object index="0"/>
 <Text> ϲϫ:} </Text>
 <Value index="0"/>

Appendix C1: Customer Complaint Ontology (Glossary)

 251
-D

 <Loop index="1">
 <Text>,</Text>
 <Value index="n"/>
 </Loop>
 <Text> {</Text>
 </Constraint>

<Constraint xsi:type="Subtype" >
 <Text>ϝϛ</Text>
 <Object index="child" />
 <Text>ϭϫ</Text>
 <Object index="parent" />
</Constraint>

<Constraint xsi:type="Exclusive" >
<Text>ϝϛ</Text>
<Object index="0"/>
<Text> ϥϭϛϳ ϥ΍ ϥϛϣϳ Ύϣ΍ </Text>
<Object index="1"/>
<Loop index="1">
 <Text>ϭ΍</Text>
 <Object index="n"/>
</Loop>
 </Constraint>

<Constraint xsi:type="Total" >
 <Text>ϝϛ </Text>
<Object index="0" />
<Text> ϥϭϛϳ ϥ΍ ΏΟϳ </Text>
<Object index="1" />
<Loop index="1" >
 <Text> ϭ΍ </Text>
 <Object index="n" />
</Loop>
</Constraint>

<Constraint xsi:type="Partition" >
<Text>ϝϛ </Text>
<Object index="0" />
<Text> Ύϣ΍ ϥϭϛϳ ϥ΍ ΏΟϳ </Text>
<Object index="1" />
<Loop index="1" >
 <Text> ϭ΍ </Text>
 <Object index="n" />
</Loop>
</Constraint>

<Constraint xsi:type="Subset" >
<Text>΍Ϋ΍ </Text>
<Object index="0" />
<Role index="child" />
<Object index="child" />

Appendix C1: Customer Complaint Ontology (Glossary)

 252
-D

<Text> ΍Ϋϫ ϥΎϓ </Text>
<Object index="0" />
<Role index="parent" />
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Subset FactType">
 <Text> -[Subset] ΍Ϋ΍ </Text>
 <Object index="0"/>
 <Role index="child"/>
 <Object index="child"/>
 <Text> ΍Ϋϫ ϥΎϓ </Text>
 <Object index="1" />
 <Role index="parent"/>
 <Text> ΓΫϫ </Text>
 <Object index="parent"/>
</Constraint>

<Constraint xsi:type="Equality" >
<Text>ϝϛ </Text>
<Object index="0" />
<Role index="first" />
<Object index="first" />
<Text>ϝ΍ ΍Ϋϫ΍Ϋ΍ υϘϓ ϭ ΍Ϋ΍ </Text>
<Object index="0" />
<Role index="second" />
<Object index="second" />
</Constraint>

<Constraint xsi:type="Equality FactType" >
<Text>ϝϛ </Text>
<Object index="0" />
<Role index="0" />
<Object index="1" />
<Text>ϝ΍ ΍Ϋϫ΍Ϋ΍ υϘϓ ϭ ΍Ϋ΍</Text>
<Object index="1" />
<Role index="second" />
<Text>ϝ΍ ΓΫϫ</Text>
<Object index="second" />
</Constraint>

<Constraint xsi:type="Exclusion" >
<Text> ϥϭϛϳ ϥ΍ ϥϛϣϳ ϻ </Text>
<Object index="0" />
<Role index="first" />
<Object index="first" />
<Text> Εϗϭϟ΍ αϔϧ ϲϓ ϭ </Text>
<Role index="second" />
<Object index="second" />
</Constraint>

<Constraint xsi:type="Exclusion FactType" >

Appendix C1: Customer Complaint Ontology (Glossary)

 253
-D

<Text> ϥϭϛϳ ϥ΍ ϥϛϣϳ ϻ </Text>
<Object index="0" />
<Role index="first" />
<Object index="first" />
<Text> Εϗϭϟ΍ αϔϧ ϲϓ ϭ </Text>
<Role index="second" />
<Text>ϙϟΫ </Text>
<Object index="second" />
 </Constraint>

<Constraint xsi:type="Frequency">
 <Text> -[Frequency] ϝ΍ ΍Ϋ΍</Text>
 <Object index="0"/>
 <Role index="0"/>
 <Object index="1"/>
 <Role index="0"/>
 <Text> ϝ΍ ΍Ϋϫ ϥΎϓ </Text>
 <Object index="0"/>
 <Text> ϥ΍ ΏΟϳ </Text>
 <Role index="0"/>
 <Text> ϥϳΑ </Text>
 <Minimum/>
 <Text> ϰϟ΍ </Text>
 <Maximum/>
 <Role index="0"/>
</Constraint>

<Constraint xsi:type="Irreflexive" >
<Text> ϝ ίϭΟϳ ϻ </Text>
<Object index="0"/>
<Text> ϥϭϛϳ ϥ΍ </Text>
<Role index="0"/>
<Text> Ϫγϔϧϟ </Text>
</Constraint>

<Constraint xsi:type="Symmetric" >
<Text>΍Ϋ΍</Text>
<Object index="0"/>
<Text> α</Text>
<Role index="0"/>
<Object index="0"/>
<Text> ι</Text>
<Text> αϛόϟΎΑ αϛόϟ΍ ϪϧΎϓ</Text>
</Constraint>

<Constraint xsi:type="Asymmetric">
 <Text> -[Symmetric] ΍Ϋ΍</Text>
 <Object index="0"/>
 <Text> α </Text>
 <Role index="0"/>
 <Object index="0"/>
 <Text> </Text>
 <Text> ι ,΢ϳΣλ έϳϏ αϛόϟ΍ ϥΎϓ </Text>

Appendix C1: Customer Complaint Ontology (Glossary)

 254
-D

</Constraint>

<Constraint xsi:type="Acyclic">
 <Text> -[Acyclic] ϝ ϥϛϣϳϻ</Text>
 <Object index="0"/>
 <Text> ϥϭϛϳ ϥ΍)ΑΓέηΎΑϣ έϳϏ ϭ΍ ΓέηΎΑϣ ΔϘϳέρ(</Text>
 <Role index="0"/>
 <Text> Ϫγϔϧ</Text>
</Constraint>

<Constraint xsi:type="Transitve">
 <Text> -[Intransitve] ΍Ϋ΍ </Text>
 <Object index="0"/>
 <Text> α </Text>
 <Role index="0"/>
 <Object index="0"/>
 <Text> ι , ι ϭ </Text>
 <Role index="0"/>
 <Text> Ν ,α ϥϭϛϳ ϥ΍ ϥϛϣϳϻ ϪϧΎϓ </Text>
 <Role index="0"/>
 <Text> Ν </Text>
</Constraint>

</ORMNLBody>
</ORMSchema>

Appendix C1: Customer Complaint Ontology (Glossary)

 255
-D

Example (Verbalizations in Arabic)

Fig. B.3. ORM-Diagram, Arabic.

Verbalization

 ϝϗϻ΍ ϰϠϋ ΩΣ΍ϭ ϡϗ˸έ˴έϔ˴γ˴ ί˵΍ϭ˴Ο˴ ϝϛ ϥΎγϧ˸· Ϫϟ [Mandatory]-
 ϝϗϻ΍ ϰϠϋ ΩΣ΍ϭ Ωϼϳϣ˶ ΥέΎΗ Ϫϟ ϥΎγϧ˸· ϝϛ [Mandatory]-

Δϛέη ϝ ϙϭϠϣϣ ϭ΍ ϥΎγϧ΍ ϝ ϙϭϠϣϣ ϥϭϛϳ ϥ΍ ΏΟϳ ΏΎγΣ ϝϛ [Mandatory]-
 ϥΎγϧ΍ ϝϛϪϟ έΛϛϻ΍ ϰϠϋ ΩΣ΍ϭ Ωϼϳϣ ΦϳέΎΗ [Uniqueness]-

 ϥΎγϧ΍ ϝϛϪϟ έΛϛϻ΍ ϰϠϋ ΩΣ΍ϭ ϡγ΍ [Uniqueness]-
 ϥΎγϧ΍ ϝϛϪϟ έΛϛϻ΍ ϰϠϋ ΩΣ΍ϭ έϔγ ί΍ϭΟ ϡϗέ [Uniqueness]-

έΛϛϻ΍ ϰϠϋ ΩΣ΍ϭ ϥΎγϧ΍ ϝ έϔγ ί΍ϭΟ ϡϗέ ϝϛ [Uniqueness]-
 ΢ϳΣλ αϛόϟ΍ϭ ΓΩΎϣ ϥϣ έΛϛ΍ αέΩϳ ϥ΍ ϥϛϣϳ ϥΎγϧ΍ ϝϛ [Uniqueness]-
΢ϳΣλ αϛόϟ΍ϭ ϥϣ έΛϛ΍ ϑϟ΅ϳ ϥ΍ ϥϛϣϳ ϥΎγϧ΍ ϝϛ ΏΎΗϛ [Uniqueness]-

 ϥ΍ ϥϛϣϳ ϥΎγϧ΍ ϝϛϰϠϋ ϕϠόϳ ΢ϳΣλ αϛόϟ΍ϭ ΏΎΗϛ ϥϣ έΛϛ΍ [Uniqueness]-
ϥϣ έΛϛ΍ ΩϭϘϳ ϥ΍ ϥϛϣϳ ϥΎγϧ΍ ϝϛ ΢ϳΣλ αϛόϟ΍ϭ ΓέΎϳγ [Uniqueness]-

έΛϛϻ΍ ϰϠϋ ΩΣ΍ϭ ϥΎγϧ΍ ϰϟ΍ έϳηϳ ϡγ΍ϭ Ωϼϳϣ ΦϳέΎΗ ϥϣ ϝϛ ΩΎΣΗ΍ [Uniqueness]-
Γ˴΃έ˴ϣ˸΍˶ ϭ΍ ϝΟέ Ύϣ΍ ϥϭϛϳ ϥ΍ ϥϛϣϳ ϥΎγϧ΍ ϝϛ [Exclusive]-

Γ˴΃έ˴ϣ˸΍˶ ϭ΍ ϝΟέ ϥϭϛϳ ϥ΍ ΏΟϳ ϥΎγϧ΍ ϝϛ [Totality]-
ΔϗΎϳγ ΔλΧέ Ώ ϝϭΧϣ ϥΎγϧϻ΍ ΍Ϋϫ ϥΎϓ ΓέΎϳγ ΩϭϘϳ ϥΎγϧ΍ ΍Ϋ΍ [Subset]-

Δϛέηϟ΍ ΓΫϫ ϲϓ ϝϣόϳέϳΩϣϟ΍ ΍Ϋϫ ϥΎϓ Δϛέη έϳΩϳέϳΩϣ ΍Ϋ΍ [Subset]-
ΓΩΎϣ αέΩϳ ϥΎγϧϻ΍ ΍Ϋϫ ΍Ϋ΍ ρϘϓ ϭ ΍Ϋ΍ ΔόϣΎΟ ϲϓ ϝϣόϳ ϥΎγϧ΍ ϝϛ [Equality]-

Appendix C1: Customer Complaint Ontology (Glossary)

 256
-D

Δϛέηϟ΍ ΓΫϫ ϲϓ ϝϣόϳ ϥΎγϧϻ΍ ΍Ϋϫ ΍Ϋ΍ ρϘϓ ϭ ΍Ϋ΍ Δϛέηϟ Ώϭγϧϣ ϥΎγϧ΍ ϝϛ [Equality]-
Δϛέηϟ ϙϭϠϣϣ Εϗϭϟ΍ αϔϧ ϲϓ ϭ ϥΎγϧ ϻ ϙϭϠϣϣ ΏΎγΣ ϥϭϛϳ ϥ΍ ϥϛϣϳ ϻ [Exclusion]-

 ϥϭϛϳ ϥ΍ ϥϛϣϳ ϻϥΎγϧ΍ ΏΎΗϛ ϰϠϋ ϕϠόϳ ϭ Εϗϭϟ΍ αϔϧ ϲϓ ϑϟ΅ϳ ϙϟΫΏΎΗϛ [Exclusion]-
{ ϝ Δϧϛϣϣϟ΍ ϡϳϘϟ΍ϲϫ ΔϟϭΩ: }ΎϛϳΟϠΑ ,Ύγϧέϓ ,ΎϳϧΎϣϟ΍ [Value]-

Ϫγϔϧϟ ϝϳϣί ϥϭϛϳ ϥ΍ ϥΎγϧ΍ ϝ ίϭΟϳ ϻ [Irreflexive]-
αϛόϟΎΑ αϛόϟ΍ ϪϧΎϓ, ϝϳϣί α ϥΎγϧ΍ ΍Ϋ΍ ϝ ι [Symmetric]-

 ϥϭϛϳ ϥ΍ ϥΎγϧϻ ϥϛϣϳϻ)ΓέηΎΑϣ έϳϏ ϭ΍ ΓέηΎΑϣ ΔϘϳέρΑ (Ϫγϔϧϟ ϡ΍ ϭ΍ Ώ΍ [Acyclic]-
 ϥϭϛϳ ϥ΍ ϥΎγϧϻ ϥϛϣϳϻ)ΓέηΎΑϣ έϳϏ ϭ΍ ΓέηΎΑϣ ΔϘϳέρΑ (ϰϠϋ ϑέηϣϪγϔϧ [Acyclic]-

ι ϥΎγϧϻ ΔΟϭί α ϥΎγϧ΍ ΍Ϋ΍ ,΢ϳΣλ έϳϏ αϛόϟ΍ ϥΎϓ [Asymmetric]-
ι ϥΎγϧϻ ϡ΍ ϭ΍ Ώ΍ α ϥΎγϧ΍ ΍Ϋ΍ ,Ν ϥΎγϧϻ ϡ΍ ϭ΍ Ώ΍ ι ϭ ,ϡ΍ ϭ΍ Ώ΍ α ϥϭϛϳ ϥ΍ ϥϛϣϳϻ ϪϧΎϓ ϝ Ν [Intransitve]-

έΩϳ ϥΎγϧϻ΍ ΍Ϋ΍ΓΩΎϣ α , ϥϳΑ αέΩϳ ϥ΍ ΏΟϳ ϥΎγϧϻ΍ ΍Ϋϫ ϥΎϓ2 ϰϟ΍3 ΓΩΎϣ [Frequency]-

Russian verbalization template

<?xml version='1.0' encoding='UTF-8'?>
<ORMSchema xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xsi:noNamespaceSchemaLocation='http://www.jarrar.info>

<ORMNLMeta>
 <Meta name="DC.Title" content="Russian verbalization template"/>
 <Meta name="DC.Version" content="0.1"/>
 <Meta name="DC.Creator" content="Mustafa Jarrar"/>
 <Meta name="DC.Contributor" content="Andriy Lisovoy"/>
 <Meta name="DC.Language" content="Russian"/>
</ORMNLMeta>
<ORMNLBody>

<Constraint xsi:type="Lexical" >
<Text>Ʌɟɤɫɢɱɟɫɤɢɦɢ ɤɨɧɰɟɩɰɢɹɦɢ ɹɜɥɹɸɬɫɹ :{</Text>
 <Object index="0" />
<Loop index="1">
<Text>,</Text>
 <Object index="n" />
</Loop>
 <Text> }</Text>
 </Constraint>

<Constraint xsi:type="Value" >
<Object index="0" />
<Text> ɦɨɠɟɬ ɛɵɬɶ ɩɪɟɞɫɬɚɜɥɟɧ ɤɚɤ :{</Text>
<Value index="0" />
<Loop index="1">
<Text>,</Text>
 <Value index="n" />
</Loop>
 <Text> }</Text>
 </Constraint>

Appendix C1: Customer Complaint Ontology (Glossary)

 257
-D

<Constraint xsi:type="Mandatory" >
 <Text>Kɚɠɞɵɣ</Text>
 <Object index="0" />
 <Role index="0" />
 <Text> ɩɨ ɤɪɚɧɟɣ ɦɟɪɟ ɨɞɢɧ</Text>
 <Object index="1" />
</Constraint>

<Constraint xsi:type="Backward Mandatory" >
 <Text>Ⱦɥɹ ɤɚɠɞɨɝɨ</Text>
 <Object index="0" />
<Text> ɫɭɳɟɫɬɜɭɟɬ ɩɨ ɤɪɚɣɧɟɣ ɦɟɪɟ ɨɞɢɧ </Text>
<Object index="1" />
 <Text> ɤɨɬɨɪɵɣ </Text>
<Role index="1" />
 <Text> ɷɬɨɬ</Text>
 <Object index="0" />
</Constraint>

<Constraint xsi:type="Disjunctive Mandatory" >
<Object index="0" />
<Text>either</Text>
<Role index="0" />
<Text>ɢɥɢ</Text>
<Object index="1" />
<Loop index="1" >
 <Text>ɢɥɢ </Text>
 <Role index="n" />
<Object index="n" />
</Loop>
</Constraint>

