

(Dis)proving
Prove that: For all sets A, B, and C, $(A - B) U (B - C) \neq A - C$? <i>Example: All people except who are Palestinians with the set of Palestinians</i>
except who are female, are the same set as all people except who are female?
Counterexample 1: Let $A = \{1, 2, 4, 5\}$, $B = \{2, 3, 5, 6\}$, and $C = \{4, 5, 6, 7\}$. Then
$A - B = \{1, 4\}, B - C = \{2, 3\}, \text{ and } A - C = \{1, 2\}.$
Hence
$(A - B) \cup (B - C) = \{1, 4\} \cup \{2, 3\} = \{1, 2, 3, 4\},$ whereas $A - C = \{1, 2\}.$
Since $\{1, 2, 3, 4\} \neq \{1, 2\}$, we have that $(A - B) \cup (B - C) \neq A - C$.
Counterexample 2: Let $A = \emptyset$, $B = \{3\}$, and $C = \emptyset$. Then
$A - B = \emptyset$, $B - C = \{3\}$, and $A - C = \emptyset$.
Hence $(A - B) \cup (B - C) = \emptyset \cup \{3\} = \{3\}$, whereas $A - C = \emptyset$.
Since $\{3\} \neq \emptyset$, we have that $(A - B) \cup (B - C) \neq A - C$.
, <u>4</u>

