Artificial Intelligence

Chapter 8 (\& extra Material)

First Order Logic Syntax and Semantics

Dr. Mustafa Jarrar

Sina Institute, University of Birzeit
mjarrar@birzeit.edu
www.jarrar.info
(c) (i)(-)

Watch this lecture and download the slides from
http://jarrar-courses.blogspot.com/2011/11/artificial-intelligence-fall-2011.html

Reading

This lecture is based on chapter $8+$ other material.

Some slides are borrowed Enrico Franconi
http://www.inf.unibz.it/~franconi/dl/course/
(But notice that I introduced some modifications.)

Outline

First Order Logic

Motivation (why FOL)

- Syntax
- Semantics

Lecture Keywords:

Logic, First Order Logic, FOL, Entailment, Interpretation, Semantics, Formal Semantics, First Order Interpretation, Logical Implication, satisfiable, Unsatisfiable, Falsifiable, Valid, Tautology

```
المنطق، المنطق الشكلي، المنطق الصوري، المنطث أولي الارجة، الثفسبر
    المنطقي، التفسير الشكلي، تّفسير الجمل المنطقية، تـحليل القضايـا، ،صحة الجمل
    المنطقية، الحدود، التناقض،
```


Motivation

- We can already do a lot with propositional logic.
- But it is unpleasant that we cannot access the structure of atomic sentences.
- Atomic formulas of propositional logic are too atomic . they are just statement.
- which my be true or false but which have no internal structure.
- In First Order Logic (FOL) the atomic formulas are interpreted as statements about relationships between objects.

Predicates and Constants

Let's consider the statements:

- Mary is female
- John is male
- Mary and John are siblings

In propositional logic the above statements are atomic propositions:

- Mary-is-female
- John-is-male
- Mary-and-John-are-siblings

In FOL atomic statements use predicates, with constants as argument:

- Female(mary)
- Male(john)
- Siblings(mary, john)

Variables and Quantifiers

Let's consider the statements:

- Everybody is male or female
- A male is not a female

In FOL predicates may have variables as arguments, whose value is bounded by quantifiers:

- $\quad \forall x$. Male $(x) \vee$ Female (x)
- $\quad \forall x$. Male $(x) \rightarrow \neg$ Female (x)

Deduction (why?):

- Mary is not male
- \neg Male(Mary)

Functions

Let's consider the statement:

- The father of a person is male

In FOL objects of the domain may be denoted by functions applied to (other) objects:

- $\forall x$. Male(father(x))

Outline

First Order Logic

- Motivation (why FOL)

Syntax

- Semantics

Syntax of FOL: atomic sentences

Countably infinite supply of symbols (signature): individual constants: a, b, c, \ldots
variable symbols: x, y, z, \ldots
n-are predicate symbols: P, Q, R, \ldots n-ary function symbols: f, g, h, \ldots

Terms: $t \rightarrow x \quad$ variable

$$
\begin{array}{ll}
\mid a & \text { constant } \\
\mid f\left(t_{1}, \ldots, t_{\mathrm{n}}\right) & \text { function application }
\end{array}
$$

Ground terms: terms that do not contain variables
Formulas: $\phi \rightarrow P\left(t_{1}, \ldots, t_{n}\right)$ atomic formulas
E.g., Brother(KingJohn; RichardTheLionheart) $>(l e n g t h(l e f t L e g O f($ Richard $))$, length(leftLegOf(KingJohn)))

Syntax of Propositional Logic

Formulas: $\phi, \psi \rightarrow P\left(t_{1}, \ldots, t_{n}\right) \quad$ Atomic Formulas

\perp	False
T	True
$\neg \phi$	Negation
$\phi \wedge \psi$	Conjunction
$\phi \vee \psi$	Disjunction
$\phi \rightarrow \psi$	Implication
$\phi \leftrightarrow \psi$	Equivalence

E.g. Sibling(kingJohn, Richard) \rightarrow Sibling(Richard, KingJohn)

$$
\begin{aligned}
>(1,2) & \vee \leq(1,2) \\
>(1,2) & \wedge \neg(1,2)
\end{aligned}
$$

Syntax of First Order Logic

Formulas: $\phi, \psi \rightarrow P\left(t_{1}, \ldots, t_{n}\right)$
\perp T $\neg \phi$
$\phi \wedge \psi$
$\phi \vee \psi$
$\phi \rightarrow \psi$
$\phi \leftrightarrow \psi$
$\forall x . \phi$
$\exists x . \phi$