<Constraint xsi:type="Uniqueness" >
<Text>Ʉɚɠɞɵɣ</Text>
<Object index="0" />
<Role index="0" />
<Text> ɦɚɤɫɢɦɭɦ ɨɞɢɧ </Text>
<Object index="1" />
 </Constraint>

<Constraint xsi:type="Backward Uniqueness" >
<Text>Ⱦɥɹ ɤɚɠɞɨɝɨ </Text>
<Object index="0" />
<Text> ɫɭɳɟɫɬɜɭɟɬ ɩɨ ɦɚɤɫɢɦɭɦ ɨɞɢɧ </Text>
<Object index="1" />
<Text> ɤɨɬɨɪɵɣ </Text>
<Role index="1" />
<Text> ɷɬɨɬ</Text>
<Object index="0" />
</Constraint>

Appendix C1: Customer Complaint Ontology (Glossary)

 258
-D

<Constraint xsi:type="External Uniqueness" >
<Text>Ʉɚɠɞɚɹ ɤɨɦɛɢɧɚɰɢɹ </Text>
<Object index="1" />
<Loop index="1">
<Text>ɢ</Text>
<Object index="n" />
</Loop>
<Text> ɨɬɧɨɫɢɬɫɹ ɬɨɥɶɤɨ ɤ ɨɞɧɨɦɭ </Text>
<Object index="0" />
</Constraint>

<Constraint xsi:type="Many Uniqueness" >
<Text>ɜɨɡɦɨɠɧɨ, ɱɬɨ</Text>
<Object index="0" />
<Role index="0"></Role>
<Text> ɛɨɥɶɲɟ, ɱɟɦ ɨɞɢɧ </Text>
<Object index="1" />
<Text> ɢ, ɱɬɨ</Text>
<Object index="1" />
<Role index="1"></Role>
<Text> ɛɨɥɶɲɟ, ɱɟɦ ɨɞɢɧ </Text>
<Object index="0" />
</Constraint>

<Constraint xsi:type="Subtype" >
<Text>Kɚɠɞɵɣ</Text>
<Object index="child" />
<Text> ɬɚɤɠɟ ɹɜɥɹɟɬɫɹ </Text>
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Exclusive" >
<Text>Kɚɠɞɵɣ</Text>
<Object index="0"/>
<Text> ɦɨɠɟɬ ɛɵɬɶ </Text>
<Object index="1"/>
<Loop index="1">
 <Text>ɢɥɢ</Text>
 <Object index="n"/>
</Loop>
</Constraint>

<Constraint xsi:type="Total" >
 <Text>Kɚɠɞɵɣ</Text>
<Object index="0" />
<Text> ɹɜɥɹɟɬɫɹ ɥɢɛɨ </Text>
<Object index="1" />
<Loop index="1" >
 <Text> ɢɥɢ </Text>
 <Object index="n" />

Appendix C1: Customer Complaint Ontology (Glossary)

 259
-D

</Loop>
</Constraint>

<Constraint xsi:type="Partition" >
<Text>Each </Text>
<Object index="0" />
<Text> ɩɨ ɤɪɚɣɧɟɣ ɦɟɪɟ ɹɜɥɹɟɬɫɹ ɨɞɧɢɦ ɢɡ </Text>
<Object index="1" />
<Loop index="1" >
 <Text> ɢɥɢ </Text>
 <Object index="n" />
</Loop>
<Text>ɧɨ ɧɟ ɜɫɟɦɢ ɫɪɚɡɭ</Text>
</Constraint>

<Constraint xsi:type="Subset" >
<Text>ȿɫɥɢ </Text>
<Object index="0" />
<Role index="child" />
<Object index="child" />
<Text>, ɬɨ </Text>
<Object index="0" />
<Role index="parent" />
<Object index="parent" />
</Constraint>

<Constraint xsi:type="Equality" >
<Object index="0" />
<Role index="first" />
<Object index="first" />
<Text>ɟɫɥɢ ɢ ɬɨɥɶɤɨ ɟɫɥɢ</Text>
<Text>ɷɬɨɬ </Text>
<Object index="0" />
<Role index="second" />
<Object index="second" />
<Text>, ɢ ɧɚɨɛɨɪɨɬ</Text>
</Constraint>

<Constraint xsi:type="Equality FactType" >
<Object index="0" />
<Role index="First" />
<Object index="First" />
<Text>ɟɫɥɢ ɢ ɬɨɥɶɤɨ ɟɫɥɢ</Text>
<Text>ɷɬɨɬ </Text>
<Object index="1" />
<Role index="Second" />
<Object index="Second" />
</Constraint>

<Constraint xsi:type="Subset FactType" >
<Text>ȿɫɥɢ </Text>

Appendix C1: Customer Complaint Ontology (Glossary)

 260
-D

<Object index="0" />
<Role index="child" />
<Object index="child" />
<Text>, ɬɨ ɷɬɨɬ </Text>
<Object index="1" />
<Role index="parent" />
<Text> ɬɨɬ </Text>
<Object index="parent" />

</Constraint>

<Constraint xsi:type="Exclusion" >
<Text>ɇɟ ɫɭɳɟɫɬɜɭɟɬ </Text>
<Object index="0" />
<Text>, ɤɨɬɨɪɵɣ </Text>
<Role index="first" />
<Object index="first" />
<Text> ɢ </Text>
<Role index="second" />
<Object index="second" />
</Constraint>

<Constraint xsi:type="Exclusion FactType" >
<Text>ɇɟ ɫɭɳɟɫɬɜɭɟɬ </Text>
<Object index="0" />
<Text>, ɤɨɬɨɪɵɣ </Text>
<Role index="first" />
<Object index="first" />
<Text>ɢ</Text>
<Role index="second" />
<Text>ɬɨɬ </Text>
<Object index="second" />
 </Constraint>

<Constraint xsi:type="Reflexive" >
<Text>Ʉɚɠɞɵɣ</Text>
<Object index="0"/>
<Role index="0"/>
<Text> </Text>
</Constraint>

<Constraint xsi:type="Irreflexive" >
<Text>No</Text>
<Object index="0"/>
<Role index="0"/>
<Text> ɫɚɦɨɝɨ ɫɟɛɹ</Text>
</Constraint>

<Constraint xsi:type="Symmetric" >
<Text>ȿɫɥɢ</Text>
<Object index="0"/>

Appendix C1: Customer Complaint Ontology (Glossary)

 261
-D

<Text> x</Text>
<Role index="0"/>
<Object index="0"/>
<Text> y</Text>
<Text> ɬɨ ɧɚɨɛɨɪɨɬ</Text>
</Constraint>

<Constraint xsi:type="Transitve" >
<Text>ȿɫɥɢ</Text>
<Object index="0"/>
<Text>x</Text>
<Role index="0"/>
<Object index="0"/>
<Text>y ɢ y</Text>
<Role index="0"/>
<Text> x ɬɨ x</Text>
<Role index="0"/>
<Text>y</Text>
</Constraint>

</ORMNLBody>
</ORMSchema>

Appendix C1: Customer Complaint Ontology (Glossary)

 262
-D

Example (Verbalizations in Russian)

Fig. B.4. ORM-Diagram, Russian.

Verbalization

 Kɚɠɞɵɣ ɑɟɥɨɜɟɤ ɂɦɟɟɬ ɩɨ ɤɪɚɧɟɣ ɦɟɪɟ ɨɞɢɧ ɇɨɦɟɪɉɚɫɫɩɨɪɬɚ.
 Kɚɠɞɵɣ ɑɟɥɨɜɟɤ ɂɦɟɟɬ ɩɨ ɤɪɚɧɟɣ ɦɟɪɟ ɨɞɢɧ ȾɚɬɚɊɨɠɞɟɧɢɹ.
 Ʉɚɠɞɚɹ ɤɨɦɛɢɧɚɰɢɹ ȾɚɬɚɊɨɠɞɟɧɢɹ ɢ ɂɦɹ ɨɬɧɨɫɢɬɫɹ ɬɨɥɶɤɨ ɤ ɨɞɧɨɦɭ ɑɟɥɨɜɟɤ.
 Kɚɠɞɵɣ ɑɟɥɨɜɟɤ ɦɨɠɟɬ ɛɵɬɶ ɀɟɧɳɢɧɚ ɢɥɢ Ɇɭɠɱɢɧɚ.
 Kɚɠɞɵɣ ɑɟɥɨɜɟɤ ɹɜɥɹɟɬɫɹ ɥɢɛɨ ɀɟɧɳɢɧɚ ɢɥɢ Ɇɭɠɱɢɧɚ.
 ȿɫɥɢ ɑɟɥɨɜɟɤ ȼɨɞɢɬ Ⱥɜɬɨɦɨɛɢɥɶ , ɬɨ ɑɟɥɨɜɟɤ Ⱥɜɬɨɪɢɡɢɪɨɜɚɧ ȼɨɞɢɬɟɥɶɫɤɢɟɉɪɚɜɚ.
ɑɟɥɨɜɟɤ Ɋɚɛɨɬɚɟɬɇɚɍɧɢɜɟɪɫɢɬɟɬ ɟɫɥɢ ɢ ɬɨɥɶɤɨ ɟɫɥɢ ɷɬɨɬ ɑɟɥɨɜɟɤ ɉɪɟɩɨɞɚɟɬKɭɪɫ , ɢ
ɧɚɨɛɨɪɨɬ.
 ɑɟɥɨɜɟɤ ɋɜɹɡɚɧɋ Kɨɦɩɚɧɢɹ ɟɫɥɢ ɢ ɬɨɥɶɤɨ ɟɫɥɢ ɷɬɨɬ ɑɟɥɨɜɟɤ Ɋɚɛɨɬɚɟɬɇɚ Kɨɦɩɚɧɢɹ.
 ȿɫɥɢ ɍɩɪɚɜɥɹɸɳɢɣ ɍɩɪɚɜɥɹɟɬ Kɨɦɩɚɧɢɹ , ɬɨ ɷɬɨɬ ɑɟɥɨɜɟɤ Ɋɚɛɨɬɚɟɬɇɚ ɬɨɬ Kɨɦɩɚɧɢɹ.
 ɇɟ ɫɭɳɟɫɬɜɭɟɬ ɋɱɟɬ , ɤɨɬɨɪɵɣ ɩɪɢɧɚɞɥɟɠɢɬɑɟɥɨɜɟɤ ɢ ɩɪɢɧɚɞɥɟɠɢɬKɨɦɩɚɧɢɹ.
 ɇɟ ɫɭɳɟɫɬɜɭɟɬ ɑɟɥɨɜɟɤ , ɤɨɬɨɪɵɣ ɉɢɲɟɬ Kɧɢɝɚ ɢ ɉɪɨɫɦɚɬɪɢɜɚɟɬ ɬɨɬ Kɧɢɝɚ..
 ɋɱɟɬ either ɩɪɢɧɚɞɥɟɠɢɬ ɢɥɢ ɑɟɥɨɜɟɤ ɢɥɢ ɩɪɢɧɚɞɥɟɠɢɬ Kɨɦɩɚɧɢɹ.
 Ʉɚɠɞɵɣ ɑɟɥɨɜɟɤ ɂɦɟɟɬ ɦɚɤɫɢɦɭɦ ɨɞɢɧ ȾɚɬɚɊɨɠɞɟɧɢɹ.
 Ʉɚɠɞɵɣ ɑɟɥɨɜɟɤ ɂɦɟɟɬ ɦɚɤɫɢɦɭɦ ɨɞɢɧ ɂɦɹ.
 Ʉɚɠɞɵɣ ɑɟɥɨɜɟɤ ɂɦɟɟɬ ɦɚɤɫɢɦɭɦ ɨɞɢɧ ɇɨɦɟɪɉɚɫɫɩɨɪɬɚ.
 Ʉɚɠɞɵɣ ɇɨɦɟɪɉɚɫɫɩɨɪɬɚ IsOf ɦɚɤɫɢɦɭɦ ɨɞɢɧ ɑɟɥɨɜɟɤ.
 ɜɨɡɦɨɠɧɨ, ɱɬɨ ɑɟɥɨɜɟɤ ɉɪɟɩɨɞɚɟɬ ɛɨɥɶɲɟ, ɱɟɦ ɨɞɢɧ Kɭɪɫ ɢ, ɱɬɨ Kɭɪɫ ɉɪɟɩɨɞɚɟɬ ɛɨɥɶɲɟ,

Appendix C1: Customer Complaint Ontology (Glossary)

 263
-D

ɱɟɦ ɨɞɢɧ ɑɟɥɨɜɟɤ.
 ɜɨɡɦɨɠɧɨ, ɱɬɨ ɑɟɥɨɜɟɤ ɉɪɨɫɦɚɬɪɢɜɚɟɬ ɛɨɥɶɲɟ, ɱɟɦ ɨɞɢɧ Kɧɢɝɚ ɢ, ɱɬɨ Kɧɢɝɚ ɉɪɨɫɦɚɬɪɢɜɚɟɬ
ɛɨɥɶɲɟ, ɱɟɦ ɨɞɢɧ ɑɟɥɨɜɟɤ.
 ɜɨɡɦɨɠɧɨ, ɱɬɨ ɑɟɥɨɜɟɤ ɉɢɲɟɬ ɛɨɥɶɲɟ, ɱɟɦ ɨɞɢɧ Kɧɢɝɚ ɢ, ɱɬɨ Kɧɢɝɚ ɉɢɲɟɬ ɛɨɥɶɲɟ, ɱɟɦ
ɨɞɢɧ ɑɟɥɨɜɟɤ.
 ɜɨɡɦɨɠɧɨ, ɱɬɨ ɑɟɥɨɜɟɤ ȼɨɞɢɬ ɛɨɥɶɲɟ, ɱɟɦ ɨɞɢɧ Ⱥɜɬɨɦɨɛɢɥɶ ɢ, ɱɬɨ Ⱥɜɬɨɦɨɛɢɥɶ ȼɨɞɢɬ
ɛɨɥɶɲɟ, ɱɟɦ ɨɞɢɧ ɑɟɥɨɜɟɤ.

Acknowledgement: I am very grateful to Andriy Lisovoy for his help in
translating the Russian verbalization template and the provided example.

Appendix C1: Customer Complaint Ontology (Glossary)

 264
-D

Appendix C: Customer Complaint Ontology
In this appendix, we present the CContology. In appendix C1, we present
all terms and their glosses (CCglossary). The set of lexons are presented
in appendix C2.

Appendix C1: The CCglossary

In this appendix, we present the CCglossary, which includes all terms and
their glosses that have been used in the CContology. This CCglossary will
be shared and used by people who wish to translate or extend the
CContology.

Terms are listed in the alphabetical order.

Context Term Gloss

Customer
Complaint

Access cost
unreasonable

A private data access problem related to
unreasonable access cost.

Customer
Complaint

Access
provision
denied

A private data access problem related to denied
access provision.

Customer
Complaint

Access
timeliness
delayed

A private data access problem related to delayed
access timeliness.

Customer
Complaint

Action Request
An economic complaint resolution not related to
financial issues, such as delivery, repair, etc.

Customer
Complaint

Address

A construct describing the means by which
contact may be taken with, or messages or
physical objects may be delivered to; an address
may contain indicators for a physical or virtual
(i.e. accessed electronically) location or both.

Customer
Complaint

Advance
withheld

A contract termination problem related to
advance payment was withheld unjustifiably at
the termination of the contract, or not accounted
properly against the payments during the
contract.

Customer Advertiser not A advertising problem related to advertisements

Appendix C1: Customer Complaint Ontology (Glossary)

 265
-D

Complaint identified where the advertiser is not known or identified.
Customer
Complaint

Advertising
Incorrect marketing practices problem related to
advertisements of products or services.

Customer
Complaint

After Sales
Service
Problem

A problem related to after sale service not
actioned or not properly actioned.

Customer
Complaint

Apartment
Number

A number assigned to an apartment
(flat/studio/office/room etc.) within a building.

Customer
Complaint

Apologize
A symbolic resolution concerned with
acknowledge faults, or shortcomings or failing.

Customer
Complaint

Billing or
Payment
Problem

A purchase phase problem linked to billing or
payment.

Customer
Complaint

Billing Request A financial request concerned with billing issues.

Customer
Complaint

Breach of
contract

A contract termination problem related to a
breach of contract.

Customer
Complaint

Building Name
A name assigned to a building or construction in
or adjacent to which a delivery point is located.

Customer
Complaint

Building
Number

A number denoting a delivery point within a
street; examples: house number, construction
plot number.

Customer
Complaint

Cancellation or
withdrawal
refused

A contract termination problem linked to a
request of the consumer to withdraw from the
contract is refused by the supplier.

Customer
Complaint

Charge
exceeds
estimate

A repair problem related to charges exceeds the
estimate.

Customer
Complaint

City
(WordNet) An incorporated administrative district
established by state charter.

