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Reading

This lecture is based on chapter 8 + other material.

Some slides are borrowed Enrico Franconi
http://www.inf.unibz.it/~franconi/dl/course/

(But notice that | introduced some maodifications.)
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Motivation

We can already do a lot with propositional logic.

But it is unpleasant that we cannot access the structure of atomic
sentences.

Atomic formulas of propositional logic are foo atomic . they are just
Statement.

which my be true or false but which have no internal structure.

In First Order Logic (FOL) the atomic formulas are interpreted as
Statements about relationships between objects.
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Predicates and Constants

Y Let's consider the statements:
 Mary is female
e John is male

 Mary and John are siblings

In propositional logic the above statements are atomic propositions:
« Mary-is-female
e John-is-male
* Mary-and-John-are-siblings

In FOL atomic statements use predicates, with constants as argument:
 Female(mary)

« Male(john)
« Siblings(mary, john)
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Variables and Quantifiers

I:"
" Let's consider the statements:

 Everybody is male or female
« A male is not a female

In FOL predicates may have variables as arguments, whose value is
bounded by quantifiers:

« VX. Male(x) v Female(x)
¢ Vx. Male(x) > —Female(x)

Deduction (why?):

* Mary is not male
« — Male(Mary)
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Functions

r>

Let's consider the statement:
* The father of a person is male

In FOL objects of the domain may be denoted by functions applied to
(other) objects:

* VX. Male(father(x))
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Syntax of FOL: atomic sentences

r>

~ Countably infinite supply of symbols (signature):
iIndividual constants: a, b, c,...
variable symbols: x, y, z, ...
n-are predicate symbols: P, O, R, ...
n-ary function symboils: f, g, 4,...

Terms: t —x variable
| a constant
| f(t4,...,t,) function application

Ground terms: terms that do not contain variables
Formulas: ¢ — P(#4,...,t;) atomic formulas

E.g., Brother(KingJohn; RichardTheLionheart)

>(length(leftLegOf(Richard)), length(leftLegOf(KingJohn)))
Jarrar © 2013
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T

Syntax of Propositional Logic

Formulas: ¢, v > P(t4,...,t,) Atomic Formulas

1l False

T True

— ¢ Negation
ONA Y Conjunction
AV Disjunction
O— v Implication
O v Equivalence

(Ground) atoms and (ground) literals.

E.g. Sibling(kingJohn, Richard) — Sibling(Richard, KingJohn)
>(1,2) v £(1, 2)
>(1,2) A—>(1, 2)
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Syntax of First Order Logic

Formulas: ¢, v > P(t4,...,t,) Atomic Formulas

1l False
T True
— ¢ Negation
ONA Y Conjunction
AV /4 Disjunction
O— v Implication
P> v Equivalence
Vx.¢ Universal quantification
dx.¢ Existential quantification
E.g. Everyone in ltaly is smart: vX. In(x, ltaly) — Smart(x)

Someone in France is smart:  3x. In(x, France) A Smart(x)
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A

Summary of Syntax of FOL

Terms
— Variables
— Constants
—  Functions

Literals

— Atomic Formula
Relation (Predicate)

— Negation

Well formed formulas
— Truth-functional connectives
— Existential and universal quantifiers
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First Order Logic
* Motivation (why FOL)
e Syntax

» Semantics ( =how to interpret FOL statements)
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What is a domain A

’ A = Set of objects, relations, and functions

Objects

.
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Example: Tarski’s World

Domain A

b

How do you interpret these statements?

Vx Circle(x) — Above(x, f)
dx Square(x) A Black(x, f)

Vx (Circle(x) —» dx (Square(y) A SameColor(x, y)))
dx (Square(x) A Vy (Triangle(y) — RightOf(x, y)))

A = objects + relations + functions

Jarrar © 2013
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Motivation Example: Tarski’s World

, Domain A
| @

b

i

Conceptualization of Domain A

Block ={a,b,c,d,e,f,g,h,ij}
Circle = {a,b,c}
Square = {e,h,g,j}

Triangle = {d,f,i}
Blue = {a,c,}
Black = {e,d}

SameColor = {<a,c>, <a,j>, <c,j>, <b,f>,

<b,g>,<b,h><b,1> <f,g><f h>,

<f,i>, <g,h>, <e,d>}
RightOf = {<a,b><a,c>,...,<},i>}
LiftOf = {<b,a>,<c,a>,...,<l,j>}

Above = {<a,b><a,c><a,d><b,e><b,>...}

How do you interpret these statements?

Vx Circle(x) — Above(x, f) v
dx Square(x) A Black(x, f) v

Vx (Circle(x) —» dx (Square(y) A SameColor(x, y))) Vv
Jx (Square(x) A Vy (Triangle(y) — RightOf(x, y))) v/

Jarrar © 2013
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Semantics of FOL: Intuition

" 4

"« Just like in propositional logic, a (complex) FOL formula may be true (or
false) with respect to a given interpretation.