Atomic Formulas
False
True
Negation
Conjunction
Disjunction
Implication
Equivalence
Universal quantification
Existential quantification
E.g. Everyone in Italy is smart: $\quad \forall x . \operatorname{In}(x, \operatorname{Italy}) \rightarrow \operatorname{Smart}(\mathrm{x})$ Someone in France is smart: $\exists x$. $\operatorname{In}(x$, France $) \wedge$ Smart(x)

Summary of Syntax of FOL

Terms

- Variables
- Constants
- Functions

Literals

- Atomic Formula
- Relation (Predicate)
- Negation

Well formed formulas

- Truth-functional connectives
- Existential and universal quantifiers

Outline

- First Order Logic
- Motivation (why FOL)
- Syntax

Semantics (=how to interpret FOL statements)

What is a domain Δ

$\Delta=$ Set of objects, relations, and functions

Objects

Relations

Functional relations

$$
\left\{\langle\nmid x, \backslash\rangle,\left\langle\frac{y}{x}, \downarrow\right\rangle, \ldots\right\}
$$

Example: Tarski's World

Domain Δ

$$
\Delta=\text { objects + relations + functions }
$$

How do you interpret these statements?

```
    \forallx Circle(x) -> Above(x,f)
    \existsx Square ( }x\mathrm{ ) ^ Black ( }x,f\mathrm{ )
    \forallx(\operatorname{Circle}(x)->\existsx(Square}(y)\wedge\operatorname{SameColor}(x,y))
    \existsx(Square (x)^\forally (Triangle (y) }->\mathrm{ RightOf (x,y)))
```


Motivation Example: Tarski's World

Domain Δ

		a		
b	c		\mathbb{A}	
\cdot		f		s
	h	\cdot		
			i	\cdots

Conceptualization of Domain Δ

```
            Block \(=\{a, b, c, d, e, f, g, h, i, j\}\)
    Circle \(=\{a, b, c\}\)
    Square \(=\{\mathrm{e}, \mathrm{h}, \mathrm{g}, \mathrm{j}\}\)
Triangle \(=\{\mathrm{d}, \mathrm{f}, \mathrm{i}\}\)
    Blue \(=\{a, c, j\}\)
    Black \(=\{e, d\}\)
SameColor \(=\{<a, c\rangle,<a, j\rangle,<c, j\rangle,<b, f\rangle\),
                        \(<b, g>,<b, h>,<b, i>,<f, g><f, h>\),
                        \(<f, i>,<g, h>,<e, d>\),
RightOf \(=\{<a, b>,<a, c>, \ldots,<j, i>\}\)
    LiftOf \(=\{<b, a>,<c, a>, \ldots,<l, j>\}\)
    Above \(=\{<a, b>,<a, c>,<a, d>,<b, e>,<b, j>\ldots\}\)
```

How do you interpret these statements?

```
| Circle (x) }->\mathrm{ Above (x,f)
\existsx Square(x) ^ Black (x,f)
```



```
\exists x ( \operatorname { S q u a r e } ( x ) \wedge \forall y ( T r i a n g l e ( y ) \rightarrow \operatorname { R i g h t O f } ( x , y ) ) ) \
```


Semantics of FOL: Intuition

- Just like in propositional logic, a (complex) FOL formula may be true (or false) with respect to a given interpretation.
- An interpretation specifies referents for constant symbols \rightarrow objects predicate symbols \rightarrow relations function symbols \rightarrow functional relations
- An atomic sentence $P\left(t_{1}, \ldots, t_{\mathrm{n}}\right)$ is true in a given interpretation iff the objects referred to by $t_{1}, \ldots, t_{\mathrm{n}}$ are in the relation referred to by the predicate P.
- An interpretation in which a formula is true is called a model for the formula.

Semantic of FOL statements (First-Order Interpretations)

Interpretation: $I=\left\langle\Delta, .^{I}\right\rangle$ where Δ is an arbitrary non-empty set and.I is a function that maps:

- Individual constants to elements of Δ :

$$
a^{I} \in \Delta
$$

- n-ary predicate symbols to relation over Δ :

$$
P^{I} \subseteq \Delta^{n}
$$

- n-ary function symbols to functions over Δ :
$f^{I} \in\left[\Delta^{n} \rightarrow \Delta\right]$

Semantic of FOL: Satisfaction

Interpretation of ground terms:

$$
\begin{gathered}
\left(f\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)\right)^{I}=f^{I}\left(\mathrm{t}^{I}{ }_{1}, \ldots, \mathrm{t}^{I}{ }_{\mathrm{n}}\right)(\in \Delta) \\
\text { SameColor }\left(\mathrm{a}, \mathrm{j}^{I}=\text { SameColor }{ }^{\prime}\left(\mathrm{a}^{\prime}, \mathrm{j}^{\prime}\right) \in \Delta\right.
\end{gathered}
$$