Customer
Complaint

Compensation
inadequate

A guarantee problem related to inadequate
compensation.

Customer
Complaint

Compensation
refused

A guarantee problem related to refusal of
compensation.

Customer
Complaint

Competitor
cheaper

A competitor offers the same product or service
at a lower price.

Customer
Complaint

Complainant The legal person who issues a complaint.

Customer
Complaint

Complaint
An expression of grievance or resentment issued
by a complainant against a compliant-recipient,

Appendix C1: Customer Complaint Ontology (Glossary)

 266
-D

describing a problem(s) that needs to be
resolved.

Customer
Complaint

Complaint Date The issue date of a complaint.

Customer
Complaint

Complaint
Number

A code used to uniquely refer to a complaint in a
court or a complaint system.

Customer
Complaint

Complaint
Recipient

A legal person to whom a complaint is
addressed.

Customer
Complaint

Complaint
Resolution

A determination for settling or solving a problem
in a consumer-provider relationship.

Customer
Complaint

Conduct
A non-problem problem concerned with the
conduct of the recipient's staff, agents or sub-
contractors.

Customer
Complaint

Contact Details A channel of communication

Customer
Complaint

Content
A non-problem problem concerned with harmful
or illegal content.

Customer
Complaint

Contract
A binding agreement between two or more legal
persons that is enforceable by law; an invoice
can be a contract.

Customer
Complaint

Contract
Effective Date

The date on which the contract comes into effect,
e.g. the date for the start of service.

Customer
Complaint

Contract Order
Date

The date on which the order was placed or the
contract was signed.

Customer
Complaint

Contract
Problem

Problem linked to a contract in a customer-
provider relationship, it may occar before or after
the contract effective date.

Customer
Complaint

Contract
Reference

Reference to Contract, indicator to a certain
contract

Customer
Complaint

Contract
rescinded

The recipient has rescinded the contract.

Customer
Complaint

Contract
Termination
Problem

A problem concerned with the proper termination
or completion of the contract.

Customer
Complaint

Contract Terms
Problem

A purchase phase problem linked to contracts
terms and conditions.

Customer
Complaint

Copyright
A non-contract problem concerned with exclusive
and registered rights.

Customer
Complaint

Country (WordNet)The territory occupied by a nation.

Appendix C1: Customer Complaint Ontology (Glossary)

 267
-D

Customer
Complaint

County
(WordNet) A region created by territorial division
for the purpose of local government

Customer
Complaint

Damage
A non-contract problem concerned with damage
suffered.

Customer
Complaint

Damage
Assessment

An action request concerned with judging or
estimating a damage.

Customer
Complaint

Data Collection
A privacy problem regarding all activities and
purposes of private data collection

Customer
Complaint

Data correction
denied

Data correction was denied or executed
incorrectly or delayed.

Customer
Complaint

Data unrelated
to purpose

A data collection problem concerned with Data
unrelated to purpose in a customer-provider
relationship.

Customer
Complaint

Defective item
not accepted
for repair

A repair problem related to defective item not
accepted for repair.

Customer
Complaint

Delete the
unnecessary
data

A privacy request for delete private information
specially that is unnecessary for the agreed
purpose.

Customer
Complaint

Delivery
The act of delivering or distributing goods or
services.

Customer
Complaint

Delivery and
Installation
Problem

A purchase phase problem related to
dissatisfaction regarding delivery or Installation
of goods or services.

Customer
Complaint

Delivery charge
problem

An unexpected delivery charge problem.

Customer
Complaint

Delivery
Consideration

Information denoted in a contract about a
delivery agreements and circumstances, such as
delivery address, date, loss or responsibility
given, suffered or undertaken by the other.

Customer
Complaint

Delivery
problem

A purchase phase problem related to
dissatisfaction regarding the delivery of goods or
services.

Customer
Complaint

Delivery
Request

An action request concerned with delivery and
distribution issues.

Customer
Complaint

Deposit
withheld

A contract termination problem linked with a
deposit was withheld and not refunded.

Customer
Complaint

Documentation
in wrong
language

The documentation or instructions were provided
but are in the wrong language

Appendix C1: Customer Complaint Ontology (Glossary)

 268
-D

Customer
Complaint

Documentation
Problem

A product problem concerned with the product or
service documentation or instructions.

Customer
Complaint

Economic
Resolution

A complaint resolution concerned with goods and
services, such as payment, delivery, damage
repair, etc.

Customer
Complaint

Electronic
Address

The address that can be accessed electronically
(i.e. virtually), such as email, fax, pager,
telephone, website, etc.

Customer
Complaint

eMail

An electronic Address for transmission of letters
and other documents from one computer to
another through a telecommunications or
wireless network.

Customer
Complaint

Environmental
damage

A damage problem related to environmental
issues.

Customer
Complaint

Evidence
(WordNet) all the means by which any alleged
matter of fact whose truth is investigated at
judicial trial is established or disproved

Customer
Complaint

Excessive data
requested

A data collection problem related to excessive
data requested.

Customer
Complaint

False statement
An advertising problem regarding a false (or not
in accordance with the fact or reality or actuality)
statement.

Customer
Complaint

Fax
An electronic address used to transfer copies of
documents, over a phone line.

Customer
Complaint

Financial
Reqeust

An economic complaint resolution concerned
with financial issues, such as payments, billing,
etc.

Customer
Complaint

Function
The actions and activities assigned to or required
or expected of one to play, such as sales agent,
delivery driver, etc.

Customer
Complaint

General Terms
Problem

A contract terms problem with the general terms
and conditions.

Customer
Complaint

Gift defective or
not received
with product

A delivery problem regarding a gift defective or
not received with product.

Customer
Complaint

Goods
Durable or consumable articles of commerce
including equipment, food, furniture, etc.

Customer
Complaint

Guarantee
Problem

An after sales service problem related to a legal
or contractual guarantee; particularly a problem
related to a responsibility on the recipient

Appendix C1: Customer Complaint Ontology (Glossary)

 269
-D

consequent to the guarantees directive.
Customer
Complaint

Guarantee
refused

Refusal to apply a legal or contractual guarantee.

Customer
Complaint

Harmful
Content

A content problem related to harmful issues.

Customer
Complaint

Hidden charges
A sales promotion problem regarding hidden
charges.

Customer
Complaint

High pressure
selling

A sales methods problem concerned with using
high pressure selling style.

Customer
Complaint

Home selling
problem

A personal selling problem regarding home
selling practices.

Customer
Complaint

Illegal Content
A content problem related to illegal content
issues.

Customer
Complaint

Illegal lottery
A sales promotion problem regarding illegal
lottery.

Customer
Complaint

Inadequate
charge details

Details provided for a monetary charge are
inadequate to identify that the charge is due.

Customer
Complaint

Inadequate
contact details

Details describing the contact details are
inadequate to meet the requirements of
European law, for example those required by the
e-commerce directive or the data protection
directive

Customer
Complaint

Inadequate
privacy
information

The privacy information provided is
inadequate/not compliant with legal
requirements.

Customer
Complaint

Inadequate
specification

Specification of the product or service are not
adequate for the complainant to make an
informed purchasing decision.

Customer
Complaint

Incorrect
privacy
information

A privacy information problem regarding the
incorrectness of the privacy information.

Customer
Complaint

Incorrect
amount

An unexpected charge problem regarding
incorrect amounts.

Customer
Complaint

Incorrect
assessment of
a damage

A damage problem related to incorrect or not-
acceptable assessment of damage.

Customer
Complaint

Incorrect date
An unexpected charge problem regarding
incorrect dates.

Customer
Complaint

Incorrect
interest charge

An unexpected charge problem regarding
Incorrect interest charge.

Appendix C1: Customer Complaint Ontology (Glossary)

 270
-D

Customer
Complaint

Incorrect
Marketing
Practices

A pre-purchase problem related to marketing
practices not in conformity with legal
requirements.

Customer
Complaint

Incorrect
privacy
information

A privacy information problem denoting
incorrectness of information.

Customer
Complaint

Incorrect
quantity

A delivery problem of incorrect quantities.

Customer
Complaint

Information
Correction

A complaint resolution related to improvement to
replace a mistake in the information collected in
a consumer-provider relationship.

Customer
Complaint

Information not
comprehensible

An information problem linked to
comprehensibility or understandability of
Information.

Customer
Complaint

Information not
easily available

An information problem of not easily available.

Customer
Complaint

Information
Problem

A negotiation of terms problem related to
information provided is incorrect, inadequate, or
insufficient.

Customer
Complaint

Installation
delayed

An Installation problem related to delay in
Installation.

Customer
Complaint

Installation
improper

An Installation problem denoting improper
Installation.

Customer
Complaint

Installation
problem

A purchase phase problem related to
dissatisfaction regarding the installation of goods
or services.

Customer
Complaint

Instructions
inadequate

The instructions do not adequately indicate how
some function works or some maintenance
operation should be performed.

Customer
Complaint

Instructions
missing

Instructions for use or maintenance were not
provided with the product.

Customer
Complaint

Jurisdiction
inappropriate

The jurisdiction specified is inappropriate
because it is not aligned with the contract
delivery or participants.

Customer
Complaint

Legal
information
missing

An information problem denoting missing legal
information.

Customer
Complaint

Legal Person
#An entity with legal recognition in accordance
with law, it has the legal capacity to represent its
own interests in its own name, before a court of

Appendix C1: Customer Complaint Ontology (Glossary)

 271
-D

law, to obtain rights or obligations for itself, to
impose binding obligations, or to grant
privileges

Customer
Complaint

Lewd or
Immoral
conduct

A conduct problem related to Lewd and immoral
issues.

Customer
Complaint

Mailing Address

The address where a person or organization can
be communicated with for providing physical
objects. It is broadly equivalent to a postal
address as described in standards CEN 14132
or UPU S42, but has different functional
definition

Customer
Complaint

Misleading
advertising

An advertising problem regarding misleading
advertisements.

Customer
Complaint

Misrepresented
needs

A repair problem related to misrepresented
needs.

Customer
Complaint

Money Request
A financial request concerned with money and
currency issues, such as returning the money
paid back, discount, etc.

Customer
Complaint

Name
Name of a person (whether a natural or other
legal person or a person without legal
personality) to whom the contact details refer

Customer
Complaint

Natural Person
Complainant

A human being as distinguished from a person
(as a corporation) created by operation of law,
who issues a complaint.

Customer
Complaint

Negotiation of
Terms

A pre-purchase problem related to negotiation of
the terms and conditions of a contract

Customer
Complaint

No Discount
An unfair price problem related to not offering
discounts.

Customer
Complaint

No discount
(usual one not
offered)

An unfair price problem related to not offering
discounts.

Customer
Complaint

Non-Contract
Problem

A Problem where there is no contract regarding a
purchase in a customer-provider relationship.

Customer
Complaint

Non-Natural
Person
Complainant

A legal person who is not a natural person (i.e.
no a human being), and who issues a complaint.
A non-natural person is also sometimes called
"artificial person".

Customer
Complaint

Not best offer
The contract is offered at a price that is not the
best offer that the supplier is known to make in

Appendix C1: Customer Complaint Ontology (Glossary)

 272
-D

similar circumstances
Customer
Complaint

Obtained data
improperly

Some private data was obtained by
improper/illegal means

Customer
Complaint

Offensive
An advertising problem causing anger or
annoyance because of violating or tending to
violate or offend in advertisements.

Customer
Complaint

Offer Problem
A negotiation of terms problem related to offer is
not in compliance with legal requirements

Customer
Complaint

Passed to an
unauthorized
country

A Purpose and permission privacy problem
related to distributing private data to a country
without authorization.

Customer
Complaint

Passed to
others without
permission

A purpose and permission privacy problem
related to distributing private data to others
without permission or authority

Customer
Complaint

Payment
Consideration

Information denoted in a contract about a
payment agreements and circumstances, such
as, amounts, payment schedules, some right,
interest, profit or benefit accruing to the one party
suffered or undertaken by the other.

Customer
Complaint

Payment details
not provided

A payment problem related to no providing
enough details about payment.

Customer
Complaint

Payment
Problem

A billing or payment problem related to
dissatisfaction regarding payments.

Customer
Complaint

Payment
refused

A payment problem regarding to refusal of
payment.

Customer
Complaint

Personal selling
Incorrect marketing practices problem related to
personal selling of products or services.

Customer
Complaint

PO Box

A mailing address attribute denoting a
designated box number for a delivery point
provided by a postal operator; it may be provided
for collection from a point operated by the postal
operator or to facilitate bulk delivery to an
organization.

Customer
Complaint

Poor Advice
A personal selling problem related to poor
advice.

Customer
Complaint

Postal Code
(WordNet) A code of letters and digits added to a
postal address to aid in the sorting of mail

Customer
Complaint

PostalCode
A mailing address attribute denoting a code of
letters and digits added to a postal address to aid
in the sorting of mail

Appendix C1: Customer Complaint Ontology (Glossary)

 273
-D

Customer
Complaint

Post-purchase
Phase Problem

A problem arising after a purchase.

Customer
Complaint

Pre-purchase
Phase Problem

A problem during the pre-contractual phase.

Customer
Complaint

Price increase
An unexpected charge problem related to price
increase.

Customer
Complaint

Price
unacceptable

Price is too high

Customer
Complaint

Price Unfair

A contract terms problem related to price offered
is not in accordance with price offered to other
actual or potential purchasers; for example price
is not in accordance with an advertised price.

Customer
Complaint

Privacy
Information

A privacy problem related to provision of private
data

Customer
Complaint

Privacy
Problem

A problem related to the collection, storage,
handling, use or distribution of private data,
violating the data protection directives.

Customer
Complaint

Privacy
Request

A symbolic resolution related to the collection,
storage, handling, use, distribution, access to or
correction of private data.

Customer
Complaint

Private Data
Access

A privacy problem related to access and
correction of private data

Customer
Complaint

Prize not
received

A sales promotion problem related to a prize no
received.

Customer
Complaint

Problem
A source of difficulty or dissatisfaction in a
consumer-provider relationship.

Customer
Complaint

Product
delivery
delayed

A delivery problem related to delay in product
delivery.

Customer
Complaint

Product fails
standards
compliance

A product quality (or delivery delayed) problem
related to product fails standards compliance.

Customer
Complaint

Product is
defective

A product quality (or delivery delayed) problem
related to Product defectiveness.

Customer
Complaint

Product not
delivered

A delivery problem regarding a product not
delivered.

Customer
Complaint

Product not in
conformity to
order

A delivery problem regarding a product not in
conformity to order.

Customer Product not A delivery problem regarding a product not

Appendix C1: Customer Complaint Ontology (Glossary)

 274
-D

Complaint ordered ordered.

Customer
Complaint

Product
performance
below
expectations

A product quality problem related to performance
below expectations.

Customer
Complaint

Product
Problem

A problem linked a product provided by the
provider.

Customer
Complaint

Product Quality
Problem

A product problem related to with the product
quality.

Customer
Complaint

Product unfit for
purpose

A product delivery delayed problem related to
unfit for purpose.

Customer
Complaint

Product unsafe
A product quality problem related to product
unsafe.

Customer
Complaint

Property
damage

A damage problem related to properties.

Customer
Complaint

Provide access
to the data

A privacy request of accessing the private data.

Customer
Complaint

Provide the
necessary
privacy
information

A privacy request of making the necessary
privacy information and policies clearly visible.

Customer
Complaint

Psychological
damage

A damage problem related to psychological
issues.

Customer
Complaint

Purchase
Phase Problem

A problem arising during the purchase phase.

Customer
Complaint

Purpose and
Permission

A privacy problem regarding access, collect,
handle, distribute, etc. of private data without
asking a permission or clarifying the purpose.

Customer
Complaint

Receipt not
confirmed

A payment problem regarding a receipt not
confirmed.

Customer
Complaint

Refund refused A guarantee problem regarding a refused refund.

Customer
Complaint

Refusal
Problem

A negotiation of terms problem related to a
provider refusing to take or cease some action
which complainant could reasonably expect
recipient to take.

Customer
Complaint

Refusal to
provide service

Recipient or another has refused to provide or
continue to provide a services contracted directly
or needed for another purchase, contract or
guarantee to be effective..

Appendix C1: Customer Complaint Ontology (Glossary)

 275
-D

Customer
Complaint

Refusal to sell
Recipient or another has refused to sell goods or
services to complainant or another

Customer
Complaint

Registration

A certification, issued by an administrative
authority or an accredited registration agency,
declaring the official enrollment of an entity.
Typically, it includes the official name, mailing
address, registration number, VAT number, legal
bases, etc.

Customer
Complaint

Repair (ed
item) not
returned

A repair problem regarding a repair (ed item) not
returned.

Customer
Complaint

Repair delayed
The repair time, either delivered or proposed, is
too long

Customer
Complaint

Repair
inadequate

The repair made was inadequate

Customer
Complaint

Repair Problem
An after sales service problem related to a
repair.

