Set Theory

6.1. Basics of Set Theory

6.2 Properties of Sets and Element Argument

6.3 Algebraic Proofs

6.4 Boolean Algebras

Watch this lecture and download the slides

Course Page: http://www.jarrar.info/courses/DMath/ More Online Courses at: http://www.jarrar.info

Acknowledgement:

This lecture is based on (but not limited to) to chapter 6 in "Discrete Mathematics with Applications by Susanna S. Epp (3 ${ }^{\text {rd }}$ Edition)".

Set Theory
 6.3 Algebraic Proofs

In this lecture:

Part 1: Disapproving and Problem-Solving

Part 2: Algebraic Proofs of Sets
(Dis)proving

Prove that: For all sets A, B, and C, $\quad(\mathbf{A}-\mathbf{B}) \mathbf{U}(\mathbf{B}-\mathbf{C}) \neq \boldsymbol{A}-\boldsymbol{C}$?
Example: All people except who are Palestinians with the set of Palestinians except who are female, are the same set as all people except who are female?

Counterexample 1: Let $A=\{1,2,4,5\}, B=\{2,3,5,6\}$, and $C=\{4,5,6,7\}$. Then

$$
A-B=\{1,4\}, \quad B-C=\{2,3\}, \quad \text { and } \quad A-C=\{1,2\} .
$$

Hence
$(A-B) \cup(B-C)=\{1,4\} \cup\{2,3\}=\{1,2,3,4\}, \quad$ whereas $\quad A-C=\{1,2\}$. Since $\{1,2,3,4\} \neq\{1,2\}$, we have that $(A-B) \cup(B-C) \neq A-C$.

Counterexample 2: Let $A=\emptyset, B=\{3\}$, and $C=\emptyset$. Then
$A-B=\emptyset, \quad B-C=\{3\}, \quad$ and $\quad A-C=\emptyset$.
Hence $\quad(A-B) \cup(B-C)=\emptyset \cup\{3\}=\{3\}$, whereas $A-C=\emptyset$.
Since $\{3\} \neq \emptyset$, we have that $(A-B) \cup(B-C) \neq A-C$.

Problem-Solving Strategy

How can you discover whether a given universal statement about sets is true or false?

$$
\begin{aligned}
& \text { حاول قّليا ان تثبت الصحةة، } \\
& \text { وان احسست عدم الصحة } \\
& \text { حاول ايجاد مثال داحض، } \\
& \text { ولكن ان احسست الصحة حاول الاثبات، } \\
& \text { و هكا... }
\end{aligned}
$$

Remember the following

$$
\begin{aligned}
& \underbrace{A_{1}}_{A} \cap(\underbrace{A_{2}}_{(B \cup C)} \cup \underbrace{A_{3}}_{(A \cap \cap})=(\underbrace{A_{1}}_{B)} \cap \underbrace{A_{2}}_{(A \cap \cap}) \cup(\underbrace{A_{1}}_{C)} \cap \underbrace{A_{3}}),
\end{aligned}
$$

Algebraic Proofs
 Deriving a Set Difference Property

Construct an algebraic proof that for all sets A, B, and C ,
$(A \cup B)-C=(A-C) \cup(B-C)$.

$$
\begin{aligned}
(A \cup B)-C & =(A \cup B) \cap C^{c} & & \text { by the set difference law } \\
& =C^{c} \cap(A \cup B) & & \text { by the commutative law for } \cap \\
& =\left(C^{c} \cap A\right) \cup\left(C^{c} \cap B\right) & & \text { by the distributive law } \\
& =\left(A \cap C^{c}\right) \cup\left(B \cap C^{c}\right) & & \text { by the commutative law for } \cap \\
& =(A-C) \cup(B-C) & & \text { by the set difference law. }
\end{aligned}
$$

Algebraic Proofs

Deriving a Set Identity Using Properties of \varnothing

Construct an algebraic proof that for all sets A and B,

$$
A-(A \cap B)=A-B .
$$

$$
\begin{aligned}
A-(A \cap B) & =A \cap(A \cap B)^{c} & & \text { by the set difference law } \\
& =A \cap\left(A^{c} \cup B^{c}\right) & & \text { by De Morgan's laws } \\
& =\left(A \cap A^{c}\right) \cup\left(A \cap B^{c}\right) & & \text { by the distributive law } \\
& =\emptyset \cup\left(A \cap B^{c}\right) & & \text { by the complement law } \\
& =\left(A \cap B^{c}\right) \cup \emptyset & & \text { by the commutative law for } \cup \\
& =A \cap B^{c} & & \text { by the identity law for } \cup \\
& =A-B & & \text { by the set difference law. }
\end{aligned}
$$

