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6.1 Basics of Sets 

In this lecture:
q Part 1: Basic Concepts and Nota<ons
q Part 2: Subsets, proper subsets, and Set Equali6es 
q Part 3: Opera6ons on Sets
q Part 4: Formalizing Statements in Set Theory
q Part 5: Empty Sets
q Part 6: Par66ons of Sets
q Part 7: Power Sets & Cartesian Products 

Set Theory

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015
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Georg Cantor 
1845 – 1918 

Born in Saint Petersburg, Russia

Moved to Germany  1856

PhD: University of Berlin 1867 

Work: University of Halle

Set theory is the branch 

of mathematical logic that 

studies sets, which informally are 

collections of objects.

Initiated by Georg Cantor in 1870s

History
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Cantor suggested a set as a:
“collection into a whole M of definite and separate objects of 

our intuition or our thought”.

M = { }

Each object is called an element (or member of) of M.
Ali ∈ M                ( Ali belongs to M)
Rami ∉M            ( Rami does not belong to M)

Basic Concepts and Notations

Ali, Adam, Sara
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{Ali} ≠ Ali    different elements

{1, {1}} has two elements

The order of elements is irrelevant
{Ali, Adam, Sara} = {Adam, Sara, Ali}

A set can be an element inside another set

Notation of elements 

Basic Concepts and Notations

Redundancy is not allowed
{Ali, Adam, Adam, Sara}



11/25/18

4

7,

Defining Sets by a Property  

The set of all integers that are more than -2 and less than 5
{x ∈ Z | -2 < x <5 }

The set of all persons who born in Palestine
{x ∈ Person | BornIn(x, Palestine) }

The set of all persons who born in Palestine and love Homus
{x ∈ Person | BornIn(x, Palestine) ∧ Love(x, Homus)}

Examples: 
Property

A = {x ∈ S | P(x)}

The set of all
x is dummy 
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- The extension of a set = its elements.

- In set theory: an element itself might be a set.
- In philosophy, an instance has no instances. 

Set vs. ElementIn Set theory  à

In JAVA à

In Logic/Philosophy  à

Set Versus Element 

Class vs. Object

Concept vs. Instance 

ß Mathematical Set
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6.1 Basics of Sets 
Set Theory

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

In this lecture:
q Part 1: Basic Concepts and Notations

qPart 2: Subsets, proper subsets, and Set Equalities 
q Part 3: Operations on Sets
q Part 4: Formalizing Statements in Set Theory
q Part 5: Empty Sets
q Part 6: Partitions of Sets
q Part 7: Power Sets & Cartesian Products 
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Subsets

A B A = B

A ⊆ B    ⇔ ∀x,  if x ∈A then x∈B. 
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Subsets Versus JAVA SubClasses
Animal = {x ∈ LivingOrganism | CanMove(x)}

Human = {x ∈ Animal | HasMind(x) ∧ Utter (x)}

Woman = {x ∈ Human | GivesBirth(x)}

Woman ⊆ Human ⊆ Animal

Animal
• CanMove

Human
• Mind
• U7er

Woman
• GivesBirth

Every subclass inherits the properties of its 
super class, thus:

• Human is a living organism that can move, 
has mind and utter.

• Woman is a living organism that can move, 
has mind and utter, and able to give birth.
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✗

✗

✗

Distinction between  ∈ and ⊆

{2} ∈ {{1}, {2}}

2 ∊ {1, 2, 3} 

{2} ∈ {1, 2, 3} 

2 ⊆{1, 2, 3}  

{2} ⊆{1, 2, 3} 

{2}⊆{{1}, {2}}

Which of the following are true statements?
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Subsets Notations
Not Subset:

Person ⊃ Man,  Z ⊃ Z+,    R ⊃ Z 

Notations:

Examples:

A =  B                         A equals B
A⊂ B       B ⊃A       A is subset of B
A ⊆ B      B ⊇A       A is subset or equal of B
A  ⊄ B       B  ⊅ A      A is not a subset of B
A  ⊈ B       B  ⊉ A      A is not a subset but not equal of B
A  ⊊ B       B  ⊋A       A is a subset but not equal of B

A ⊈ B ⇔ ∃x . x ∊A and x ∉ B

14,

Proper Subsets

Examples of proper subsets:

Let A and B be sets. A is a proper subset of B if, and only if, every element 
of A is in B but there is at least one element of B that is not in A.