Customer
Complaint

Repair refused A repair under guarantee was refused

Customer
Complaint

Replacement
refused

A replacement under guarantee was refused

Customer
Complaint

Reputation
damage

A damage problem related to reputation, esteem,
and honor of people and institutions.

Customer
Complaint

Right to object
denied

A private data access problem regarding a
denied right to object.

Customer
Complaint

Rights infringed
The legal or moral rights ofa party have been
infringed

Customer
Complaint

Rudeness
A conduct problem related to rudeness in a
customer-provider relationship and
communication.

Customer
Complaint

Sales and
contract
Request

An action request concerned agreements and
contract issues.

Customer
Complaint

Sales Contact
Method

A method by which one is contacted with respect
to an actual or potential purchase or contract;
examples: shop, direct mail, e-mail, web site,
direct response advertisement, telephone, fax,
door step, in the street.

Customer
Complaint

Sales Methods
A non-contract problem concerned with sales
methods

Appendix C1: Customer Complaint Ontology (Glossary)

 276
-D

Customer
Complaint

Sales Office

Location where the staff responsible for the sale
or contract are normally working or to which they
report; examples: shop, branch, field sales office
, etc.

Customer
Complaint

Sales
promotion

Incorrect marketing practices problem related to
promotions of products or services.

Customer
Complaint

Schedule
(WordNet) An ordered list of times at which
things are planned to occur.

Customer
Complaint

Secondary
purpose
permission
refusal denies
primary service

A purpose an permission problem regarding
secondary purpose permission refusal denies
primary.

Customer
Complaint

Service
cancelled by
provider

A service problem regarding a service cancelled
by provider.

Customer
Complaint

Service
inadequately
per-formed

A service problem regarding a service
inadequately per-formed.

Customer
Complaint

Service not
ordered

A service problem regarding a service not
ordered.

Customer
Complaint

Service not
provided

A service problem regarding a service not
provided.

Customer
Complaint

Service partially
provided

A service problem regarding a service not
partially provided.

Customer
Complaint

Service
Problem

An after sales service problem related to
provision of a service.

Customer
Complaint

Service
provision
delayed

A service problem regarding a delayed service
provision.

Customer
Complaint

Services
A commercial work done by one that benefits
another.

Customer
Complaint

Spare part not
available

A repair problem related to a spare part not
available.

Customer
Complaint

Specification
not adequate

Specification of the product or service are not
adequate for the complainant to make an
informed purchasing decision

Customer
Complaint

State
(WordNet) The territory occupied by one of the
constituent administrative districts of a nation

Customer Stop A privacy request to stop collecting, storing,

Appendix C1: Customer Complaint Ontology (Glossary)

 277
-D

Complaint processing and
transmission of
private data

handling, distributing, publishing, accessing, etc.
of private data.

Customer
Complaint

Street
(WordNet) A thoroughfare (usually including
pavements) that is lined with buildings

Customer
Complaint

Street selling
problem

A personal problem regarding street selling.

Customer
Complaint

Supplementary
(charge
problem)

An unexpected charge problem related to
supplementary charges.

Customer
Complaint

Switching or
Churning

A contract termination problem

Customer
Complaint

Symbolic
Resolution

A complaint resolution concerned with emotional,
moral, social, or privacy issues. Such as
apology, provide access, stop processing, etc.

Customer
Complaint

Telephone
An electronic address used for transmitting and
receiving voice-frequency signals at a distance.

Customer
Complaint

Terms and
Conditions

The financial and management conditions under
which venture capital limited partnerships are
structured.

Customer
Complaint

Terms modified
The terms and conditions have been modified
without agreement

Customer
Complaint

Third Party
(WordNet) Someone other than the principals
who are involved in a transaction.

Customer
Complaint

Third Party
Name

The name of a third party.

Customer
Complaint

Time Limit An offer problem denoting too short time limits.

Customer
Complaint

Time limit (too
short)

Limit in time duration or date imposed by
contract or mandated by law; for example the
time limit available for repudiation of a contract
made under conditions of the distance selling
directive;

Customer
Complaint

Total Amount
Asked

The total of all amounts asked of the purchaser
by the seller.

Customer
Complaint

Total Amount
Paid

The total of all amounts paid by the purchaser to
the seller.

Customer
Complaint

Trying to obtain
data improperly

Some attempt was improperly made to acquire
some personal data

Customer Unacceptable The contract terms offered are unacceptable

Appendix C1: Customer Complaint Ontology (Glossary)

 278
-D

Complaint terms

Customer
Complaint

unauthorized
comparative
advertising

An advertising problem related to unauthorized
comparative advertising.

Customer
Complaint

unauthorized
repair

A repair problem related to unauthorized repair
issues.

Customer
Complaint

Unexpected
charge

A billing or payment problem related to
dissatisfaction regarding unexpected charge.

Customer
Complaint

Unfair contest
A sales promotion problem related to unfair
contests.

Customer
Complaint

Unfair Contract
Terms

A contractual term which has not been
individually negotiated and causes a significant
imbalance in the parties rights and obligations
arising under the contract, to the detriment of the
consumer..

Customer
Complaint

Unfair
packaging

A sales promotion problem related to unfair
packaging.

Customer
Complaint

Unjustified
payment
demand

An unexpected charge problem related to
unjustified payment demand.

Customer
Complaint

Unnecessary
Purpose

A purpose and permission problem denoting
unnecessary purpose.

Customer
Complaint

Unproven
health claim

An advertising problem related to unproven
health claim.

Customer
Complaint

Unsolicited
commercial
communication
s

A sales methods problem concerned with
unsolicited commercial communications

Customer
Complaint

Unsolicited
merchandise

A sales methods problem concerned with
unsolicited merchandises.

Customer
Complaint

Unsolicited
service

A sales methods problem concerned with
unsolicited services.

Customer
Complaint

Untruthlness
A conduct problem to related to untruthlness in a
customer-provider relationship and
communication.

Customer
Complaint

Used for
purpose without
permission

The personal data was used for some purpose
for which permission was denied or withdrawn

Customer
Complaint

Web Site
An electronic address on the World Wide Web
network; normally formatted as a URL (universal

Appendix C1: Customer Complaint Ontology (Glossary)

 279
-D

resource locator) describing a virtual or physical
web server, often a host name referenced within
the domain name system (e.g.
http://www.ccform.org)

Customer
Complaint

Wrong
Language

A documentation problem regarding the
language of the attached documentations.

Appendix C2: Customer Complaint Ontology (Lexons)

 280
-D

Appendix C2: Lexons in the CContology

In this appendix, we present the set of lexons in the CContology. Lexons
are presented in the alphabetical ordered of Term1.

Context Term1 Role InvRole Term2

Customer
Complaint

Action
Request

Types Subtypeof
Delivery
Request

Customer
Complaint

Action
Request

Types Subtypeof
Sales and
contract
Request

Customer
Complaint

Action
Request

Types Subtype-Of
Damage
Assessment

Customer
Complaint

Address Types Subtype-Of
Electronic
Address

Customer
Complaint

Address Types Subtype-Of
Mailing
Address

Customer
Complaint

Advertising Types Subtype-Of
Advertiser not
identified

Customer
Complaint

Advertising Types Subtype-Of
False
statement

Customer
Complaint

Advertising Types Subtype-Of
Misleading
advertising

Customer
Complaint

Advertising Types Subtype-Of Offensive

Customer
Complaint

Advertising Types Subtype-Of
Unauthorized
comparative
advertising

Customer
Complaint

Advertising Types Subtype-Of
Unproven
health claim

Customer
Complaint

After Sales
Service
Problem

Types Subtype-Of
Guarantee
Problem

Customer
Complaint

After Sales
Service
Problem

Types Subtype-Of Repair Problem

Customer
Complaint

After Sales
Service

Types Subtype-Of
Service
Problem

Appendix C2: Customer Complaint Ontology (Lexons)

 281
-D

Problem

Customer
Complaint

Billing or
Payment
Problem

Types Subtype-Of
Payment
Problem

Customer
Complaint

Billing or
Payment
Problem

Types Subtype-Of
Unexpected
charge

Customer
Complaint

Complainant Types Subtype-Of
Natural Person
Complainant

Customer
Complaint

Complainant Types Subtype-Of
Non-Natural
Person
Complainant

Customer
Complaint

Complaint against receives
Complaint
Recipient

Customer
Complaint

Complaint describes described_by Problem

Customer
Complaint

Complaint Has is-of Complaint Date

Customer
Complaint

Complaint Has is-of
Complaint
Number

Customer
Complaint

Complaint issued_by issues Complainant

Customer
Complaint

Complaint requests requested_by
Complaint
Resolution

Customer
Complaint

Complaint
Resolution

denoted_by denotes Contact Details

Customer
Complaint

Complaint
Resolution

denoted_by denotes Registration

Customer
Complaint

Complaint
Resolution

Types Subtype-Of
Economic
Resolution

Customer
Complaint

Complaint
Resolution

Types Subtype-Of
Information
Correction

Customer
Complaint

Complaint
Resolution

Types Subtype-Of
Symbolic
Resolution

Customer
Complaint

Conduct Types Subtype-Of
Lewd or
Immoral
conduct

Customer
Complaint

Conduct Types Subtype-Of Rudeness

Customer Conduct Types Subtype-Of Untruthlness

Appendix C2: Customer Complaint Ontology (Lexons)

 282
-D

Complaint
Customer
Complaint

Contact
Details

comprised_of comprises Address

Customer
Complaint

Contact
Details

Has is-of Name

Customer
Complaint

Content Types Subtype-Of
Harmful
Content

Customer
Complaint

Content Types Subtype-Of Illegal Content

Customer
Complaint

Contract Has -
Contract Order
Date

Customer
Complaint

Contract Has -
Contract
Effective Date

Customer
Complaint

Contract Has is-of
Contract
Reference

Customer
Complaint

Contract Has is-of
Sales Contact
Method

Customer
Complaint

Contract Has is-of Sales Office

Customer
Complaint

Contract Has is-of
Terms and
Conditions

Customer
Complaint

Contract involves involved_in Third Party

Customer
Complaint

Contract reports -
Payment
Consideration

Customer
Complaint

Contract reports -
Delivery
Consideration

Customer
Complaint

Contract
Problem

Types Subtype-Of
Post-purchase
Phase Problem

Customer
Complaint

Contract
Problem

Types Subtype-Of
Pre-purchase
Phase Problem

Customer
Complaint

Contract
Problem

Types Subtype-Of
Purchase
Phase Problem

Customer
Complaint

Contract
Termination
Problem

Types Subtype-Of
Advance
withheld

Customer
Complaint

Contract
Termination
Problem

Types Subtype-Of
Breach of
contract

Customer Contract Types Subtype-Of Cancellation or

Appendix C2: Customer Complaint Ontology (Lexons)

 283
-D

Complaint Termination
Problem

withdrawal
refused

Customer
Complaint

Contract
Termination
Problem

Types Subtype-Of
Deposit
withheld

Customer
Complaint

Contract
Termination
Problem

Types Subtype-Of
Switching or
Churning

Customer
Complaint

Contract
Terms
Problem

Types Subtype-Of
General Terms
Problem

Customer
Complaint

Contract
Terms
Problem

Types Subtype-Of Price Unfair

Customer
Complaint

Damage Types Subtype-Of
Environmental
damage

Customer
Complaint

Damage Types Subtype-Of
Incorrect
assessment of
a damage

Customer
Complaint

Damage Types Subtype-Of
Property
damage

Customer
Complaint

Damage Types Subtype-Of
Psychological
damage

Customer
Complaint

Damage Types Subtype-Of
Reputation
damage

Customer
Complaint

Data
Collection

Types Subtype-Of
Data unrelated
to purpose

Customer
Complaint

Data
Collection

Types Subtype-Of
Excessive data
requested

Customer
Complaint

Data
Collection

Types Subtype-Of
Obtained data
improperly

Customer
Complaint

Data
Collection

Types Subtype-Of
Trying to obtain
data improperly

Customer
Complaint

Delivery
Considered_b
y

Considers
Delivery
Consideration

Customer
Complaint

Delivery Has is-of Address

Customer
Complaint

Delivery Has is-of Goods

Customer Delivery Has is-of Schedule

Appendix C2: Customer Complaint Ontology (Lexons)

 284
-D

Complaint
Customer
Complaint

Delivery Has is-of Services

Customer
Complaint

Delivery and
Installation
Problem

Types Subtype-Of
Delivery
problem

Customer
Complaint

Delivery and
Installation
Problem

Types Subtype-Of
Installation
problem

Customer
Complaint

Delivery
problem

Types Subtype-Of
Gift defective or
not received
with product

Customer
Complaint

Delivery
problem

Types Subtype-Of
Incorrect
quantity

Customer
Complaint

Delivery
problem

Types Subtype-Of
Product
delivery
delayed

Customer
Complaint

Delivery
problem

Types Subtype-Of
Product not
delivered

Customer
Complaint

Delivery
problem

Types Subtype-Of
Product not in
conformity to
order

Customer
Complaint

Delivery
problem

Types Subtype-Of
Product not
ordered

Customer
Complaint

Documentati
on Problem

Types Subtype-Of
Instructions
inadequate

Customer
Complaint

Documentati
on Problem

Types Subtype-Of
Instructions
missing

Customer
Complaint

Documentati
on Problem

Types Subtype-Of
Wrong
Language

Customer
Complaint

Economic
Resolution

types subtypeof
Financial
Reqeust

Customer
Complaint

Economic
Resolution

Types Subtype-Of Action Request

Customer
Complaint

Electronic
Address

Types Subtype-Of eMail

Customer
Complaint

Electronic
Address

Types Subtype-Of Fax

Customer
Complaint

Electronic
Address

Types Subtype-Of Telephone

Appendix C2: Customer Complaint Ontology (Lexons)

 285
-D

Customer
Complaint

Electronic
Address

Types Subtype-Of Web Site

Customer
Complaint

Financial
Reqeust

types subtypeof Billing Request

Customer
Complaint

Financial
Reqeust

types subtypeof Money Request

Customer
Complaint

General
Terms
Problem

Types Subtype-Of
Contract
Rescinded

Customer
Complaint

General
Terms
Problem

Types Subtype-Of
Jurisdiction
inappropriate

Customer
Complaint

General
Terms
Problem

Types Subtype-Of Rights Infringed

Customer
Complaint

General
Terms
Problem

Types Subtype-Of Terms Modified

Customer
Complaint

General
Terms
Problem

Types Subtype-Of
Unfair Contract
Terms

Customer
Complaint

Guarantee
Problem

Types Subtype-Of
Compensation
inadequate

Customer
Complaint

Guarantee
Problem

Types Subtype-Of
Compensation
Refused

Customer
Complaint

Guarantee
Problem

Types Subtype-Of
Guarantee
Refused

Customer
Complaint

Guarantee
Problem

Types Subtype-Of
Refund
Refused

Customer
Complaint

Guarantee
Problem

Types Subtype-Of Repair Refused

Customer
Complaint

Guarantee
Problem

Types Subtype-Of
Replacement
Refused

Customer
Complaint

Incorrect
Marketing
Practices

Types Subtype-Of Advertising

Customer
Complaint

Incorrect
Marketing
Practices

Types Subtype-Of
Personal
selling

Customer Incorrect Types Subtype-Of Sales

Appendix C2: Customer Complaint Ontology (Lexons)

 286
-D

Complaint Marketing
Practices

promotion

Customer
Complaint

Information
Problem

Types Subtype-Of
Inadequate
Charge Details

Customer
Complaint

Information
Problem

Types Subtype-Of
Inadequate
Contact Details

Customer
Complaint

Information
Problem

Types Subtype-Of
Inadequate
Specification

Customer
Complaint

Information
Problem

Types Subtype-Of
Information not
comprehensibl
e

Customer
Complaint

Information
Problem

Types Subtype-Of
Information not
easily available

Customer
Complaint

Information
Problem

Types Subtype-Of
Legal
information
missing

Customer
Complaint

Installation
problem

Types Subtype-Of
Installation
delayed

Customer
Complaint

Installation
problem

Types Subtype-Of
Installation
improper

Customer
Complaint

Legal Person Types Subtype-Of Complainant

Customer
Complaint

Legal Person Types Subtype-Of
Complaint
Recipient

Customer
Complaint

Mailing
Address

Has is-of
Apartment
Number

Customer
Complaint

Mailing
Address

Has is-of Building Name

Customer
Complaint

Mailing
Address

Has is-of
Building
Number

Customer
Complaint

Mailing
Address

Has is-of City

Customer
Complaint

Mailing
Address

Has is-of Country

Customer
Complaint

Mailing
Address

Has is-of County

Customer
Complaint

Mailing
Address

Has is-of PO Box

Customer
Complaint

Mailing
Address

Has is-of PostalCode

Appendix C2: Customer Complaint Ontology (Lexons)

