Number Theory
and Proof Methods

Mustafa Jarrar

4.1 Introduction
4.2 Rational Numbers
4.3 Divisibility
4.4 Quotient-Remainder Theorem

Watch this lecture
and download the slides

Course Page: http://www.jarrar.info/courses/DMath/
More Online Courses at: http://www.jarrar.info

Acknowledgement:
This lecture is based on (but not limited to) chapter 4 in "Discrete Mathematics with Applications by Susanna S. Epp (3rd Edition)".
Number Theory

4.3 Divisibility

In this lecture:

- Part 1: What is Divisibility
- Part 2: Proving Properties of Divisibility
- Part 3: The Unique Factorization Theorem

Keywords: Number Theory, Prove, Disapprove, Direct Proofs, divisibility, factorization

What is Divisibility?

Definition
If \(n \) and \(d \) are integers and \(d \neq 0 \) then

\[n \text{ is divisible by } d \text{ if, and only if, } n \text{ equals } d \text{ times some integer.} \]

Instead of “\(n \) is divisible by \(d \)” we can say that

- \(n \) is a multiple of \(d \), or
- \(d \) is a factor of \(n \), or
- \(d \) is a divisor of \(n \), or
- \(d \) divides \(n \).

The notation \(d \mid n \) is read “\(d \) divides \(n \).” Symbolically, if \(n \) and \(d \) are integers and \(d \neq 0 \):

\[d \mid n \iff \exists \text{ an integer } k \text{ such that } n = dk. \]

Examples

- \(\checkmark \) Is 21 divisible by 3?
- \(\checkmark \) Does 5 divide 40?
- \(\checkmark \) Does 7 \(\mid \) 42?

- \(\checkmark \) Is 32 a multiple of \(-16\)?
- \(\checkmark \) Is 6 a factor of 54?
- \(\checkmark \) Is 7 a factor of \(-7\)?

- \(\checkmark \) If \(k \) is any integer, does \(k \) divide 0?
4.3 Divisibility

In this lecture:
- Part 1: What is Divisibility;
- Part 2: Proving Properties of Divisibility;
- Part 3: The Unique Factorization Theorem

Keywords: Number Theory, Prove, Disapprove, Direct Proofs, divisibility, factorization

Example 4.3.1 Divisibility

Solution

a. Yes, 21 = 3 · 7.
b. Yes, 40 = 5 · 8.
c. Yes, 42 = 7 · 6.
d. Yes, 32 = (−16) · (−2).
e. Yes, 54 = 6 · 9.
f. Yes, −7 = 7 · (−1).

Example 4.3.2 Divisors of Zero

If k is any nonzero integer, does k divide 0?

Solution

Yes, because 0 = k · 0.

Two useful properties of divisibility are (1) that if one positive integer divides a second positive integer, then the first is less than or equal to the second, and (2) that the only divisors of 1 are 1 and −1.

Theorem 4.3.1 A Positive Divisor of a Positive Integer

For all integers a and b, if a and b are positive and a divides b, then a ≤ b.

Proof:

\[b = a.k \]

Thus \[1 \leq k \]

And \[a.1 \leq k \cdot a \]

Multiply both sides with a.

Thus \[a \leq k \cdot a = b \]

Thus \[a \leq b \]
Divisibility of Algebraic Expressions

If a and b are integers, is $3a + 3b$ divisible by 3?

$3a + 3b = 3(a + b)$ and $a + b$ is an integer because it is a sum of two integers.

If k and m are integers, is $10km$ divisible by 5?

$10km = 5 \cdot (2km)$ and $2km$ is an integer because it is a product of three integers.

Not divisible

For all integers n and d, $d \not| n \iff \frac{n}{d}$ is not an integer.
Prime Numbers and Divisibility

An alternative way to define a prime number is to say that:

\(\text{an integer } n > 1 \text{ is prime if, and only if, its only positive integer divisors are 1 and itself.}\)

Transitivity of Divisibility

Theorem 4.3.3 Transitivity of Divisibility
For all integers \(a, b,\) and \(c,\) if \(a\) divides \(b\) and \(b\) divides \(c,\) then \(a\) divides \(c.\)

Proof:

Starting Point: Suppose \(a, b,\) and \(c\) are particular but arbitrarily chosen integers such that \(a \mid b\) and \(b \mid c.\)

We need to show: \(a \mid c.\)

since \(a \mid b,\) \(b = ar\) for some integer \(r.\)
and since \(b \mid c,\) \(c = bs\) for some integer \(s.\)
Hence, \(c = bs = (ar)s.\)
But \((ar)s = a(rs)\) by the associative law
Hence \(c = a(rs).\)
As \(rs\) is an integer, then \(a \mid c.\)
Divisibility by a Prime

Theorem 4.3.4 Divisibility by a Prime
Any integer \(n > 1 \) is divisible by a prime number.

Proof:

Study at home
Maybe quiz next lecture?!

Counterexamples and Divisibility

Checking a Proposed Divisibility Property

Is it true or false that for all integers \(a \) and \(b \), if \(a \mid b \) and \(b \mid a \) then \(a = b \)?

Counterexample: Let \(a = 2 \) and \(b = -2 \). Then \(a \mid b \) since \(2 \mid (-2) \) and \(b \mid a \) since \((-2) \mid 2 \), but \(a \neq b \) since \(2 \neq -2 \). Therefore, the proposed divisibility property is false.
Number Theory
4.3 Divisibility

In this lecture:
- Part 1: What is Divisibility;
- Part 2: Proving Properties of Divisibility
- Part 3: The Unique Factorization Theorem

Keywords: Number Theory, Prove, Disapprove, Direct Proofs, divisibility, factorization

The Unique Factorization Theorem

By a German mathematician (Carl Friedrich Gauss) in 1801.
The Unique Factorization Theorem

Any integer greater than 1 either is prime or can be written as a product of prime numbers in a way that is unique except,

\[72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 2^3 \cdot 3^2 \]

Theorem 4.3.5 Unique Factorization of Integers Theorem (Fundamental Theorem of Arithmetic)

Given any integer \(n > 1 \), there exist a positive integer \(k \), distinct prime numbers \(p_1, p_2, \ldots, p_k \), and positive integers \(e_1, e_2, \ldots, e_k \) such that

\[n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k}, \]

and any other expression for \(n \) as a product of prime numbers is identical to this except, perhaps, for the order in which the factors are written.

The Standard factored Form

Definition

Given any integer \(n > 1 \), the standard factored form of \(n \) is an expression of the form

\[n = p_1^{e_1} p_2^{e_2} p_3^{e_3} \cdots p_k^{e_k}, \]

where \(k \) is a positive integer; \(p_1, p_2, \ldots, p_k \) are prime numbers; \(e_1, e_2, \ldots, e_k \) are positive integers; and \(p_1 < p_2 < \cdots < p_k \).

Example: Write 3,300 in standard factored form.

\[
3,300 = 100 \cdot 33 \\
= 4 \cdot 25 \cdot 3 \cdot 11 \\
= 2 \cdot 2 \cdot 5 \cdot 5 \cdot 3 \cdot 11 \\
= 2^2 \cdot 3^1 \cdot 5^2 \cdot 11^1.
\]
Using Unique Factorization to Solve a Problem

Suppose \(m \) is an integer such that
\[
8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot m = 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13 \cdot 12 \cdot 11 \cdot 10
\]

Does \(17 \mid m \)?

Solution:

Since 17 a prime in the left, it should be also in the right side.
Since we cannot produce 17 from \((8,7,6,5,4,3\text{ or }2)\) it should be a prime factor of \(m \).