Definition 

Man ⊊ Person

A

B
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Venn Diagrams

340 Chapter 6 Set Theory

Venn Diagrams
If sets A and B are represented as regions in the plane, relationships between A and B
can be represented by pictures, called Venn diagrams, that were introduced by the British
mathematician John Venn in 1881. For instance, the relationship A ⊆ B can be pictured
in one of two ways, as shown in Figure 6.1.1.
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A B A = B

(a) (b)

Figure 6.1.1 A ⊆ B

The relationship A ! B can be represented in three different ways with Venn
diagrams, as shown in Figure 6.1.2.

A B

(a)

A B

(b)

A

B

(c)

Figure 6.1.2 A ̸⊆ B

If we allow the possibility that some subregions of Venn diagrams do not contain any
points, then in Figure 6.1.1 diagram (b) can be viewed as a special case of diagram (a) by
imagining that the part of B outside A does not contain any points. Similarly, diagrams
(a) and (c) of Figure 6.1.2 can be viewed as special cases of diagram (b). To obtain (a)
from (b), imagine that the region of overlap between A and B does not contain any points.
To obtain (c), imagine that the part of B that lies outside A does not contain any points.
However, in all three diagrams it would be necessary to specify that there is a point in A
that is not in B.

Example 6.1.4 Relations among Sets of Numbers

Since Z, Q, and R denote the sets of integers, rational numbers, and real numbers, respec-
tively, Z is a subset of Q because every integer is rational (any integer n can be written
in the form n

1 ), and Q is a subset of R because every rational number is real (any ratio-
nal number can be represented as a length on the number line). Z is a proper subset of
Q because there are rational numbers that are not integers (for example, 1

2 ), and Q is a
proper subset of R because there are real numbers that are not rational (for example,

√
2).

This is shown diagrammatically in Figure 6.1.3. ■

Z Q R

Figure 6.1.3
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A ⊆ B

John Venn, British 
(1834-1923)

Represented sets as diagrams in1881. 
used to teach elementary set theory,

Z: integers numbers ( ةحیحص دادعا )
Q: rational numbers ( ةیبسن دادعا )
R: real numbers ( ةقیقح دادعا )

A  ⊈ B 
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Proving and Disproving Subset Relations 
Define sets A and B as follows:

A = {m ∈ Z | m = 6r + 12 for some r ∈ Z} 
B = {n ∈ Z | n = 3s for some s ∈ Z}. 

Prove that A⊆B. 
Suppose x is a particular but arbitrarily chosen element of A. 

Therefore, x is an element of B. 

Show that x ∈ B, means show that x = 3·(integer).

x  =  6r + 12 
= 3·(2r + 4). 

Let     s  = 2r + 4.
Also, 3s = 3(2r + 4) 

= 6r + 12 
= x
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Set Equality 

Example: Define sets A and B as follows:
A = {m ∈ Z | m = 2a for some integer a}
B = {n ∈ Z | n = 2b − 2 for some integer b}

Is A = B?

Yes. To prove this, both subset relations A ⊆ B and B ⊆ A must be proved. 

Part 1, Proof That A ⊆ B:
…..

Part 2, Proof That B ⊆ A: 
…..

Given sets A and B, A equals B, written A = B, if, and only if, 
every element of A is in B and every element of B is in A. 
Symbolically:            A=B     ⇔ A⊆B and  B ⊆A.

Definition 

18,

6.1 Basics of Sets 
Set Theory

Mustafa Jarrar: Lecture Notes in Discrete Mathematics.
Birzeit University, Palestine, 2015

In this lecture:

q Part 1: Basic Concepts and Notations
q Part 2: Subsets, proper subsets, and Set Equalities

qPart 3: Set Operations (Union, Intersection, Difference, Complement)

q Part 4: Formalizing Statements in Set Theory
q Part 5: Empty Sets
q Part 6: Partitions of Sets
q Part 7: Power Sets & Cartesian Products 
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6.1 Set Theory: Definitions and the Element Method of Proof 341

Operations on Sets
Most mathematical discussions are carried on within some context. For example, in a cer-
tain situation all sets being considered might be sets of real numbers. In such a situation,
the set of real numbers would be called a universal set or a universe of discourse for the
discussion.

• Definition

Let A and B be subsets of a universal set U .

1. The union of A and B, denoted A ∪ B, is the set of all elements that are in at least
one of A or B.

2. The intersection of A and B, denoted A ∩ B, is the set of all elements that are
common to both A and B.

3. The difference of B minus A (or relative complement of A in B), denoted
B − A, is the set of all elements that are in B and not A.