 287
-D

Customer
Complaint

Mailing
Address

Has is-of State

Customer
Complaint

Mailing
Address

Has is-of Street

Customer
Complaint

Natural
Person
Complainant

denoted_by denotes Registration

Customer
Complaint

Negotiation
of Terms

Types Subtype-Of
Information
Problem

Customer
Complaint

Negotiation
of Terms

Types Subtype-Of Offer Problem

Customer
Complaint

Negotiation
of Terms

Types Subtype-Of
Refusal
Problem

Customer
Complaint

Non-Contract
Problem

Types Subtype-Of Conduct

Customer
Complaint

Non-Contract
Problem

Types Subtype-Of Content

Customer
Complaint

Non-Contract
Problem

Types Subtype-Of Copyright

Customer
Complaint

Non-Contract
Problem

Types Subtype-Of Damage

Customer
Complaint

Non-Contract
Problem

Types Subtype-Of Sales Methods

Customer
Complaint

Non-Natural
Person
Complainant

denoted_by denotes Contact Details

Customer
Complaint

Offer
Problem

Types Subtype-Of
Price
Unacceptable

Customer
Complaint

Offer
Problem

Types Subtype-Of
Specification
not Adequate

Customer
Complaint

Offer
Problem

Types Subtype-Of Time Limit

Customer
Complaint

Offer
Problem

Types Subtype-Of
Unacceptable
Terms

Customer
Complaint

Offer
Problem

Types Subtype-Of
Unfair Contract
Terms

Customer
Complaint

Payment
Consideratio
n

Has is-of
Total Amount
Asked

Customer Payment Has is-of Total Amount

Appendix C2: Customer Complaint Ontology (Lexons)

 288
-D

Complaint Consideratio
n

Paid

Customer
Complaint

Payment
Problem

Types Subtype-Of
Payment
details not
provided

Customer
Complaint

Payment
Problem

Types Subtype-Of
Payment
refused

Customer
Complaint

Payment
Problem

Types Subtype-Of
Receipt not
confirmed

Customer
Complaint

Personal
selling

Types Subtype-Of
Home selling
problem

Customer
Complaint

Personal
selling

Types Subtype-Of Poor Advice

Customer
Complaint

Personal
selling

Types Subtype-Of
Street selling
problem

Customer
Complaint

Post-
purchase
Phase
Problem

refers_to
Associated_wit
h

Contract

Customer
Complaint

Post-
purchase
Phase
Problem

Types Subtype-Of
After Sales
Service
Problem

Customer
Complaint

Post-
purchase
Phase
Problem

Types Subtype-Of
Contract
Termination
Problem

Customer
Complaint

Post-
purchase
Phase
Problem

Types Subtype-Of
Product
Problem

Customer
Complaint

Pre-purchase
Phase
Problem

Types Subtype-Of
Incorrect
Marketing
Practices

Customer
Complaint

Pre-purchase
Phase
Problem

Types Subtype-Of
Negotiation of
Terms

Customer
Complaint

Price Unfair Types Subtype-Of
Competitor
Cheaper

Customer Price Unfair Types Subtype-Of No Discount

Appendix C2: Customer Complaint Ontology (Lexons)

 289
-D

Complaint
Customer
Complaint

Price Unfair Types Subtype-Of Not Best Offer

Customer
Complaint

Privacy
Information

Types Subtype-Of
Inadequate
privacy
information

Customer
Complaint

Privacy
Information

Types Subtype-Of
Incorrect
privacy
information

Customer
Complaint

Privacy
Problem

Types Subtype-Of Data Collection

Customer
Complaint

Privacy
Problem

Types Subtype-Of
Privacy
Information

Customer
Complaint

Privacy
Problem

Types Subtype-Of
Private Data
Access

Customer
Complaint

Privacy
Problem

Types Subtype-Of
Purpose and
Permission

Customer
Complaint

Privacy
Request

Types Subtype-Of
Delete the
unnecessary
data

Customer
Complaint

Privacy
Request

Types Subtype-Of
Provide access
to the data

Customer
Complaint

Privacy
Request

Types Subtype-Of

Provide the
necessary
privacy
information

Customer
Complaint

Privacy
Request

Types Subtype-Of

Stop
Processing and
transmission of
private data

Customer
Complaint

Private Data
Access

Types Subtype-Of
Access cost
unreasonable

Customer
Complaint

Private Data
Access

Types Subtype-Of
Access
provision
denied

Customer
Complaint

Private Data
Access

Types Subtype-Of
Access
timeliness
delayed

Customer
Complaint

Private Data
Access

Types Subtype-Of
Data correction
denied

Appendix C2: Customer Complaint Ontology (Lexons)

 290
-D

Customer
Complaint

Private Data
Access

Types Subtype-Of
Right to object
denied

Customer
Complaint

Problem testified_by - Evidence

Customer
Complaint

Problem Types Subtype-Of
Contract
Problem

Customer
Complaint

Problem Types Subtype-Of
Non-Contract
Problem

Customer
Complaint

Problem Types Subtype-Of
Privacy
Problem

Customer
Complaint

Product
delivery
delayed

Types Subtype-Of
Product fails
standards
compliance

Customer
Complaint

Product
delivery
delayed

Types Subtype-Of
Product is
defective

Customer
Complaint

Product
delivery
delayed

Types Subtype-Of

Product
performance
below
expectations

Customer
Complaint

Product
delivery
delayed

Types Subtype-Of
Product unfit
for purpose

Customer
Complaint

Product
delivery
delayed

Types Subtype-Of Product unsafe

Customer
Complaint

Product
Problem

Types Subtype-Of
Documentation
Problem

Customer
Complaint

Product
Problem

Types Subtype-Of
Product Quality
Problem

Customer
Complaint

Product
Quality
Problem

Types Subtype-Of
Product fails
standards
compliance

Customer
Complaint

Product
Quality
Problem

Types Subtype-Of
Product is
defective

Customer
Complaint

Product
Quality
Problem

Types Subtype-Of

Product
performance
below
expectations

Appendix C2: Customer Complaint Ontology (Lexons)

 291
-D

Customer
Complaint

Product
Quality
Problem

Types Subtype-Of
Product unfit
for purpose

Customer
Complaint

Product
Quality
Problem

Types Subtype-Of Product unsafe

Customer
Complaint

Purchase
Phase
Problem

refers_to
Associated_wit
h

Contract

Customer
Complaint

Purchase
Phase
Problem

Types Subtype-Of
Billing or
Payment
Problem

Customer
Complaint

Purchase
Phase
Problem

Types Subtype-Of
Contract Terms
Problem

Customer
Complaint

Purchase
Phase
Problem

Types Subtype-Of
Delivery and
Installation
Problem

Customer
Complaint

Purpose and
Permission

Types Subtype-Of
Passed to an
unauthorized
country

Customer
Complaint

Purpose and
Permission

Types Subtype-Of
Passed to
others without
permission

Customer
Complaint

Purpose and
Permission

Types Subtype-Of

Secondary
purpose
permission
refusal denies
primary service

Customer
Complaint

Purpose and
Permission

Types Subtype-Of
Unnecessary
Purpose

Customer
Complaint

Purpose and
Permission

Types Subtype-Of

Used for
purpose
without
permission

Customer
Complaint

Refusal
Problem

Types Subtype-Of
Refusal to
Provide Service

Customer
Complaint

Refusal
Problem

Types Subtype-Of Refusal to Sell

Customer Repair Types Subtype-Of Charge

Appendix C2: Customer Complaint Ontology (Lexons)

 292
-D

Complaint Problem exceeds
estimate

Customer
Complaint

Repair
Problem

Types Subtype-Of
Defective item
not accepted
for repair

Customer
Complaint

Repair
Problem

Types Subtype-Of
Misrepresented
needs

Customer
Complaint

Repair
Problem

Types Subtype-Of
Repair (ed
item) not
returned

Customer
Complaint

Repair
Problem

Types Subtype-Of Repair delayed

Customer
Complaint

Repair
Problem

Types Subtype-Of
Repair
inadequate

Customer
Complaint

Repair
Problem

Types Subtype-Of
Spare part not
available

Customer
Complaint

Repair
Problem

Types Subtype-Of
unauthorized
repair

Customer
Complaint

Sales
Methods

Types Subtype-Of
High pressure
selling

Customer
Complaint

Sales
Methods

Types Subtype-Of

Unsolicited
commercial
communication
s

Customer
Complaint

Sales
Methods

Types Subtype-Of
Unsolicited
merchandise

Customer
Complaint

Sales
Methods

Types Subtype-Of
Unsolicited
service

Customer
Complaint

Sales Office located_in is-of Address

Customer
Complaint

Sales
promotion

Types Subtype-Of Hidden charges

Customer
Complaint

Sales
promotion

Types Subtype-Of Illegal lottery

Customer
Complaint

Sales
promotion

Types Subtype-Of
Prize not
received

Customer
Complaint

Sales
promotion

Types Subtype-Of Unfair contest

Customer
Complaint

Sales
promotion

Types Subtype-Of
Unfair
packaging

Appendix C2: Customer Complaint Ontology (Lexons)

 293
-D

Customer
Complaint

Service
Problem

Types Subtype-Of
Service
cancelled by
provider

Customer
Complaint

Service
Problem

Types Subtype-Of
Service
inadequately
per-formed

Customer
Complaint

Service
Problem

Types Subtype-Of
Service not
ordered

Customer
Complaint

Service
Problem

Types Subtype-Of
Service not
provided

Customer
Complaint

Service
Problem

Types Subtype-Of
Service
partially
provided

Customer
Complaint

Service
Problem

Types Subtype-Of
Service
provision
delayed

Customer
Complaint

Symbolic
Resolution

Types Subtype-Of Apologize

Customer
Complaint

Symbolic
Resolution

Types Subtype-Of
Privacy
Request

Customer
Complaint

Third Party Has is-of Address

Customer
Complaint

Third Party Has is-of Function

Customer
Complaint

Third Party Has is-of
Third Party
Name

Customer
Complaint

Unexpected
charge

Types Subtype-Of
Delivery charge
problem

Customer
Complaint

Unexpected
charge

Types Subtype-Of
Incorrect
amount

Customer
Complaint

Unexpected
charge

Types Subtype-Of Incorrect date

Customer
Complaint

Unexpected
charge

Types Subtype-Of
Incorrect
interest charge

Customer
Complaint

Unexpected
charge

Types Subtype-Of Price increase

Customer
Complaint

Unexpected
charge

Types Subtype-Of
Supplementary
(charge
problem)

Customer Unexpected Types Subtype-Of Unjustified

Appendix C2: Customer Complaint Ontology (Lexons)

 294
-D

Complaint charge payment
demand

Appendix D: Thesis Glossary

 295
-D

Appendix D: Thesis Glossary

 296
-D

Appendix D: Thesis Glossary
In this appendix, we present the definitions of some important
terminology that we use in this thesis.

Axiomatization: an articulation or specification of knowledge (about a
certain subject-matter) as a set of axioms.

Alternative axiomatization: are different formalizations of the same
subject-matter.

Ontology rule: an axiom, a well-formed formulae in order to specify and
constrain the legal models on an ontology. In conceptual data
modeling, they are commonly called “constraints”. Notice that rules
can be used for e.g. enforce integrity, derivation and inference,
taxonomy, etc.

Conceptual relation: we use the terms ‘Conceptual relation’, ‘relation’, or
‘relationship’ to refer to n-ary relation. In this thesis, the term
‘concept’ commonly refers to a unary conceptual relation such as
Person(Mustafa); also the term ‘relation’ is commonly used to refer to
a binary or more conceptual relations such as WorksFor(Person,
University).

Concept: a set of rules in our mind about a certain thing in reality.

Conceptualization: an intensional semantic structure, which encodes the
implicit rules constraining the structure of a piece of reality [G98a].

Domain level: commonly accepted assumptions (i.e. understanding) about
a piece of the reality. This term is often interchanged with the term
“ontology level” to mean the same thing.

Epistemology level: The level that deals with the knowledge structuring
primitives (e.g. concept types, structuring relations, etc.). [B79] [G94].

Extrinsic properties: “Extrinsic properties are not inherent, and they have
a relational nature, like “being a friend of John”. Among these, there

Appendix D: Thesis Glossary

 297
-D

are some that are typically assigned by external agents or agencies,
such as having a specific social security number, having a specific
customer id., even having a specific name” [GW00].

Generic task: a highly reusable kind of task.

Intrinsic properties: “An intrinsic property is typically something inherent
to an individual, not dependent on other individuals, such as having a
heart or having a fingerprint” [GW00].

Extensional verses Intensional semantics: “The extensional semantics
(value or denotation) of the expressions of a logic are relative to a
particular interpretation, model, or situation. The extensional
semantics of CarPool World, for example, are relative to a particular
day. The denotation of a proposition is either True or False. If P is an
expression of some logic, we will use [[P]] to mean the denotation of
P. If we need to make explicit that we mean the denotation relative to
situation S, we will use [[P]]S. The intensional semantics (or intension)
of the expressions of a logic are independent of any specific
interpretation, model, or situation, but are dependent only on the
domain being conceptualized. If P is an expression of some logic, we
will use [P] to mean the intension of P. If we need to make explicit
that we mean the intension relative to domain D, we will use [P]D.
Many formal people consider the intension of an expression to be a
function from situations to denotations. For them, [P]D(S) = [[P]]S.
However, less formally, the intensional semantics of a wfp can be
given as a statement in a previously understood language (for
example, English) that allows the extensional value to be determined
in any specific situation.” [S95].

Ontology reusability: the ability of using an ontology (or part of it) among
several kinds of (autonomously specified) tasks.

Ontology usability: the ability of using an ontology among applications
that perform the same kind of task.

Appendix D: Thesis Glossary

 298
-D

State of affairs: A state of affairs refers to a particular instance of reality,
or also called a possible world [WG03].

Bibliography

 299
-D

Bibliography

 300
-D

Bibliography

[A97a] Agnesund, M.: Representing culture-specific knowledge in a
multilingual ontology. Proceedings of the IJCAI-97 Workshop on
Ontologies and Multilingual NLP (1997)

[A97b] Appleton, B.: Patterns and Software: Essential Concepts and
Terminology. Object Magazine Online. Vol. 3, No 5. May, (1997)

[ABA02] ABA Task Force on Electronic Commerce And Alternative
Dispute Resolution. Final Report August, (2002)

[ACC04] Karl Aberer, Tiziana Catarci, Philippe Cudre-Mauroux, Tharam
Dillon, Stephan Grimm, Mohand-Said Hacid, Arantza Illarramendi,
Mustafa Jarrar, Vipul Kashyap, Massimo Mecella, Eduardo Mena,
Erich Neuhold, Aris Ouksel, Thomas Risse, Monica Scannapieco,
Felix Saltor, Luca De Santis, Stefano Spaccapietra, Steffen Staab,
Rudi Studer, and Olga De Troyer: Emergent Semantics Systems. In
M. Bouzeghoub, C. Goble, V. Kashyap, S. Spaccapietra, (eds):
Proceedings of the first International IFIP Conference on Semantics of
a Networked World. Volume 3226, LNCS, pages:14-44 Springer.
ISBN: 3540-236090. Paris, France. June 2004.

[ACFOH03] Abdelali, A., Cowie, J., Farwell, D., Ogden, B., Helmreich,
s.: Cross-Language Information Retrieval using Ontology.
Proceedings of TALN Batz-sur-Mer. France. (2003)

[AKS04] Angelova,G., Kalaydjiev, O., Strupchanska, A.: Domain
Ontology as a Resource Providing Adaptivity in eLearning.
Proceedings of On the Move to Meaningful Internet Systems 2004:
OTM 2004 Workshops, LNCS 3292, Cyprus. (2004) pp. 700–712

Bibliography

 301
-D

[AM04] Amir E., McIlraith s.: Partition-based logical reasoning for first-
order and propositional theories. Artificial Intelligence Journal. (2004)

[AR00] Aitken, S., Reid, s.: Evaluation of an Ontology-Based Information
Retrieval Tool. Proceedings of ECAI’00. Berlin, Germany. (2000)

[B01] Bryan, M. (eds.): MULECO -- Multilingual Upper-Level Electronic
Commerce Ontology. MULECO draft CWA. At the CEN/ISSS
Electronic Commerce Workshop (2001)
http://xml.coverpages.org/Bryan-CWA-12-01.pdf (January 2004).