* An interpretation specifies referents for
constant symbols — objects
predicate symbols — relations
function symbols — functional relations

« An atomic sentence P(t4,..., t,) is true in a given interpretation
iff the objects referred to by t,4,..., t,
are in the relation referred to by the predicate P.

* An interpretation in which a formula is true is called a model for the
formula.
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Semantic of FOL statements
( First-Order Interpretations)

AT

Interpretation: 7 = (A, ./) where A is an arbitrary non-empty set and Lis
a function that maps:

 Individual constants to elements of A :

al € A

* n-ary predicate symbols to relation over A :
P! - A"

* n-ary function symbols to functions over A :
fle [A"—>A]
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Semantic of FOL: Satisfaction

4
Interpretation of ground terms:

(f(tr.t) = fI{th,...th,) (e A)

SameColor(a,j)! = SameColor’/ (a/,j') € A

Satisfaction of ground atoms P(t1,...,tn):
I F Py,... iff (tlq...t/ )e P!

[ F SameColor(a,j) iff <alj’> < SameColor’

Jarrar © 2013
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Interpretation Example: Tarski’s World

Conceptualization of Domain A

Domain A
° Block = {a,b,c,d,e,f,g,h,ij}
SCircle = a,R,c}_}
quare = {e,h,g,]
b ° A Triangle = {d,f,i}
Blue = {a,c,}}

- f 2 Black = {e,d}

SameColor = '{'<a,c>, <a,j>, <c,j>, <b,f>,

<b,g>,<b,h><b,1> <f,g><f h>,
<f,i>, <g,h>, <e,d>,}

RightOf = {<a,b><a,c>,...,<},i>}
; Lift0f=E<b,a>,<c,a>,...,<|,j>}
- Above = {<a,b><a,c><a,d><b,e><b,>...}

Circle(a)
Circle(h)
SameColor(g, h)
# Abov(e, b)

| I N

NN NN
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Interpretation (Example)

a
b d
C e

Block! = {<a>,<b>,<c>,<d>,<e>}
Above’ = {<a,b>,<b,c>,<d,e>}
Clear! = {<a>,<d>}

Table! = {<c><e>}

I |= Block(a) I |# Above(b,e)
[ | Block(f) [ |= Above(b,c)

Jarrar © 2013
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Semantics of FOL: Variable Assignments

AT
J set of all variables. Function a.: V' — A.

Notation: o[x/d] means assign d to x

Interpretation of terms c °

xhe = oyx)
a[,a = a[

(f(t]’"’tn))]’a . fl(t11,0t,___,l‘nl,d)

Above(ab) ! = Above ! (bl clo

Satisfiability of atomic formulas:

Lo F Pty,...t) iff (Gl 6l e P
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a = {x—=d) )
I, o |= Red(x)
I, a[yld]] E Block(y)
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Semantics of FOL: Satisfiability of formulas

AT

A formula ¢ is satisfied by (is true in) an interpretation 7 under a variable
assignment a.

l,a |= Q-
1,a
Lo
Lo
I,
Lo
Lo

P(ty,... t.)
—¢

dN Yy
A
Vx. ¢
dx. ¢

e by e PL

Lo |# ¢

Lo F gandla Fy

La Fgorla Fy

foralld e A: I, afx/d] |= 0,

there exitsad e A: I, a[x/d] F ¢
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Satisfiability and Validity

An interpretation / is a model of ¢ under q, if

I, o |= 0,
Similarly as in propositional logic, a formula ¢ can be satisfiable,
unsatisfiable, falsifiable or valid -the definition is in terms of the pair (/,a.).

A formula ¢is
Satisfiable, if there is some (/, o) that satisfies ¢,
Unsatisfiable, if ¢ is not satisfiable,
Falsifiable, if there is some (/, o) that does not satisfy ¢,
Valid (i.e., a Tautology), if every (/, o) is a model of ¢.
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usly, two formulas are logically equivalent (¢ = v), if
Il ; @ we have:

I,oc|=¢ Iff I,oc|=w

Jarrar © 2013 2T



Entailment

Entailment is defined similarly as in propositional logic.

The formula ¢ is logically implied by a formula v, if ¢is true in all models of v

(symbolically, v F ¢):

v ¢ iff I | for all models 7 of
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Properties of quantifiers

(Vx .Vy. ¢) is the same as (Vy .Vx. @)

(3x . Jy. @) is the same as (Fy . Ix. @)

(3 x .Vy. ¢) is not the same as (Vy . dx. @)

dx .Vy. Loves(x,y)  “There is a person who loves everyone in the world”
Vy. dx. Loves(x,y)  “Everyone in the world is loved by at least one person”
Quantifier duality: each can be expressed using the other

Vx. Likes(x,Falafel) —dx.—Likes(x,Falafel)

dx.Likes(x,Salad) —Vx —Likes(x,Salad)
Jarrar © 2013 29



(Vo.9) A1 V. (¢ A1)