4. The complement of A, denoted Ac, is the set of all elements in U that are
not in A.

Symbolically: A ∪ B = {x ∈ U | x ∈ A or x ∈ B},
A ∩ B = {x ∈ U | x ∈ A and x ∈ B},
B − A = {x ∈ U | x ∈ B and x /∈ A},

Ac = {x ∈ U | x /∈ A}.

The symbols ∈,∪, and ∩ were introduced in 1889 by the Italian mathematician
Giuseppe Peano.
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Giuseppe Peano
(1858–1932)

Venn diagram representations for union, intersection, difference, and complement are
shown in Figure 6.1.4.

U U

A B A B

Shaded region
represents B – A. 

Shaded region
represents Ac. 

U U

A B A B

Shaded region
represents A ! B. 

Shaded region
represents A " B. 

Figure 6.1.4

Example 6.1.5 Unions, Intersections, Differences, and Complements

Let the universal set be the set U = {a, b, c, d , e, f, g } and let A = {a, c, e, g } and
B = {d , e, f, g }. Find A ∪ B, A ∩ B, B − A, and Ac.

Solution A ∪ B = {a, c, d , e, f, g } A ∩ B = {e, g }
B − A = {d , f } Ac = {b, d , f } ■

Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
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4. The complement of A, denoted Ac, is the set of all elements in U that are
not in A.
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The symbols ∈,∪, and ∩ were introduced in 1889 by the Italian mathematician
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Example 6.1.5 Unions, Intersections, Differences, and Complements

Let the universal set be the set U = {a, b, c, d , e, f, g } and let A = {a, c, e, g } and
B = {d , e, f, g }. Find A ∪ B, A ∩ B, B − A, and Ac.

Solution A ∪ B = {a, c, d , e, f, g } A ∩ B = {e, g }
B − A = {d , f } Ac = {b, d , f } ■
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• Definition

Unions and Intersections of an Indexed Collection of Sets
Given sets A0, A1, A2, . . . that are subsets of a universal set U and given a nonneg-
ative integer n ,

n⋃

i=0

Ai = {x ∈ U | x ∈ Ai for at least one i = 0, 1, 2, . . . , n }

∞⋃

i=0

Ai = {x ∈ U | x ∈ Ai for at least one nonnegative integer i}

n⋂

i=0

Ai = {x ∈ U | x ∈ Ai for all i = 0, 1, 2, . . . , n }

∞⋂

i=0

Ai = {x ∈ U | x ∈ Ai for all nonnegative integers i}.

Note
n⋃

i=0
Ai is read “the

union of the A-sub-i from
i equals zero to n .”

An alternative notation for
n⋃

i=0
Ai is A0 ∪ A1 ∪ . . . ∪ An , and an alternative notation for

n⋂
i=0

Ai is A0 ∩ A1 ∩ . . . ∩ An .

Example 6.1.7 Finding Unions and Intersections of More than Two Sets

For each positive integer i , let Ai =
{

x ∈ R | − 1
i < x <

1
i

}
= Ai =

(
− 1

i ,
1
i

)
.

a. Find A1 ∪ A2 ∪ A3 and A1 ∩ A2 ∩ A3. b. Find
∞⋃

i=1
Ai and

∞⋂
i=1

Ai .

Solution

a. A1 ∪ A2 ∪ A3 = {x ∈ R | x is in at least one of the intervals (−1, 1),

or
(
− 1

2 ,
1
2

)
, or
(
− 1

3 ,
1
3

)}

= {x ∈ R | − 1 < x < 1} because all the elements in
(
− 1

2 ,
1
2

)

and
(
− 1

3 ,
1
3

)
are in (−1, 1)= (−1, 1)

A1 ∩ A2 ∩ A3 = {x ∈ R | x is in all of the intervals (−1, 1),

and
(
− 1

2 ,
1
2

)
, and
(
− 1

3 ,
1
3

)}

=
{

x ∈ R | − 1
3 < x <

1
3

}
because

(
− 1

3 ,
1
3

)
⊆
(
− 1

2 ,
1
2

)
⊆ (−1, 1)

=
(
− 1

3 ,
1
3

)

b.
∞⋃

i=1
Ai = {x ∈ R | x is in at least one of the intervals

(
− 1

i ,
1
i

)
,

where i is a positive integer}
= {x ∈ R | − 1 < x < 1} because all the elements in every interval(

− 1
i ,

1
i

)
are in (−1, 1)= (−1, 1)

∞⋂
i=1

Ai = {x ∈ R | x is in all of the intervals
(
− 1

i ,
1
i

)
, where i is a positive integer}

= {0} because the only element in every interval is 0
■
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Ai is A0 ∪ A1 ∪ . . . ∪ An , and an alternative notation for

n⋂
i=0

Ai is A0 ∩ A1 ∩ . . . ∩ An .