[B79] Brachman., R.: On the Epistemological Status of Semantic
Networks,” In: Findler,N. (ed.). Associative Networks: Representation
and Use of Knowledge by Computers. Academic Press, New York.
(1979)

[BB03] Borgida, A., Brachman, R.: Conceptual Modeling with
Description Logics. In: Baader, F., Calvanese, D., McGuinness, D.,
Nardi, D., Patel-Schneider, P., (eds.): The Description Logic
Handbook, Theory, Implementation and Applications. ISBN:
0521781760 (2003)

[BB04] Beneventano, D., Bergamaschi, S.: The MOMIS methodology for
Integrating Heterogeneous Data Sources. IFIP World Computer
Congress. Toulouse, France. August (2004)

[BBB+98] Baker, G., Brass, A., Bechhofer, S., Goble, C., Paton, N.,
Stevens, R.: TAMBIS: Transparent Access to Multiple Bioinformatics
Information Sources. In: Glasgow, J., Littlejohn, T., Major, F.,
Lathrop, R., Sankoff D., Sensen, S. (eds.): 6th Int. Conf. on Intelligent
Systems for Molecular Biology. AAAI Press, Menlo Park. Montreal,
Canada. (1998) pp 25–34

[BBDD97] Briand, L.C., Bunse, C., Daly, J.W. and Differding, C.: An
Experimental Comparison of the Maintainability of Object-Oriented

Bibliography

 302
-D

and Structured Design Documents. In: Empirical Software
Engineering, Vol. 2, No. 3. (1997) pp. 291–312.

[BBH96] Beys, P., Benjamins, R., van Heijst, G.: Remedying the
reusability-usability trade-off for problem solving methods. In: B.R.
Gaines and M. Mussen, (eds.): Proceedings of the KAW’96. Banff,
Ca, (1996)

[BC88] Bylander, T., Chandrasekaran, B.: Generic tasks in knowledge-
based reasoning: The right level of abstraction for knowledge
acquisition. In: Gaines B., Boose, J. (eds.): Knowledge Acquisition for
Knowledge Based Systems. Vol. 1. Academic Press, London. (1988)
pp. 65–77

[BCD01] Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on
UML Class Diagrams using Description Logic Based Systems.
Workshop on Applications of Description Logics - ADL’01. (2001)

[BCFF04] Bonino, D., Corno, F., Farinetti, L., Ferrato, A.: Multilingual
Semantic Elaboration in the DOSE platform. ACM Symposium on
Applied Computing, SAC’04. Nicosia, Cyprus. March (2004)

[BCMNP03] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-
Schneider, P. (eds.): The Description Logic Handbook. Cambridge
University Press. (2003)

[BCW02] Brewster, C., Ciravegna, F., Wilks, Y.: User-Centred Ontology
Learning for Knowledge Management. Proceedings of the 7th
FInternational Conference on Applications of Natural Language to
Information Systems, Stockholm, Lecture Notes in Computer Science
2553, Springer Verlag. June (2002)

[BCW97] Barley, M., Clark, P., Williamson, K., Woods, S.: The neutral
representation project. Proceedings of AAAI’97 Spring Symposium
on Ontological Engineering. AAAI Press. (1997)

Bibliography

 303
-D

[BDMW95] Birmingham, W., Durfee, E., Mullen, T., Wellman, M.: The
Distributed Agent Architecture Of The University of Michigan Digital
Library (UMDL). AAAI Spring Symposium Series on Software
Agents. (1995)

[BDVHP00] Brejova, B., DiMarco, C., Vinar, T., Hidalgo, S. R., Holguin,
G. and Patten, C. Finding Patterns in Biological Sequences.
Unpublished project report for CS798G, University of Waterloo, Fall
2000.

[BF99] Berners-Lee, T., Fischetti, M.: Weaving the Web : The Original
Design and Ultimate Destiny of the World Wide Web by its Inventor.
Harper, San Francisco. (1999)

[BH96] Bloesch, A., Halpin, T.: ConQuer: a Conceptual Query Language.
In: Thalheim, B. (ed.): Proceedings of Conceptual Modeling - ER’96.
Lecture Notes in Compute Science, Springer-Verlag. (1996) pp. 121–
33

[BHGSS03] Bouquet, P., van Harmelen, F., Giunchiglia, F., Serafini, L.,
Stuckenschmidt H.: C-OWL: Contextualizing ontologies. Proceedings
of the second International Semantic Web Conference - ISWC’03,
Sanibel Island, Florida. October (2003)

[BHW91] van Bommel, P., ter Hofstede, A.H.M. , van der Weide, Th.P. :
Semantics and verification of object role models. Information
Systems, 16(5). October (1991) 471–495

[BLA+05] de Bruijn, J., Lara, R., Arroyo, S., Gomez, J., Han, S., Fensel,
D.: A Unified Semantic Web Services Architecture based on WSMF
and UPML. The International Journal of Web Engineering and
Technology (IJWET). (2005)

[BM99] Bench-Capon T.J.M., Malcolm G.: Formalising Ontologies and
Their Relations. Proceedings of DEXA’99. (1999) pp. 250–259

Bibliography

 304
-D

[BS03] Borgida A., Serafini L.: Distributed Description Logics:
Assimilating Information from Peer Sources. In: Aberer K., March S.,
and Spaccapietra S., (eds.): Journal on Data Semantics, Vol. 2800.
LNCS, Springer, ISBN: 3-540-20407-5. October (2003) pp. 153–184

[BVW97] Breuker, J., Valente, A., Winkels, R.: Legal ontologies: a
functional view. In: Visser, P., Winkels, R. (eds.): Legal Ontologies.
ACM, New York. (1997) pp. 23–36

[C92] Clancey W.J., “Model construction operators”. Artificial
Intelligence, 53(1):1-115, (1992).

[C98] Chalabi, C.: Sakhr Arabic-English Computer-Aided Translation
System. AMTA’98. (1998) pp. 518–521

[CAA06] Philippe Cudre-Mauroux, Karl Aberer, Alia Abdelmoty, Tiziana
Catarci, Ernesto Damiani, Arantxa Illaramendi, Mustafa Jarrar, Robert
Meersman, Erich Neuhold, Christine Parent, Kai-Uwe Sattler, Monica
Scannapieco, Stefano Spaccapietra, Peter Spyns, and Guy De Tre:
Viewpoints on Emergent Semantics. In Stefano Spaccapietra, Karl
Aberer, Philippe Cudre-Mauroux (eds): Journal on Data Semantics.
4090(6):1-27. ISBN: 3540367128. Springer. 2006.

[CBB+04] Collet, C., Belhajjame, K., Bernot, G., Bobineau, C., Bruno,
G., Finance, B., Jouanot, F., Kedad, Z., Laurent, D., Tahi, F., Vargas-
Solar, G., Tuyet-Trinh V.: Towards a mediation system framework for
transparent access to largely distributed sources. Proceedings of the
International Conference ICSNW. (2004)

[CC03] Chia-Wei, W., Chao-Lin, L.: Ontology-based Text Summarization
for Business News Articles. Computers and Their Applications.
(2003) pp. 389–392

[CDLNR98] Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D.,
Rosati, R.: Information integration: Conceptual modeling and

Bibliography

 305
-D

reasoning support. In Proceedings Of the 6th International Conference
on Cooperative Information Systems (CoopIS'98). (1998) pp. 280-291

[CG01] Corcho, O., Gmez-Prez, A.: Solving Integration Problems of E-
Commerce Standards and Initiatives through Ontological Mappings.
Proceedings of IJCAI01. (2001)

[CHP01] Cranefield, S., Haustein, S., Purvis, M.: UML-Based Ontology
Modelling for Software Agents. Proceedings of the Workshop on
Ontologies in Agent Systems, 5th International Conference on
Autonomous Agents. Montreal. (2001) pp. 21–28

[CIHF02] Cho, Y., Im, I., Hiltz, S., Fjermestad, J.: An Analysis of Online
Customer Complaints: Implications for Web Complaint Management.
Proceedings of the 35th Annual Hawaii International Conference on
System Sciences (HICSS’02). Volume 7. Hawaii. (2002)

[CJ93] Chandrasekaran, B., Johnson, T.: Generic Tasks and Task
Structures: History, Critique and New Directions. In: David, J.,
Krivine, J., Simmons, R. (eds.): Second Generation Expert Systems,
Springer. (1993) pp. 233–272

[CJB99] Chandrasekaran, B., Johnson, R., Benjamins, R.: Ontologies:
what are they? why do we need, them?. IEEE Intelligent Systems and
Their Applications. 14(1). Special Issue on Ontologies. (1999) pp. 20–
26.

[CP99] Cranefield, S., Purvis, M.: UML as an ontology modelling
language. Workshop on Intelligent Information Integration, 16th
International Joint Conference on Artificial Intelligence, IJCAI’99,
(1999)

[CW87] Claes, F., Wernerfelt, B.: Defensive Marketing Strategy by
Customer Complaint Management: A Theoretical Analysis. Journal of
Marketing Research, No. 24. November (1987) pp. 337–346

Bibliography

 306
-D

[DF01] Ding, Y., Fensel, D.: Ontology library systems: the key for
successful ontology reuse. Proceedings of the first Semantic Web
Working Symposium, Stanford, CA, USA. August (2001)

[DFJ05] Tharam Dillon, Ling Feng, Mustafa Jarrar, Aldo Gangemi, Joost
Breuker, Jos Lehmann, and Andre Valente (eds): Proceedings of the
1st IFIP WG 2.12 and WG 12.4 International Workshop on Web
Semantics (SWWS'06). In OTM Workshops. Volume 3762 of LNCS.
Springer. ISBN: 3540297391. Larnaca, Cyprus. November 2005.

[DHHS01] Degen, W., Heller, B., Herre, H. and Smith, B.: GOL:
Towards an Axiomatized Upper-Level Ontology. In: Welty, C., Smith
B. (eds.): Formal Ontology in Information Systems. Proceedings of
the Second International Conference (FOIS 2001). ACM Press. New
York: October (2001) pp. 34–46

[DJM02a]: Demey, J., Jarrar, M., Meersman, R.: A Conceptual Markup
Language that supports interoperability between Business Rule
modeling systems. Proceedings of the Tenth International Conference
on Cooperative Information Systems (CoopIS 02). Springer Verlag
LNCS 2519. (2002) pp. 19–35

[DJM02b]: Demey, J., Jarrar, M., Meersman, R.: Markup Language for
ORM Business Rules. In: Schroeder M. & Wagner G. (eds.),
Proceedings of the International Workshop on Rule Markup
Languages for Business Rules on the Semantic Web (RuleML’02).
(2002) pp. 107–128

[DMV] De Troyer, O., Meersman, R., Verlinden, P.: RIDL* on the CRIS
case: A Workbench for NIAM. Technical report. INFOLAB, Tilburg
University, The Netherlands.

[DW00] Deridder, D., Wouters, B.: The Use of an Ontology to Support a
Coupling between Software Models and Implementation. European

Bibliography

 307
-D

Conference on Object-Oriented Programming (ECOOP’00),
International Workshop on Model Engineering. (2000)

[E05] Embley, D.: Toward Tomorrow's Semantic Web -- An Approach
Based on Information Extraction Ontologies. Position Paper for
Dagstuhl Seminar. January (2005)

[EN99] Elmasri, R., Navathe, S.: Fundamentals of Database Systems. (3rd
Edition). Addison-Wesley Publishing. (1999)

[EWHLF02] Elmasri, R., Wu, Y., Hojabri, B., Li, C., Fu, J.: Conceptual
Modeling for Customized XML Schemas. In: Spaccapietra, S., March,
s., Kambayashi, Y. (Eds.): Proceedings of 21st International
Conference on Conceptual Modeling (ER’02). Tampere, Finland.
Lecture Notes in Computer Science 2503 Springer. ISBN 3-540-
44277-4. October (2002) pp. 429–443

[F02] Franconi, E.: Tutorial on Description Logics for Conceptual Design,
Information Access, and Ontology Integration: Research Trends.
Proceedings of the 1st International Semantic Web Conference (2002)

[F97] Frank, A.: Spatial Ontology: A Geographical Point of View. In:
Stock, O. (eds.): Spatial and Temporal Reasoning., Kluwer Academic
Publishers, Dordrecht, The Netherlands. (1997) pp. 135–153

[FE99] Fonseca, F., Egenhofer, M.: Ontology-Driven Geographic
Information Systems. In: the 7th ACM Symposium on Advances in
Geographic Information Systems. Kansas City, MO: ACM Press, N.Y.
(1999)

[FGJ97] Fernandez, M., Gomez-Perez, A., Juristo, N.:
METHONTOLOGY: From Ontological Art Towards Ontological
Engineering. Workshop on Ontological Engineering. Spring
Symposium Series. AAAI97 Stanford, USA. (1997)

Bibliography

 308
-D

[FLS96] Falasconi, S., Lanzola, G., Stefanelli. M.: Usingontologies in
multi-agent systems. In: Proceedings of Tenth Knowledge Acquisition
for Knowledge-BasedSystems Workshop (KAW’96). (1996)

[G02] Guarino, N.: Ontology-Driven Conceptual Modelling. Tutorial at
21st International Conference on Conceptual Modeling (ER’02).
Tampere, Finland.. (2002)

[G04] Gangemi, A.: Some design patterns for domain ontology building
and analysis. An online presentation at (http://www.loa-
cnr.it/Tutorials/OntologyDesignPatterns.zip April 2004)

[G85] Gilberg, R.:A Schema methodology for Large Entity-Relationship
Diagrams. Proceedings of the 4th International Conference on Entity-
Relationship Approach. Chicago, Illinois. ISBN O-13186-0645-2.
October (1985) pp. 320–327

[G94] Guarino, N.: The Ontological Level. In R. Casati, B. Smith and G.
White (eds.), Philosophy and the Cognitive Science. Hölder-Pichler-
Tempsky, Vienna: 443-456. (1994)

[G95] Gruber, T.: Toward principles for the design of ontologies used for
knowledge sharing. International Journal of Human-Computer
Studies, 43(5/6) (1995)

[G97] Guarino, N.: Understanding, building, and using ontologies: A
commentary to “Using Explicit Ontologies in KBS Development”, by
van Heijst, Schreiber, and Wielinga." International Journal of Human
and Computer Studies No. 46. (1997) pp. 293–310

[G98a] Guarino, N.: Formal Ontology in Information Systems.
Proceedings of FOIS’98, IOS Press, Amsterdam. (1998) pp. 3–15

[G98b] Guarino, N.: Some Ontological Principles for Designing Upper
Level Lexical Resources. In: A. Rubio, N. Gallardo, R. Castro and A.
Tejada (eds.): Proceedings of First International Conference on

Bibliography

 309
-D

Language Resources and Evaluation. ELRA - European Language
Resources Association, Granada, Spain. (1998)

[GAC+04] Glaser, H., Alani, H., Carr, L., Chapman, S., Ciravegna, F.,
Dingli, A., Gibbins, N., Harris, S., schraefel, m. c. Shadbolt, N.: CS
AKTive Space: Building a Semantic Web Application. In: Bussler, C.,
Davies, J., Fensel, D. and Studer, R. (Eds.): First European Web
Symposium (ESWS’04). Springer Verlag. (2004) pp. 417–432

[GB99] Gomez-Perez, A., Benjamins, R.: Overview of Knowledge
Sharing and Reuse Components: Ontologies and Problem-Solving
Methods. Proceedings of the IJCAI-99, Workshop on Ontologies and
Problem-Solving Methods (KRR5), MorganKaufmann (1999)

[Gene00] Gene Ontology: tool for the unification of biology. The Gene
Ontology Consortium Nature Genet. No. 25. (2000) pp. 25–29

[GG01] Giunchiglia, F., Ghidini, C.: Local Models Semantics, or
Contextual Reasoning = Locality + Compatibility. Artificial
Intelligence journal, 127(2). (2001) pp. 221–259

[GG95] Guarino, N. and Giaretta, P., “Ontologies and Knowledge Bases:
Towards a Terminological Clarification”` in: Towards Very Large
Knowledge Bases: Knowledge Building and Knowledge Sharing, N.
Mars (ed.), pp 25-32, IOS Press, Amsterdam (1995).

[GG95] Guarino, N. and Giaretta, P.: Ontologies and Knowledge Bases:
Towards a Terminological Clarification. In: Mars, N. (eds.): Towards
Very Large Knowledge Bases: Knowledge Building and Knowledge
Sharing. IOS Press. Amsterdam (1995) pp. 25–32

[GGMO01] Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A.:
Understanding toplevel ontological distinctions. Proceedings of
IJCAI-01 Workshop on Ontologies and Information Sharing. AAAI
Press. Seattle, USA, (2001) pp. 26–33

Bibliography

 310
-D

[GGO02] Gangemi, A., Guarino, N., Oltramari A., Borgo, S.: Cleaning-up
WordNet's top-level. Proceedings of the 1st International WordNet
Conference. January (2002)

[GGV97] Gilarranz, J., Gonzalo, J., Verdejo, F.: Language-independent
text retrieval with the EuroWordNet multilingual semantic database.
The Second Workshop on Multilinguality in the Software Industry:
The AI Contribution. August (1997)

[GHW02] Guizzardi, G., Herre, H., Wagner G.: Towards Ontological
Foundations for UML Conceptual Models. proceedings of the 1st
International Conference on Ontologies, Databases and Application of
Semantics (ODBASE’02), Lecture Notes in Computer Science, Vol.
2519, Springer-Verlag, Berlin. (2002) pp. 1100–1117

[GMV99] Guarino, N., Masolo, C., Vetere, G.: OntoSeek: Content-Based
Access to the Web. IEEE Intelligent Systems. June (1999) pp. 70–80.