(Vz.9) VY = Vz.(oVY)
@r.é)AY = Fr.(bAV)
(Fz.0) VY = Fx. (V)
Ve.o AVz.v = Va. (o AY)
Jx.¢oVIz.yy = 3z. (0 V)
Vz.¢ = dr.—o
—dzr.¢0 = Va.—0o

& propositional equivalences

Jarrar © 2013
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Knowledge Engineering in FOL

|[dentify the task

Assemble the relevant knowledge

Decide on a vocabulary of predicates, functions, and constants
Encode general knowledge about the domain

Encode a description of the specific problem instance

Pose queries to the inference procedure and get answers

Debug the knowledge base

Jarrar © 2013
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A simple genealogy KB (Another Example)

« Build a small genealogy knowledge base by FOL that
— contains facts of immediate family relations (spouses, parents, etc.)
— contains definitions of more complex relations (ancestors, relatives)
— Is able to answer queries about relationships between people

* Predicates:
— parent(x, y), child (x, y), father(x, y), daughter(x, y), etc.
— spouse(X, y), husband(x, y), wife(x,y)
— ancestor(x, y), descendent(x, y)
— relative(x, y)

 Facts:
— husband(Joe, Mary), son(Fred, Joe)
— spouse(John, Nancy), male(John), son(Mark, Nancy)
— father(Jack, Nancy), daughter(Linda, Jack)
— daughter(Liz, Linda)
— etc.
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X

A simple genealogy KB (Another Example)

"+ Rules for genealogical relations

(Vx,y) parent(x, y) <=> child (y, x)
Vvx,y) father(x, y) <=> parent(x, y) » male(x) (similarly for mother(x, y))
VX,y) daughter(x, y) <=> child(x, y) * female(x) (similarly for son(x, y))
VX,y) husband(x, y) <=> spouse(X, y) * male(x) (similarly for wife(x, y))
VX,y) spouse(X, y) <=> spouse(y, X) (spouse relation is symmetric)
VX,y) parent(x, y) => ancestor(x, y)
VvXx,y)(3z) parent(x, z) * ancestor(z, y) => ancestor(x, y)
VvXx,y) descendent(x, y) <=> ancestor(y, x)
VvXx,y)(3z) ancestor(z, x) * ancestor(z, y) => relative(x, y)

(related by common ancestry)
(VX,y) spouse(x, y) => relative(x, y) (related by marriage)
(Vx,y)(3z) relative(z, x) » relative(z, y) => relative(x, y) (transitive)
(Vx,y) relative(x, y) => relative(y, x) (symmetric)

(
(
(
(
(
(
(
(

* Queries
— ancestor(Jack, Fred) /* the answer is yes */

relative(Liz, Joe) [* the answer is yes */
relative(Nancy, Mathews)
/* no answer in general, no if under closed world assumption */
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The electronic circuits domain

X

1. Identify the task

— Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

— Composed of wires and gates; Types of gates (AND, OR, XOR,
NOT)

— lIrrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary
— Alternatives:
Type(X,) = XOR
Type(X,, XOR)
XOR(X,)

Jarrar © 2013
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The electronic circuits domain

4. Encode general knowledge of the domain

5)
5. Vi4,t, Connected(ty, t,) = Signal(ty) = Signal(t,)
— Vvt Signal(t) = 1 v Signal(t) = 0
- 1#0
- Vi,t, Connected(ty, t,) = Connected(t,, t)
— Vg Type(g) = OR = Signal(Out(1,9)) = 1 < 3In Signal(In(n,g)) =
— Vg Type(g) = AND = Signal(Out(1,9)) = 0 < 3In Signal(In(n,g))
— Vg Type(g) = XOR = Signal(Out(1,g9)) = 1 < Signal(In(1,9)) #
Signal(In(2,9))
— Vg Type(g) = NOT = Signal(Out(1,g9)) # Signal(In(1,9))

1
=0

Jarrar © 2013 36



The electronic circuits domain

e

5. Encode the specific problem instance
Type(X;) = XOR
Type(A,) = AND
Type(O4) = OR

Connected
Connected
Connected
Connected
Connected
Connected

AN TN N N N N

Out(1,X,),
Out(1,X,),
Out(1,A,),
Out(1 ,A1),
Out(1 ,X2 .
Out(1,0,),

250 3

|
|
In
In
O
O

Type(X,) = XOR
Type(A,) = AND

X2))
Az))
,01))
),

(1
(2
(1
(2,04)

ut(1.C.))

ut(2,C,))

Connected(In(1,C1),l
Connected(In(1,C,),l
Connected(In(2,C+),In
Connected(In(2,C1),l
Connected(In(3,C1),l
Connected(In(3,C1),l

Jarrar © 2013
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/.

The electronic circuits domain

Pose queries to the inference procedure

What are the possible sets of values of all the terminals for the
adder circuit?

diy,lp,i3,04,0, Signal(In(1,C_1)) =iy A Signal(In(2,C,)) =i, A Signal(In(3,C4)) = i3 A

Signal(Out(1,C,)) = 04 A Signal(Out(2,C,)) = 0,

Debug the knowledge base
May have omitted assertions like 1 # 0
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