Example 6.1.7 Finding Unions and Intersections of More than Two Sets

For each positive integer i , let Ai =
{

x ∈ R | − 1
i < x <

1
i

}
= Ai =

(
− 1

i ,
1
i

)
.

a. Find A1 ∪ A2 ∪ A3 and A1 ∩ A2 ∩ A3. b. Find
∞⋃

i=1
Ai and

∞⋂
i=1

Ai .

Solution

a. A1 ∪ A2 ∪ A3 = {x ∈ R | x is in at least one of the intervals (−1, 1),

or
(
− 1

2 ,
1
2

)
, or
(
− 1

3 ,
1
3

)}

= {x ∈ R | − 1 < x < 1} because all the elements in
(
− 1

2 ,
1
2

)

and
(
− 1

3 ,
1
3

)
are in (−1, 1)= (−1, 1)

A1 ∩ A2 ∩ A3 = {x ∈ R | x is in all of the intervals (−1, 1),

and
(
− 1

2 ,
1
2

)
, and
(
− 1

3 ,
1
3

)}

=
{

x ∈ R | − 1
3 < x <

1
3

}
because

(
− 1

3 ,
1
3

)
⊆
(
− 1

2 ,
1
2

)
⊆ (−1, 1)

=
(
− 1

3 ,
1
3

)

b.
∞⋃

i=1
Ai = {x ∈ R | x is in at least one of the intervals

(
− 1

i ,
1
i

)
,

where i is a positive integer}
= {x ∈ R | − 1 < x < 1} because all the elements in every interval(

− 1
i ,

1
i

)
are in (−1, 1)= (−1, 1)

∞⋂
i=1

Ai = {x ∈ R | x is in all of the intervals
(
− 1

i ,
1
i

)
, where i is a positive integer}

= {0} because the only element in every interval is 0
■
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= , because (-1,1)                   are included 

= (−1,1) = {0}

Finding Unions and Intersections of 
More than Two Sets 

A1: set of all real numbers between -1 and 1
A2: set of all real numbers between  -1/2  and 1/2
A3: set of all real numbers between  - 1/3   and  1/3
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All smart students
Smart ∩ Student

Students who are not Smart
Student ∩ Smartc /  Student - Smart

There are no smart students from Palestine
Smart ∩ Student ∩ Palestinian = ∅

Formalizing Statements in Set Theory
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There are no smart students from Palestine among the winners
Smart ∩ Student  ∩ Winner ∩ Palestinian = ∅

All Palestinian Americans except Women
(Palestinian ∩ American) – Women   / Palestinian ∩ American ∩ 
womenc

All Students except Ali

Students – {Ali}

Formalizing Statements in Set Theory
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The empty set is not the same thing as nothing; rather, it is a set 
with nothing inside it and a set is always something. This issue can 
be overcome by viewing a set as a bag—an empty bag 
undoubtedly still exists.

The Empty Set

Example: the set D = {x ∈ R | 3 < x < 2}. 

While the empty set is a standard and widely accepted mathematical 
concept, it remains an ontological curiosity, whose meaning and 
usefulness are debated by philosophers and logicians.

∀A . A ∩ ∅ ⊆∅

∀A . ∅ ⊆A
∀A . A ∪ ∅ ⊆A

∀A . A × ∅ = ∅
∀A . A × ∅ ⇒A = ∅

Axioms about the empty set: 
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Man ∩ Woman  = ∅
6.1 Set Theory: Definitions and the Element Method of Proof 345

• Definition

Sets A1, A2, A3 . . . are mutually disjoint (or pairwise disjoint or nonoverlapping)
if, and only if, no two sets Ai and A j with distinct subscripts have any elements in
common. More precisely, for all i, j = 1, 2, 3 , . . .

Ai ∩ A j = ∅ whenever i ̸= j.

Example 6.1.10 Mutually Disjoint Sets

a. Let A1 = {3 , 5}, A2 = {1, 4, 6}, and A3 = {2}. Are A1, A2, and A3 mutually disjoint?

b. Let B1 = {2, 4, 6}, B2 = {3 , 7 }, and B3 = {4, 5}. Are B1, B2, and B3 mutually
disjoint?

Solution

a. Yes. A1 and A2 have no elements in common, A1 and A3 have no elements in common,
and A2 and A3 have no elements in common.