[GN87] Genesereth, M.R., Nilsson, N.J.: Logical Foundation of Artificial
Intelligence. Morgan Kaufmann. Los Altos, California. (1987)

[GP01] Gangemi A., Pisanelli DM., Steve G.: A formal Ontology
Framework to represent Norm Dynamics. Proceedings of Second
International Workshop on Legal Ontologies, Amsterdam, NL. (2001)

[GP03] Guarino, N., Persidis A.: Evaluation Framework for Content
Standards. Deliverable 3.5, OntoWeb EU project (IST-2000-29243),
(2003)

[GPB99] Gomez-Perez, A., Benjamins, R.: Overview of Knowledge
Sharing and Reuse Components: Ontologies and Problem-Solving
Methods. Proceedings of the IJCAI-99 Workshop on Ontologies and
Problem-Solving Methods. Morgan-Kaufmann (1999)

[GW00] Guarino, N., Welty, C.: A Formal Ontology of Properties.
Proceedings of the ECAI-00 Workshop on Applications of Ontologies
and Problem Solving Method. Berlin, Germany. (2000) pp. 12.1–12.8

Bibliography

 311
-D

[GW02] Guarino, N. and Welty, C.: Evaluating Ontological Decisions
with OntoClean. Communications of the ACM, 45(2). (2002) pp. 61–
65

[H01] Halpin, T.: Information Modeling and Relational Databases. 3rd
edn. Morgan-Kaufmann. (2001)

[H89] Halpin, T.: A logical analysis of information systems: static aspects
of the data-oriented perspective. PhD thesis, University of
Queensland, Brisbane. Australia. (1989)

[H97] Halpin, T.: An Interview- Modeling for Data and Business Rules.
In: Ross, R. (eds.): Database Newsletter. vol. 25, no. 5. (Sep/Oct
1997). -This newsletter has since been renamed Business Rules
Journal and is published by Business Rules Solutions, Inc.

[H99] Halpin, T.: UML data models from an ORM perspective: Part 7.
Journal of Conceptual Modeling. InConcept. February (1999)

[Hj01] Heflin, J.: Towards the Semantic Web: Knowledge Representation
in a Dynamic, Distributed Environment. Ph.D. Thesis, University of
Maryland, College Park. (2001)

[HP95] Halpin, T., Proper, H.: Subtyping and polymorphism in object-
role modeling. Data & Knowledge Engineering 15(3). (1995) pp. 251–
281

[HPW93] ter Hofstede, A., Proper, H., van der Weide, T.: Formal
definition of a conceptual language for the description and
manipulation of information models. Information Systems 18(7).
October (1993) pp. 471–495

[HS01] Horrocks I., Sattler, U.: Ontology reasoning in the SHOQ(D)
description logic. In: Nebel, B. (eds.): Proceedings of the 17th Int.
Joint Conf. on Artificial Intelligence (IJCAI’01). Morgan Kaufmann.
(2001) pp. 199–204

Bibliography

 312
-D

[HST99] Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for
expressive description logics. In: Ganzinger, H., McAllester, D.,
Voronkov, A. (eds.): Proceedings of the 6th International Conference
on Logic for Programming and Automated Reasoning (LPAR’99).
Lecture Notes in Artificial Intelligence 1705, Springer-Verlag. (1999)
pp. 161–180.

[HSW97] van Heijst, G., Schreiber, A., Wielinga, B.: Using Explicit
Ontologies in KBS Development. International Journal of Human-
Computer Studies, 46. (1997) pp. 183–292

[HV93] Hemmann, T., Voss, H.: A Reusable and Specializable
Interpretation Model for ModelBased Diagnosis. In: Luckenhoff, C.,
Fensel, D., Studer, D. (eds.): Proceeding 3rd KADS Meeting Siemens
AG. Munich. March (1993) pp. 189–205

[Inn+03] Persidis A., Niederée C., Muscogiuri C., Bouquet P., Wynants
M.: Innovation Engineering for the Support of Scientific Discovery.
Innovanet Project (IST-2001-38422), deliverable D1. (2003)

[J05a] Mustafa Jarrar: Modularization and automatic composition of
Object-Role Modeling (ORM) Schemes. In OTM 2005 Workshops,
proceedings of the International Workshop on Object-Role Modeling
(ORM'05). Volume 3762, LNCS, Pages (613-625), Springer. ISBN:
3540297391. November 2005.

[J06] Mustafa Jarrar: Towards the notion of gloss, and the adoption of
linguistic resources in formal ontology engineering. In proceedings of
the 15th International World Wide Web Conference (WWW2006).
Edinburgh, Scotland. Pages 497-503. ACM Press. ISBN: 1595933239.
May 2006.

[J07] Mustafa Jarrar: Towards Automated Reasoning on ORM Schemes. -
Mapping ORM into the DLR_idf description logic. Proceedings of the
26th International Conference on Conceptual Modeling (ER 2007).

Bibliography

 313
-D

Volume 4801, LNCS, Pages (181-197), Springer.
ISBN:9783540755623. New Zealand. November 2007.

[J07a] Mustafa Jarrar: ORM Markup Language, version 3. Technical
Report. STAR Lab, Vrije Universiteit Brussel, Belgium. January 2007

[J07b] Mustafa Jarrar: Mapping ORM into the SHOIN/OWL Description
Logic- Towards a Methodological and Expressive Graphical Notation
for Ontology Engineering. In OTM workshops, proceeding of the
International Workshop on Object-Role Modeling (ORM'07). Volume
4805, LNCS, Pages (729-741), Springer. ISBN: 9783540768890.
Portogal. November, 2007

[J08] Mustafa Jarrar: Towards Effectiveness and Transparency in e-
Business Transactions, An Ontology for Customer Complaint
Management. A book chapter in "Semantic Web Methodologies for E-
Business Applications". Idea Group Inc. (2008) (To appear)

[JCCP06] Mustafa Jarrar, Claude Ostyn, Werner Ceusters, and Andreas
Persidis (eds): Proceedings of the International Workshop on
Ontology content and evaluation (OnToContent 2006). In OTM
Workshops (2). Volume 4278 of LNCS. page (1011), Springer Berlin.
ISBN: 9783540482734. Montpellier, France. November 2006.

[JD06] Mustafa Jarrar and Mohammed Eldammagh: Reasoning on ORM
using Racer. Technical Report. STAR Lab, Vrije Universiteit Brussel,
Belgium. August 2007

[JDM03] Jarrar M., Demy J., Meersman R.: On Using Conceptual Data
Modeling for Ontology Engineering. In: Aberer K., March S., and
Spaccapietra S., (eds.): Journal on Data Semantics, Special issue on
"Best papers from the ER/ODBASE/COOPIS 2002 Conferences",
LNCS Vol. 2800, Springer. ISBN: 3-540-20407-5. October (2003) pp.
185–207

Bibliography

 314
-D

[JH08] Mustafa Jarrar and Stijn Heymans: Towards Pattern-based
Reasoning for Friendly Ontology Debugging. Journal of artificial
tools. 2008. (To appear).

[JKD06] Mustafa Jarrar, Maria Keet, and Paolo Dongilli: Multilingual
verbalization of ORM conceptual models and axiomatized ontologies.
Technical report. STARLab, Vrije Universiteit Brussel, February
2006.

[JLVM03] Jarrar, M., Lisovoy, A., Verlinden, R., Meersman, R.:
"Ontoform" Ontology based CCForms demo. Deliverable 6.3,
CCForm Project (IST-2001-34908), 5th framework. Brussels (2003)

[JM02a] Jarrar, M., Meersman, R.: Formal Ontology Engineering in the
DOGMA Approach. In: 1st International Conference on Ontologies,
Databases and Application of Semantics (ODBASE’02). Lecture
Notes in Computer Science, Vol. 2519, Springer-Verlag. Berlin (2002)
pp. 1238–1254

[JM02b] Jarrar, M., Meersman, R.: Scalability and Knowledge
Reusability in Ontology Modeling. Proceedings of the International
conference on Infrastructure for e-Business, e-Education, e-Science,
and e-Medicine (SSGRR’2002s) (2002)

[JM08] Mustafa Jarrar and Robert Meersman: Ontology Engineering -The
DOGMA Approach. In Elizabeth Chang and Tharam Dillon and
Robert Meersman and Katia Sycara (eds): Advances in Web Semantic.
Volume 1, A state-of-the Art Semantic Web Advances in Web
Semantics IFIP2.12. Chapter 3. Springer. 2008.

[JS03] Jarrar, M., Salaun, A. (eds.): Proceedings: Regulatory ontologies
and the modeling of complaint regulations (WORM CoRe 2003).
Workshop held at the "On the Move to Meaningful Internet Systems
2003” conference (OTM’03). Catania, Sicily, Italy. Springer LNCS.
November (2003)

Bibliography

 315
-D

[JS06] Mustafa Jarrar and Stijn Heymans: Unsatisfiability Reasoning in
ORM Conceptual Schemes. In Torsten Grust et al. (eds): Proceeding
of International Conference on Semantics of a Networked World.
Volume 4254, LNCS, Pages (517-534), Springer. ISBN: 3540467882.
Munich, Germany, March 2006.

[JSOW07] Mustafa Jarrar, Andreas Schmidt, Claude Ostyn, and Werner
Ceusters (eds): Proceedings of the International Workshop on
Ontology content and evaluation (OnToContent 2007). In OTM
Workshops (1). Volume 4805 of LNCS. page (509), Springer Berlin.
ISBN: 978-3540768876. Algarve, Portugal. November 2007.

[JVM03] Jarrar, M., Verlinden, R., Meersman, R.: Ontology-based
Customer Complaint Management. In: Jarrar M., Salaun A., (eds.):
Proceedings of the workshop on regulatory ontologies and the
modeling of complaint regulations, Catania, Sicily, Italy. Springer
Verlag LNCS. Vol. 2889. November (2003) pp. 594–606

[K03] Khosla, R.: Multi-Layered Distributed Agent Ontology for Soft
Computing Systems. Proceedings of the 17th International Conference
on Knowledge-based Intelligent Information and Engineering
Systems. Oxford, U.K. September (2003) pp. 445–52

[K04] Keet, M.: Aspects of ontology integration. Technical report. School
of Computing, Napier University. January (2004)

[K96] Mahesh, K.: Ontology development for machine translation:
Ideology and Methodology. Technical report MCCS-96-292.
Memoranda in Computer and Cognitive Science. New Mexico State
University, Computing Research Laboratory, Las Cruces, NM. (1996)

[KF01] Klein, M. and Fensel, D.: Ontology Versioning on the Semantic
Web. The First International Semantic Web Working Symposium
(SWWS’01) (2001)

Bibliography

 316
-D

[KKOF02] Klein, M., Kiryakov, A., Ognyanov, D., Fensel, D.: Ontology
versioning and change detection on the web. The 13th International
Conference on Knowledge Engineering and Knowledge Management
(EKAW’02). Sig uenza, Spain. October (2002)

[KN03] Klein, M., Noy.: A component-based framework for ontology
evolution. Technical Report IR-504, Department of Computer
Science, Vrije Universiteit Amsterdam. March (2003)

[KRS+02] Karp, P.D., Riley, M., Saier, M., Paulsen, I.T., Paley, S.,
Pellegrini-Toole, A.: The Ecocyc Database. Nucleic Acids Research,
30(1):56. (2002)

[KTT03] Kerremans, K., Temmerman, R. and Tummers, J.: Representing
multilingual and culture-specific knowledge in a VAT regulatory
ontology: support from the termontography approach. In: Meersman,
R., Tari, Z. (eds.) OTM 2003 Workshops. Tübingen: Springer Verlag.
(2003)

[LWP+02] Lauser, B., Wildemann, T., Poulos, A., Fisseha, F., Keizer, J.,
Katz, S.: A Comprehensive Framework for Building Multilingual
Domain Ontologies: Creating a Prototype Biosecurity Ontology.
Proceedings of the International Conference on Dublin Core and
Metadata for e-Communities. Firenze University Press. Florence, Italy
October (2002) pp. 113–123

[M00] Meersman R.: Can Ontology Theory Learn from Database
Semantics?. Proceedings of the Dagstuhl Seminar 0121 'Semantics on
the Web' (2000)

[M01a] Meersman, R.: Ontologies and Databases: More than a Fleeting
Resemblance. In: d'Atri A., Missikoff, M. (eds.): OES/SEO 2001
Rome Workshop, Luiss Publications (2001)

Bibliography

 317
-D

[M01b] Meersman R.: New Frontiers in Modeling Technology: The
Promise of Ontologies. Proceedings of the SISO ESM Conference on
Simulation (2001)

[M04] Mika, P.: Social Networks and the Semantic Web.
IEEE/WIC/ACM International Conference on Web Intelligence
(WI’04). IEEE Computer Society. ISBN 0-7695-2100-2. Beijing,
China. (2004) pp. 285–291

[M55] Martinet, A.: Economie des changements phonétiques, Berne:
Francke, (1955) pp. 157-158

[M81] Meersman, R.: Languages for the High-Level End User. InfoTech
State of the Art Report. Pergamon Press. (1981)

[M86] Meersman, R.: Knowledge and Data: A Survey in the Margin of
the IFIP DS-2 Conference. In: Spacapietra, S., (eds.): Entity-
Relationship Approach: Ten Years of Experience in Information
Modeling, Proceedings of the Fifth International Conference on
Entity-Relationship Approach. North-Holland. Dijon, France (1986)
pp. 25–34

[M93] McCarthy, J.: Notes on Formalizing Context. Proceedings of
IJCAI’93. Morgan-Kaufmann. (1993)

[M95] Meersman, R.: An essay on the Role and Evolution of Data(base)
Semantics. In: Meersman, R., Mark L. (eds.): Proceeding of the IFIP
WG 2.6 Working Conference on Database Applications Semantics
(DS-6). CHAPMAN & HALL. Atlanta, USA. (1995)

[M98] Musen, M.: Domain Ontologies in Software Engineering: Use of
Protege with the EON Architecture. Methods of Information in
Medicine, No. 37. (1998) pp. 540–550

[M99a] Meersman R.: The Use of Lexicons and Other Computer-
Linguistic Tools. In: Zhang Y., Rusinkiewicz M, & Kambayashi Y.
(eds.): Semantics, Design and Cooperation of Database Systems, The

Bibliography

 318
-D

International Symposium on Cooperative Database Systems for
Advanced Applications (CODAS’99). Springer Verlag. Heidelberg.
(1999) pp. 1–14

[M99b] Meersman R., Semantic Ontology Tools in Information System
Design. In, Ras, Z. & Zemankova, M.,(eds.), Proceedings of the
ISMIS 99 Conference, LNCS 1609, Springer Verlag. (1999) pp. 30–
45

[MBFGM90] Miller, G. Beckwith, R., Fellbaum, F., Gross, D., Miller, K.:
Introduction to wordnet: an on-line lexical database. International
Journal of Lexicography, 3(4). (1990) pp. 235–244

[MBGGO03] Masolo, C., Borgo, S., Gangemi, A., Guarino, N.,
Oltramari, A.: WonderWeb Deliverable D18, Ontology Library. IST
Project 2001-33052 WonderWeb, Deliverable D18. (2003)

[MC02] Meisel, H., Compatangelo, E.: EER-ConcepTool: a “reasonable”
environment for schema and ontology sharing. Proceedings of the 14th
IEEE International Conference on Tools with Artificial Intelligence
(ICTAI’02), IEEE Computer Society Press. (2002) pp. 527–534

[MMS03] Maedche, A., Motik B., Stojanovic L.: Managing multiple and
distributed ontologies on the Semantic Web. The International Journal
on Very Large Data Bases. Springer-Verlag New York, Vol. 12,
number 4, issn: 1066-8888. (2003) pp. 286–302

[MVBCFGG04] Masolo, C. Vieu, L., Bottazzi, E., Catenacci, C., Ferrario,
R., Gangemi, A., Guarino, N.: Social Roles and their Descriptions.
Proceeding of the Ninth International Conference on the Principles of
Knowledge Representation and Reasoning (KR’04). Canada. (2004)

[N90] Nöth, W.: Handbook of Semiotics. Bloomington, IN : Indiana
University Press (1990)

[N94] Nonaka, I: A dynamic theory of organizational knowledge creation.
In: Organizational Science, Vol. 5, No. 1. (1994) pp. 14–37

Bibliography

 319
-D

[NCMSC00] da Nóbrega, M., Castro, E., Malbos, P., Sallantin, J., Cerri,
A.: A framework for supervised conceptualizing. In: Benjamins, V.
R., Gómez Pérez, A., Guarino, N., Uschold, M. (eds.): Workshop on
Applications of Ontologies and Problem-Solving Methods (ECAI–00).
Berlin, Germany. (2000)

[NM02] Nakhimovsky, A., Myers, T.: Web Services: Description,
Interfaces and Ontology. In: Geroimenko, V., Chen, C. (eds.):
Visualizing the Semantic Web. Springer. ISBN 1-85233-576-9. (2002)
pp. 135–150.