Satisfaction of ground atoms $P\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right)$:

$$
\begin{gathered}
I \neq P\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right) \quad \text { iff } \quad\left\langle\mathrm{t}^{I}{ }_{1}, \ldots, \mathrm{t}^{I}{ }_{\mathrm{n}}\right\rangle \in P^{I} \\
I \neq \text { SameColor(a,j) iff }\left\langle\mathrm{a}^{\prime}, \mathrm{j}^{\prime}\right\rangle \in \text { SameColor }{ }^{\prime}
\end{gathered}
$$

Interpretation Example: Tarski's World

Domain Δ

I |= $\operatorname{Circle}(a)$
I $\mid \neq \operatorname{Circle}(h)$
I |= SameColor (g, h)
I $\mid=\operatorname{Abov}(e, b)$

Conceptualization of Domain Δ

```
```

 Block \(=\{a, b, c, d, e, f, g, h, i, j\}\)
    ```
```

 Block \(=\{a, b, c, d, e, f, g, h, i, j\}\)
 Circle \(=\{a, b, c\}\)
 Circle \(=\{a, b, c\}\)
 Square \(=\{e, h, g, j\}\)
 Square \(=\{e, h, g, j\}\)
 Triangle $=\{\mathrm{d}, \mathrm{f}, \mathrm{i}\}$
Triangle $=\{\mathrm{d}, \mathrm{f}, \mathrm{i}\}$
Blue $=\{a, c, j\}$
Blue $=\{a, c, j\}$
Black $=\{\mathrm{e}, \mathrm{d}\}$
Black $=\{\mathrm{e}, \mathrm{d}\}$
SameColor $=\{<a, c>,<a, j>,<c, j\rangle,<b, f\rangle$,
SameColor $=\{<a, c>,<a, j>,<c, j\rangle,<b, f\rangle$,
$<b, g>,<b, h>,<b, i>,<f, g><f, h>$,
$<b, g>,<b, h>,<b, i>,<f, g><f, h>$,
<f,i>, <g,h>, <e,d>,\}
<f,i>, <g,h>, <e,d>,\}
$\begin{aligned} \text { RightOf } & =\{<a, b>,<a, c>, \ldots,<j, i>\} \\ \text { LiftOf } & =\{<b, a>,<c, a>, \ldots,<l, j>\}\end{aligned}$
$\begin{aligned} \text { RightOf } & =\{<a, b>,<a, c>, \ldots,<j, i>\} \\ \text { LiftOf } & =\{<b, a>,<c, a>, \ldots,<l, j>\}\end{aligned}$
RightOf $=\{<a, b>,<a, c>, \ldots,<j, i>\}$
LiftOf $=\{<b, a>,<c, a>, \ldots,<l, j>\}$
RightOf $=\{<a, b>,<a, c>, \ldots,<j, i>\}$
LiftOf $=\{<b, a>,<c, a>, \ldots,<l, j>\}$
Above $=\{<a, b>,<a, c>,<a, d>,<b, e>,<b, j>\ldots\}$

```
```

 Above \(=\{<a, b>,<a, c>,<a, d>,<b, e>,<b, j>\ldots\}\)
    ```
```


Interpretation (Example)

$$
\begin{aligned}
& \text { Block } \left.\left.\left.\left.^{I}=\{\langle\mathrm{a}\rangle,<\mathrm{b}\rangle,<\mathrm{c}\right\rangle,<\mathrm{d}\right\rangle,<\mathrm{e}\right\rangle\right\} \\
& \text { Above } \left.\left.^{I}=\{<\mathrm{a}, \mathrm{~b}\rangle,<\mathrm{b}, \mathrm{c}\right\rangle,\langle\mathrm{~d}, \mathrm{e}\rangle\right\} \\
& \text { Clear } \left.^{I}=\{\langle\mathrm{a}\rangle,<\mathrm{d}\rangle\right\} \\
& \text { Table } \left.\left.^{I}=\{<\mathrm{c}\rangle,<\mathrm{e}\right\rangle\right\}
\end{aligned}
$$

```
I |= Block(a)
I |= Block(f)
I|= Above(b,e)
I |= Above(b,c)
```


Semantics of FOL: Variable Assignments

V set of all variables. Function $\alpha: V \rightarrow \Delta$.
Notation: $\alpha[x / d]$ means assign d to x