A

A2

A4A3

A1

Figure 6.1.5 A Partition
of a Set

b. No. B1 and B3 both contain 4. ■

Suppose A, A1, A2, A3 , and A4 are the sets of points represented by the regions shown
in Figure 6.1.5. Then A1, A2, A3 , and A4 are subsets of A, and A = A1 ∪ A2 ∪ A3 ∪ A4.
Suppose further that boundaries are assigned to the regions representing A2, A3 , and
A4 in such a way that these sets are mutually disjoint. Then A is called a union of
mutually disjoint subsets, and the collection of sets {A1, A2, A3 , A4} is said to be a
partition of A.

• Definition

A finite or infinite collection of nonempty sets {A1, A2, A3 . . .} is a partition of a
set A if, and only if,

1. A is the union of all the Ai

2. The sets A1, A2, A3 , . . . are mutually disjoint.

Example 6.1.11 Partitions of Sets

a. Let A = {1, 2, 3 , 4, 5, 6}, A1 = {1, 2}, A2 = {3 , 4}, and A3 = {5, 6}. Is {A1, A2, A3 }
a partition of A?

b. Let Z be the set of all integers and let

T0 = {n ∈ Z | n = 3 k, for some integer k},
T1 = {n ∈ Z | n = 3 k + 1, for some integer k}, and

T2 = {n ∈ Z | n = 3 k + 2, for some integer k}.

Is {T0 , T1, T2} a partition of Z?
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The Empty Set
We have stated that a set is defined by the elements that compose it. This being so, can
there be a set that has no elements? It turns out that it is convenient to allow such a
set. Otherwise, every time we wanted to take the intersection of two sets or to define a
set by specifying a property, we would have to check that the result had elements and
hence qualified for “sethood.” For example, if A = {1, 3} and B = {2, 4}, then A ∩ B
has no elements. Neither does {x ∈ R | x2 = − 1} because no real numbers have negative
squares.

It is somewhat unsettling to talk about a set with no elements, but it often happens in
mathematics that the definitions formulated to fit one set of circumstances are satisfied
by some extreme cases not originally anticipated. Yet changing the definitions to exclude
those cases would seriously undermine the simplicity and elegance of the theory taken as
a whole.

In Section 6.2 we will show that there is only one set with no elements. Because it is
unique, we can give it a special name. We call it the empty set (or null set) and denote it
by the symbol ∅. Thus {1, 3} ∩ {2, 4} = ∅ and {x ∈ R | x2 = − 1} = ∅.

Example 6.1.8 A Set with No Elements

Describe the set D = {x ∈ R | 3 < x < 2}.

Solution Recall that a < x < b means that a < x and x < b. So D consists of all real
numbers that are both greater than 3 and less than 2. Since there are no such numbers,
D has no elements and so D = ∅. ■

Partitions of Sets
In many applications of set theory, sets are divided up into nonoverlapping (or disjoint)
pieces. Such a division is called a partition.

• Definition

Two sets are called disjoint if, and only if, they have no elements in common.
Symbolically:

A and B are disjoint ⇔ A ∩ B = ∅.

Example 6.1.9 Disjoint Sets

Let A = {1, 3, 5} and B = {2, 4, 6}. Are A and B disjoint?

Solution Yes. By inspection A and B have no elements in common, or, in other words,
{1, 3, 5} ∩ {2, 4, 6} = ∅. ■
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Man ∩ Woman  = ∅
Person = Man ∪ Woman
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• Definition

Sets A1, A2, A3 . . . are mutually disjoint (or pairwise disjoint or nonoverlapping)
if, and only if, no two sets Ai and A j with distinct subscripts have any elements in
common. More precisely, for all i, j = 1, 2, 3 , . . .

Ai ∩ A j = ∅ whenever i ̸= j.

Example 6.1.10 Mutually Disjoint Sets

a. Let A1 = {3 , 5}, A2 = {1, 4, 6}, and A3 = {2}. Are A1, A2, and A3 mutually disjoint?

b. Let B1 = {2, 4, 6}, B2 = {3 , 7 }, and B3 = {4, 5}. Are B1, B2, and B3 mutually
disjoint?

Solution

a. Yes. A1 and A2 have no elements in common, A1 and A3 have no elements in common,
and A2 and A3 have no elements in common.

A

A2

A4A3

A1

Figure 6.1.5 A Partition
of a Set

b. No. B1 and B3 both contain 4. ■

Suppose A, A1, A2, A3 , and A4 are the sets of points represented by the regions shown
in Figure 6.1.5. Then A1, A2, A3 , and A4 are subsets of A, and A = A1 ∪ A2 ∪ A3 ∪ A4.
Suppose further that boundaries are assigned to the regions representing A2, A3 , and
A4 in such a way that these sets are mutually disjoint. Then A is called a union of
mutually disjoint subsets, and the collection of sets {A1, A2, A3 , A4} is said to be a
partition of A.