[P04] Pan, J.: Description Logics: Reasoning Support for the Semantic
Web. Ph.D. Thesis, School of Computer Science, the University of
Manchester. (2004)

[P05] Pretorius, A. J.: Visual Analysis for Ontology Engineering. Journal
of Visual Languages and Computing. (2005)

[P72] Parnas, D. L.: On the criteria to be used in decomposing system into
modules. Communications of the ACM, Vol. 15, No. 12. December
(1972) pp. 1053–1058

[P96] Polany, M.: The Tacit Dimension. Doubleday, Garden City-N.Y.
(1996)

[PFP+92] Patil, R., Fikes, R., Patel-Schneider, P., McKay, D., Finin, T.,
Gruber, T., Neches, R.: The DARPA Knowledge Sharing Effort:
Progress Report. Proceedings of Knowledge Representation and
Reasoning. (1992) pp. 777–788

[PSDM03] Reinberger M.-L., Spyns P., Daelemans W. Meersman R.:
Mining for lexons: applying unsupervised learning methods to create
ontology bases. In: Meersman R., Zahir T., Schmidt D. et al.,(eds.),
On the Move to Meaningful Internet Systems 2003: CoopIS, DOA,
and ODBASE, LNCS 2888, Springer Verlag. (2003) pp. 803–819

Bibliography

 320
-D

[Q91] Qmair, Y.: Foundations of Arabic philosophy. Dar al-Shoroq.
Bairut, ISBN 2-7214-8024-3. (1991)

[R00] Richards. D. "The Reuse of Knowledge: A User-Centered
Approach", International Journal of Human Computer Studies, (2000).

[R03] Rector, A.: Modularisation of domain ontologies implemented in
description logics and related formalisms including OWL.
Proceedings of the international conference on Knowledge
captureIsland. ACM Press. ISBN:1-58113-583-1. FL, USA. (2003)
pp. 121–128

[R70] Royce, W.: Managing the development of large software systems:
Concepts and techniques. Proceedings of WESCON. August (1970)

[R88] Reiter, R.: Towards a Logical Reconstruction of Relational
Database Theory. In: Mylopoulos, J., Brodie, M.L. (eds.): Readings in
AI and Databases. Morgan Kaufman. (1988)

[RFOGP99] Rigoutsos, I., Floratos, A., Ouzounis, C., Gao, Y. & Parida,
L.: Dictionary building via unsupervised hierarchical motif discovery
in the sequence space of natural proteins. Proteins: Struct. Funct.
Genet. 37. (1999) pp. 264–277.

[RS93] Rauh, O., Stickel, E.: Searching for Compositions in ER Schemes.
In: Elmasri R., Kouramajian, V. (eds.): Proceeding of the 12th Int.
Conference on Entity Relationship Approach. Arlington, Texas.
December (1993) pp. 75–86

[RSV98] Roberto, C., Smith, B., Varzi A.: Ontological tools for
geographic representation. In: N. Guarino (eds.): Formal Ontology in
Information Systems, Proceedings of the First International
Conference (FOIS’98). Amsterdam IOS Press. Trento, Italy. June
(1998) pp. 77–85

[RVMS99] Russ, T., Valente, A., MacGregor, R., Swartout, W.: Practical
Experiences in Trading Off Ontology Usability and Reusability.

Bibliography

 321
-D

Proceedings of the Twelfth Banff Knowledge Acquisition for
Knowledge-based Systems Workshop. (1999) pp. 4.11.1–4.11.20

[S00] Sowa, J.F.: Ontology, metadata, and semiotics. In: Ganter, B.,
Mineau, G.W., (eds.): Conceptual structures: logical, linguistic and
computational issues: 8th international conference on conceptual
structures (ICCS’00). Darmstadt Germany. Lecture Notes in Artificial
Intelligence, 1867, Springer-Verlag Berlin. August (2000) pp. 55–81

[S02] Smith B.: Ontology and information systems. Stanford
Encyclopedia of Philosophy (2002)
http://ontology.buffalo.edu/ontology(PIC).pdf (January 2005)

[S03a] Smith, B.: Ontology. In: Floridi, L. (eds.): Blackwell Guide to the
Philosophy of Computing and Information. Oxford: Blackwell. (2003)
pp. 155–166

[S03b] Sure, Y.: Methodology, Tools and Case Studies for Ontology
based Knowledge Management. PhD Thesis, University of Karlsruhe,
Department of Economics and Business Engineering. (2003)

[S85] Shoval, P.: Essential information structure diagrams and database
schema design. Information Systems, 10(4). (1985) pp. 417-423

[S93] Steels, L., “The componential framework and its role in
reusability”, in: Second Generation Expert Systems, J.-M. David, J.-P.
Krivine & R.Simmons, (eds.), pp. 273-298. Berlin: Springer-Verlag
(1993).

[S95] Shapiro, S.: Propositional, First-Order And Higher-Order Logics:
Basic Definitions, Rules of Inference, Examples. In: Iwanska, L.,
Stuart, S., Shapiro, (eds.): Natural Language Processing and
Knowledge Representation: Language for Knowledge and Knowledge
for Language. AAAI Press/The MIT Press, Menlo Park, CA. (1995)

Bibliography

 322
-D

[S96] Siirtola: Managing Large Entity-Relationship Diagrams. In:
Thalheim, B., Yigitbasi, S., (eds.): Proceeding of the Workshop ER
CASE Tools. Cottbus, Germany. October (1996) pp. 29–42

[SCD06] Katia Sycara, Elizabeth Chang, Ernesto Damiani, Mustafa
Jarrar, and Tharam Dillon (eds): Proceedings of the 2nd IFIP WG 2.12
and WG 12.4 International Workshop on Web Semantics (SWWS'06).
In OTM Workshops (2). Volume 4278 of LNCS. page (1723),
Springer Berlin. ISBN: 9783540482734. Montpellier, France.
November 2006.

[SGG+05] Suárez-Figueroa, M., García-Castro, R., Gómez-Pérez, A.,
Palma R., Nixon, L., Paslaru, L., Hartmann J., Jarrar, J.: Identification
of standards on metadata for ontologies. Deliverable D1.3.2. EU-IST
Network of Excellence (NoE) IST-2004-507482 (KWEB),
Luxemburg (2005)

[SGP98] Steve G., Gangemi A., Pisanelli D.M.: Integrating Medical
Terminologies with the ONIONS Methodology. In: Kangassalo, H.,
Charrel, J.P. (eds.): Information Modeling and Knowledge Bases VIII.
Amsterdam IOS Press (1998)

[SH05] Stuckenschmidt, H., van Harmelen, F.: Information sharing on the
semantic Web. Springer. Berlin. ISBN 3-540-20594-2 (2005)

[SK03] Stuckenschmidt H., Klein M.: Modularization of Ontologies -
WonderWeb: Ontology Infrastructure for the Semantic Web.
Deliverable 21. WonderWeb Project (IST 2001-33052) (2003)

[SKC02] Sampson, D., Karagiannidis C., Cardinali, F.: An Architecture
for Web-Based e-Learning Promoting Re-usable Adaptive Educational
e-Content. Educational Technology & Society Journal of International
Forum of Educational Technology & Society and IEEE Computer
Society Learning Technology Task Force, ISSN 1436-4522, Special
Issue on Innovations in Learning Technologies, 5(4), August (2002)

Bibliography

 323
-D

[SKKM03] Sunagawa, E., Kozaki, K., Kitamura, Y., and Mizoguchi R.:
An Environment for Distributed Ontology Development Based on
Dependency Management. Proceedings of the Second International
SemanticWeb Conference (ISWC’03). Springer-Verlag, LNCS 2870.
FL, USA. ISBN: 3-540-20362-1. (2003) pp. 453–468

[SM93] Swartout, W.R. and Moore, J.D., ”Explanation in Second
Generation Expert Systems”, in: Second Generation Expert Systems,
J.-M. David, J.-P. Krivine and R. Simmons (eds),. Berlin: Springer-
Verlag (1993).

[SMD00] Shum, S., Motta, E., Domingue, J.: ScholOnto: an ontology-
based digital library server for research documents and discourse. Int.
J. on Digital Libraries 3(3). (2000) pp. 237-248

[SOV+02] Spyns, P., Oberle, D., Volz, R., Zheng, J., Jarrar, M., Sure, Y.,
Studer, R., Meersman, R.: OntoWeb - a Semantic Web Community
Portal. In: Karagiannis, D., Reimer, U., (eds.): Proceedings of the
Fourth International Conference on Practical Aspects of Knowledge
Management (PAKM’02), LNAI 2569, Springer Verlag. (2002) pp.
189–200

[SP94] Spaccapietra, S., Parent, C.: View Integration: A Step Forward in
Solving Structural Conflicts. IEEE Transactions on Data and
Knowledge Engineering 6(2). (1994)

[SWCH01] Sullivan, k., William, G., Cai, Y., Hallen, B.: The structure
and value of modularity in software design. Journal SIGSOFT
Software Engineering Notes. Vol. 26, number 5. ACM Press. Issn:
0163-5948. (2001) pp. 99–108

[T00] Temmerman, T.: Towards New Ways of Terminology Description,
the sociocognitive approach. John Benjamins Publishing Company.
Amsterdam. ISBN 9027223262. (2000)

Bibliography

 324
-D

[T96] de Troyer, O.: A Formalization of the Binary Object-Role Model
based on Logic. Data & Knowledge Engineering 19, North-Holland
Elsevier. (1996) pp. 1–37

[TB01] Tamma, V., Bench-Capon, T.: A conceptual model to facilitate
knowledge sharing in multi-agent systems. Proceedings of the
Autonomous Agents 2001 Workshop on Ontologies in Agent Systems
(OAS’01). Montreal. May (2001) pp. 69–76

[TM95] de Troyer, O., Meersman, R.: A Logic Framework for a
Semantics of Object-Oriented Data Modelling. In: Papazoglou, M.P.
(eds.): Proceedings of 14th International Conference Object-
Orientation and Entity-Relationship Modelling (OO-ER’95), Lecture
Notes in Computer Science 1021, Springer. (1995) pp. 238–249

[TSC01] Tzitzikas, Y., Spyratos, N., Constantopoulos, P.: Mediators over
Ontology-based Information Sources. Proceedings of the Second
International Conference on Web Information Systems Engineering
(WISE’01). (2001)

[TTN97] Takaai, M., Takeda, H., Nishida, T.: Distributed ontology
development environment for multi-agent systems. Working Notes for
AAAI’97. Spring Symposium Series on Ontological Engineering.
(1997) pp. 149–153

[U01] Uitermark, H.: Ontology Based Geographic Data Set Integration.
PhD Thesis, Twente University. (2001)

[U96] Uschold, M.: Building ontologies: Towards a Unified
Methodology. Proceedings of Expert Systems, the 16th Annual
Conference of the British Computer Specialist Group of Expert
Systmes (AIAI-TR’97). Cambridge. December (1996)

[UG96] Uschold, M. and Gruninger, M: Ontologies: principles, methods
and applications. Knowledge Engineering Review, vol. 11, no. 2
(1996)

Bibliography

 325
-D

[V82] Van Griethuysen, J.J., (Eds.): Concepts and Terminology for the
Conceptual Schema and Information Base. International
Standardization Organization, Publication No. ISO/TC97/SC5- N695.
(1982)

[V83] Vermeir D.: Semantic Hierarchies and Abstraction in Conceptual
Schemata. Journal of Information Systems. Vol. 8, No. 2. (1983) pp.
117–124

[V98] Vossen, P. (eds.): EuroWordNet: A Multilingual Database with
Lexical Semantic Networks. Kluwer Academic Publishers, Dordrecht.
(1998)

[VB82] Verheijen, G., van Bekkum, P.: NIAM, aN Information Analysis
Method. In: Olle, T.W., Sol, H., Verrijn-Stuart, A. (eds.), IFIP
Conference on Comparative Review of Information Systems
Methodologies, North-Holland. (1982) pp. 537–590

[VDM04] Verheyden, P., De Bo, J., Meersman, R.: Semantically
unlocking database content through ontology-based mediation . In,
Bussler C. & Tannen V.,(eds.), Proceedings of the 2nd Workshop on
the Semantic Web and Databases (in conjuction with the 30th
International Conference on Very Large Databases), LNCS 3372,
Springer Verlag. (2004)

[VDZ04] Verlinden R., De Bo J., Zhao G.: Ontology Alignment and
Merging Components. Deliverable 5.1.3. FF-Poirot project. IST – EU,
5th Framework (IST-2001-38248). (2004)

[VH91] Ventrone, V., Heiler, S.: Semantic Heterogeneity as a Result of
Domain Evolution. SIGMOD Record 20(4). (1991) pp. 16–20

[VKMND04] Verbert, K., Klerkx, J., Meire, M., Najjar, J., Duval, E.:
Towards a Global Component Architecture for Learning Objects: An
Ontology Based Approach. Proceeding of On the Move to Meaningful

Bibliography

 326
-D

Internet Systems: OTM 2004 Workshops, LNCS 3292, Cyprus. (2004)
pp. 713–722

[VOS03] Volz R., Oberle D., Studer R.: Views for light-weight web
ontologies. Proceedings of the ACM Symposium on Applied
Computing (SAC’03). (2003)

[VS03] Vassileva, B., Scoggins, P.: Consumer Complaint Forms: An
Assessment, Evaluation and Recommendations for Complaint
Categorization. Technical report, CCForm Project (IST-2001-34908),
5th framework. Brussels (2003)

[W02] Welty, C.: Ontology-Driven Conceptual Modeling. Invited talk at
the Fourteenth International Conference on Advanced Information
Systems Engineering (CAiSE), Toronto, Canada. (2002)

[W90] Wintraecken, J.J.V.R.: The NIAM Information Analysis Method:
Theory and Practice. Kluwer, Deventer. (1990)

[W97] Wiederhold, G.: Value-added Mediation in Large-Scale
Information Systems. DS-6. (1995) pp. 34–56

[W98] Weinstein, P.C.: Ontology-Based Metadata: Transforming the
MARC Legacy. ACM Digital Libraries. Pittsburgh, USA. (1998)

[WF99] Welty, C., Ferrucci, D.: A Formal Ontology for Re-Use of
Software Architecture Documents. Proceedings of The 1999
International Conference on Automated Software Engineering. IEEE
Computer Society Press. October (1999) pp. 259–262

[WG01] Welty, C., Guarino, N.: Support for Ontological Analysis of
Taxonomic Relationships. Journal of Data and Knowledge
Engineering. 39(1). October (2001) pp. 51–74

[WG03] Welty, C., Guarino, N.: An Overview of OntoClean. In: Staab,
S., Studer, R., (eds.): The Handbook of Ontologies. Springer Verlag.
(2003)

Bibliography

 327
-D

[WJ99] Welty, C., Jessica, J.: An Ontology for Subject. J. Data and
Knowledge Engineering. 31(2). Elsevier. (1999) pp. 155–181

[WSG+04] Wache H., Serafino L., Garcia Castro R., Groot P., Jarrar M.,
Kompatsiaris Y., Maynard D., Pan J., Roelofsen F., Spaccapietra S.,
Stamou G., Tamilin A, Zaihrayeu I.: Scalability - State of the Art.
Deliverable D2.1.1, EU-IST Network of Excellence (NoE) IST-2004-
507482 (KWEB). Luxemburg (2005)

[WSW99] Wand, Y., Storey, V., Weber, R.: An Ontological Analysis of
the relationship Construct in Conceptual Modelling. ACM
Transactions on Database Systems, Vol. 24, No. 4. (1999) pp. 494–
528

[ZD04] Ziegler, P., Dittrich, K.: User-Specific Semantic Integration of
Heterogeneous Data: The SIRUP Approach. In: M. Bouzeghoub, C.
Goble, V. Kashyap, S. Spaccapietra, (eds.): Proceeding of the
International Conference on Semantics of a Networked World. LNCS,
Springer, Paris, France. June (2004) pp. 14–44 .

[ZKK+04] Zhao G., Kingston J., Kerremans K., Coppens F., Verlinden
R., Temmerman R. & Meersman R., Engineering an Ontology of
Financial Securities Fraud. In, Meersman R., Tari Z. et al.,(eds.), On
the Move to Meaningful Internet Systems 2004: OTM 2004
Workshops, LNCS 3292, pp. 605 - 620, 2004. Springer Verlag.

Bibliography

 328
-D