• Definition

A finite or infinite collection of nonempty sets {A1, A2, A3 . . .} is a partition of a
set A if, and only if,

1. A is the union of all the Ai

2. The sets A1, A2, A3 , . . . are mutually disjoint.

Example 6.1.11 Partitions of Sets

a. Let A = {1, 2, 3 , 4, 5, 6}, A1 = {1, 2}, A2 = {3 , 4}, and A3 = {5, 6}. Is {A1, A2, A3 }
a partition of A?

b. Let Z be the set of all integers and let

T0 = {n ∈ Z | n = 3 k, for some integer k},
T1 = {n ∈ Z | n = 3 k + 1, for some integer k}, and

T2 = {n ∈ Z | n = 3 k + 2, for some integer k}.

Is {T0 , T1, T2} a partition of Z?
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• Definition

Sets A1, A2, A3 . . . are mutually disjoint (or pairwise disjoint or nonoverlapping)
if, and only if, no two sets Ai and A j with distinct subscripts have any elements in
common. More precisely, for all i, j = 1, 2, 3 , . . .

Ai ∩ A j = ∅ whenever i ̸= j.

Example 6.1.10 Mutually Disjoint Sets

a. Let A1 = {3 , 5}, A2 = {1, 4, 6}, and A3 = {2}. Are A1, A2, and A3 mutually disjoint?

b. Let B1 = {2, 4, 6}, B2 = {3 , 7 }, and B3 = {4, 5}. Are B1, B2, and B3 mutually
disjoint?

Solution

a. Yes. A1 and A2 have no elements in common, A1 and A3 have no elements in common,
and A2 and A3 have no elements in common.

A

A2

A4A3

A1

Figure 6.1.5 A Partition
of a Set

b. No. B1 and B3 both contain 4. ■

Suppose A, A1, A2, A3 , and A4 are the sets of points represented by the regions shown
in Figure 6.1.5. Then A1, A2, A3 , and A4 are subsets of A, and A = A1 ∪ A2 ∪ A3 ∪ A4.
Suppose further that boundaries are assigned to the regions representing A2, A3 , and
A4 in such a way that these sets are mutually disjoint. Then A is called a union of
mutually disjoint subsets, and the collection of sets {A1, A2, A3 , A4} is said to be a
partition of A.

• Definition

A finite or infinite collection of nonempty sets {A1, A2, A3 . . .} is a partition of a
set A if, and only if,

1. A is the union of all the Ai

2. The sets A1, A2, A3 , . . . are mutually disjoint.

Example 6.1.11 Partitions of Sets

a. Let A = {1, 2, 3 , 4, 5, 6}, A1 = {1, 2}, A2 = {3 , 4}, and A3 = {5, 6}. Is {A1, A2, A3 }
a partition of A?

b. Let Z be the set of all integers and let

T0 = {n ∈ Z | n = 3 k, for some integer k},
T1 = {n ∈ Z | n = 3 k + 1, for some integer k}, and

T2 = {n ∈ Z | n = 3 k + 2, for some integer k}.

Is {T0 , T1, T2} a partition of Z?
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Par&&ons of Sets
 عنام عماج میسقت
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Example
Let Z be the set of all integers and let

T0 = {n ∈ Z | n = 3k,       for some integer k},
T1 = {n ∈ Z | n = 3k + 1, for some integer k}, 
T2 = {n ∈ Z | n = 3k + 2, for some integer k}.

Is {T0, T1, T2} a partition of Z?

Yes. By the quotient-remainder theorem, every integer n can be 
represented in exactly one of the three forms 

n=3k or n=3k+1 or n=3k+2

It also implies that every integer is in one of the sets T0, T1, or T2 .
So Z = T0 ∪T1 ∪T2. 
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In this lecture:

q Part 1: Basic Concepts and Notations
q Part 1: Subsets, proper subsets, and Set Equalities
q Part 3: Operations on Sets 
q Part 4: Formalizing Statements in Set Theory
q Part 5: Empty Sets
q Part 6: Partitions of Sets

q Part 7: Power Sets & Cartesian Products 
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for some integer k. This implies that no integer can be in any two of the sets To, T1, or
T2. So To, T1, and T2 are mutually disjoint. It also implies that every integer is in one
of the sets To, T 1, or T2 . So Z = To U T1 U T2. E

Power Sets
There are a variety of situations in which it is useful to consider the set of all subsets of a
particular set. The power set axiom guarantees that this is a set.

Given a set A, the power set of A, denoted 0 (A), is the set of all subsets of A.

Example 5.1.13 Power Set of a Set
Find the power set of the set {x, yl. That is, find 5Q({x, y}).

Solution Q({x, yJ) is the set of all subsets of {x, y}. Now since 0 is a subset of every set,
0 E Y({x, y)). Also any set is a subset of itself, so {x, y} E -({x, yJ). The only other
subsets of {x, y} are {x} and {y}, so

Q({x, y}) = {0, {x}, {y}, {x, YD. .

Cartesian Products
Recall that the definition of a set is unaffected by the order in which its elements are listed
or the fact that some elements may be listed more than once. Thus {a, b}, {b, a), and
{a, a, b} all represent the same set. The notation for an ordered n-tuple takes both order
and multiplicity into account.

"I .. aL
Let n be a positive integer and let XI, x2 , .. ., xn be (not necessarily distinct) elements.
The ordered n-tuple, (xi, x2, .. ., x"), consists of xi, x2,.x. .,, together with the
ordering: first xi, then x2 , and so forth up to x,. An ordered 2-tuple is called an
ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered n-tuples (xi, x2 , ... ., x,) and (Y, Y2l, . . . I y,) are equal if, and only
if, x1 = Y1 ,x2 = Y2, . Xn =n

Symbolically:

(XI, X2 , . - -* .X0 0= ' (y, =... 4Y XI : YX23- Y2 . .- Xn = Yn-

In particular,

(a, b) =(c, d) A* a;-c and b = d.

Example 5.1.14 Ordered n-tuples
a. Is (1, 2) = (2, 1)?
b. Is (3, (-2)2, I) = (I,94, ')?

346 Chapter 6 Set Theory

Solution

a. Yes. By inspection, A = A1 ∪ A2 ∪ A3 and the sets A1, A2, and A3 are mutually
disjoint.

b. Yes. By the quotient-remainder theorem, every integer n can be represented in exactly
one of the three forms

n = 3k or n = 3k + 1 or n = 3k + 2,

for some integer k. This implies that no integer can be in any two of the sets T0, T1, or
T2. So T0, T1, and T2 are mutually disjoint. It also implies that every integer is in one
of the sets T0, T1, or T2. So Z = T0 ∪ T1 ∪ T2. ■

Power Sets
There are various situations in which it is useful to consider the set of all subsets of a
particular set. The power set axiom guarantees that this is a set.

• Definition

Given a set A, the power set of A, denoted PP (A), is the set of all subsets of A.

Example 6.1.12 Power Set of a Set

Find the power set of the set {x, y}. That is, find P({x, y}).
Solution P({x, y}) is the set of all subsets of {x, y}. In Section 6.2 we will show that

∅ is a subset of every set, and so ∅ ∈P({x, y}). Also any set is a subset of itself, so
{x, y} ∈P({x, y}). The only other subsets of {x, y} are {x} and {y}, so

P({x, y}) = {∅, {x}, {y}, {x, y}}. ■

Cartesian Products
Recall that the definition of a set is unaffected by the order in which its elements are listed
or the fact that some elements may be listed more than once. Thus {a, b}, {b, a}, and
{a, a, b} all represent the same set. The notation for an ordered n-tuple is a generalization
of the notation for an ordered pair. (See Section 1.2.) It takes both order and multiplicity
into account.

• Definition

Let n be a positive integer and let x1, x2, . . . , xn be (not necessarily distinct)
elements. The ordered n-tuple, (x1, x2, . . . , xn), consists of x1, x2, . . . , xn together
with the ordering: first x1, then x2, and so forth up to xn . An ordered 2-tuple is called
an ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are equal if, and only
if, x1 = y1, x2 = y2, . . . , xn = yn .

Symbolically:

(x1, x2, . . . , xn) = (y1, y2, . . . , yn) ⇔ x1 = y1, x2 = y2, . . . , xn = yn.

In particular,

(a, b) = (c, d) ⇔ a = c and b = d.
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Find the power set of the set {x, y}. That is, find      ({x, y})

Power Sets 

= {∅, {x}, {y}, {x, y}}.
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Solution

a. Yes. By inspection, A = A1 ∪ A2 ∪ A3 and the sets A1, A2, and A3 are mutually
disjoint.

b. Yes. By the quotient-remainder theorem, every integer n can be represented in exactly
one of the three forms

n = 3k or n = 3k + 1 or n = 3k + 2,

for some integer k. This implies that no integer can be in any two of the sets T0, T1, or
T2. So T0, T1, and T2 are mutually disjoint. It also implies that every integer is in one
of the sets T0, T1, or T2. So Z = T0 ∪ T1 ∪ T2. ■

Power Sets
There are various situations in which it is useful to consider the set of all subsets of a
particular set. The power set axiom guarantees that this is a set.

• Definition

Given a set A, the power set of A, denoted PP (A), is the set of all subsets of A.

Example 6.1.12 Power Set of a Set

Find the power set of the set {x, y}. That is, find P({x, y}).
Solution P({x, y}) is the set of all subsets of {x, y}. In Section 6.2 we will show that

∅ is a subset of every set, and so ∅ ∈P({x, y}). Also any set is a subset of itself, so
{x, y} ∈P({x, y}). The only other subsets of {x, y} are {x} and {y}, so

P({x, y}) = {∅, {x}, {y}, {x, y}}. ■

Cartesian Products
Recall that the definition of a set is unaffected by the order in which its elements are listed
or the fact that some elements may be listed more than once. Thus {a, b}, {b, a}, and
{a, a, b} all represent the same set. The notation for an ordered n-tuple is a generalization
of the notation for an ordered pair. (See Section 1.2.) It takes both order and multiplicity
into account.

• Definition

Let n be a positive integer and let x1, x2, . . . , xn be (not necessarily distinct)
elements. The ordered n-tuple, (x1, x2, . . . , xn), consists of x1, x2, . . . , xn together
with the ordering: first x1, then x2, and so forth up to xn . An ordered 2-tuple is called
an ordered pair, and an ordered 3-tuple is called an ordered triple.

Two ordered n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are equal if, and only
if, x1 = y1, x2 = y2, . . . , xn = yn .

Symbolically:

(x1, x2, . . . , xn) = (y1, y2, . . . , yn) ⇔ x1 = y1, x2 = y2, . . . , xn = yn.

In particular,

(a, b) = (c, d) ⇔ a = c and b = d.
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n-tuples

Order n-tuples: 
Is (1,2) =(2,1)?

Is (3, (-2)2, 1/3) = ( 9, 4, $%)?  
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Example 6.1.13 Ordered n-tuples

a. Is (1, 2, 3, 4) = (1, 2, 4, 3)?

b. Is
(

3, (−2)2,
1
2

)
=
(√

9, 4,
3
6

)
?

Solution

a. No. By definition of equality of ordered 4-tuples,

(1, 2, 3, 4) = (1, 2, 4, 3)⇔ 1 = 1, 2 = 2, 3 = 4, and 4 = 3

But 3 ̸= 4, and so the ordered 4-tuples are not equal.

b. Yes. By definition of equality of ordered triples,
(

3, (−2)2,
1
2

)
=
(√

9, 4,
3
6

)
⇔ 3 =

√
9 and (−2)2 = 4 and 1

2 = 3
6 .

Because these equations are all true, the two ordered triples are equal. ■

• Definition

Given sets A1, A2, . . . , An, the Cartesian product of A1, A2, . . . , An denoted
A1 × A2 × . . .× An, is the set of all ordered n-tuples (a1, a2, . . . , an) where
a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An.

Symbolically:

A1 × A2 × · · ·× An = {(a1, a2, . . . , an) | a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An}.
In particular,

A1 × A2 = {(a1, a2) | a1 ∈ A1 and a2 ∈ A2}
is the Cartesian product of A1 and A2.

Example 6.1.14 Cartesian Products

Let A1 = {x, y}, A2 = {1, 2, 3}, and A3 = {a, b}.
a. Find A1 × A2. b. Find (A1 × A2)× A3. c. Find A1 × A2 × A3.

Solution

a. A1 × A2 = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}
b. The Cartesian product of A1 and A2 is a set, so it may be used as one of the sets

making up another Cartesian product. This is the case for (A1 × A2)× A3.

(A1 × A2)× A3 = {(u, v) | u ∈ A1 × A2 and v ∈ A3} by definition of Cartesian product

= {((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a),

((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b),

((y, 1), b), ((y, 2), b), ((y, 3), b)}

c. The Cartesian product A1 × A2 × A3 is superficially similar to, but is not quite the
same mathematical object as, (A1 × A2)× A3. (A1 × A2)× A3 is a set of ordered
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Cartesian Products

Example: Let A1 = {x, y}, A2 = {1,2,3}, and A3 = {a,b}.
A1 × A2 = 

= {(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)} 
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Let   A = {Ali, Ahmad},    
B = {AI, Dmath, DB}, 
C = {Pass, Fail}

Example

Find (A × B) × C = 

Find A × B × C = 