Interpretation of terms

$$
\begin{aligned}
x^{I, \alpha} & =\alpha(x) \\
a^{I, \alpha} & =a^{I} \\
\left(f\left(t_{l}, . ., t_{n}\right)\right)^{I, \alpha} & =f^{I}\left(t_{1}^{I, \alpha}, \ldots, t_{\mathrm{n}}^{I, \alpha}\right)
\end{aligned}
$$

$$
\operatorname{Above}(\mathrm{a}, \mathrm{~b})^{I, \alpha}=\operatorname{Above}^{I}\left(b^{I, \alpha}, \mathrm{c}^{I, \alpha}\right.
$$

Satisfiability of atomic formulas:

$$
I, \alpha \neq P\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{n}\right) \quad \text { iff } \quad\left\langle\mathrm{t}_{1}^{I, \alpha}, \ldots, t_{n}^{I}, \alpha\right\rangle \in P^{I}
$$

Variable Assignment example

$$
\begin{aligned}
\alpha & =\left\{\left(x \rightarrow d_{1}\right),\left(y \rightarrow d_{2}\right)\right\} \\
I, \alpha & =\operatorname{Red}(x) \\
I, \alpha\left[y / d_{1}\right] & =\operatorname{Block}(y)
\end{aligned}
$$

Semantics of FOL: Satisfiability of formulas

A formula ϕ is satisfied by (is true in) an interpretation I under a variable assignment α.
$I, \alpha \neq \phi:$

$$
\left.\left.\begin{array}{rlrl}
I, \alpha & =P\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}\right) & \text { iff } &
\end{array} t_{1}^{I, \alpha}, \ldots, t_{\mathrm{n}}^{I, \alpha}\right\rangle \in P^{I}\right)
$$

Satisfiability and Validity

An interpretation I is a model of ϕ under α, if

$$
I, \alpha \neq \phi
$$

Similarly as in propositional logic, a formula ϕ can be satisfiable, unsatisfiable, falsifiable or valid -the definition is in terms of the pair (I, α).

A formula ϕ is
Satisfiable, if there is some (I, α) that satisfies ϕ,
Unsatisfiable, if ϕ is not satisfiable,
Falsifiable, if there is some (I, α) that does not satisfy ϕ,
Valid (i.e., a Tautology), if every (I, α) is a model of ϕ.

Equivalence

Analogously, two formulas are logically equivalent $(\phi \equiv \psi)$, if for all $I ; \alpha$ we have:

$$
I, \alpha \neq \phi \quad \text { iff } \quad I, \alpha \equiv \psi
$$

Entailment

Entailment is defined similarly as in propositional logic.
The formula ϕ is logically implied by a formula ψ, if ϕ is true in all models of ψ (symbolically, $\psi \vDash \phi$):
$\psi \vDash \phi$ iff I = for all models I of ψ

Properties of quantifiers

$(\forall x . \forall y . \phi)$ is the same as $(\forall y . \forall x . \phi)$
$(\exists x . \exists y . \phi)$ is the same as $(\exists y \cdot \exists x . \phi)$
$(\exists x . \forall y . \phi)$ is not the same as $(\forall y . \exists x . \phi)$
$\exists x . \forall y . \operatorname{Loves}(x, y) \quad$ "There is a person who loves everyone in the world"
$\forall y . \exists x . \operatorname{Loves}(x, y) \quad$ "Everyone in the world is loved by at least one person"

Quantifier duality: each can be expressed using the other

$$
\begin{array}{ll}
\forall x . \operatorname{Likes}(x, \text { Falafel }) & \neg \exists x . \neg \operatorname{Likes}(x, \text { Falafe }) \\
\exists x . \operatorname{Likes}(x, \text { Salad }) & \neg \forall x \neg \operatorname{Likes}(x, \text { Salad })
\end{array}
$$

Equivalences

$$
\begin{aligned}
(\forall x \cdot \phi) \wedge \psi & \equiv \forall x \cdot(\phi \wedge \psi) \\
(\forall x \cdot \phi) \vee \psi & \equiv \forall x \cdot(\phi \vee \psi) \\
(\exists x \cdot \phi) \wedge \psi & \equiv \exists x \cdot(\phi \wedge \psi) \\
(\exists x \cdot \phi) \vee \psi & \equiv \exists x \cdot(\phi \vee \psi) \\
\forall x \cdot \phi \wedge \forall x \cdot \psi & \equiv \forall x \cdot(\phi \wedge \psi) \\
\exists x . \phi \vee \exists x \cdot \psi & \equiv \exists x \cdot(\phi \vee \psi) \\
\neg \forall x \cdot \phi & \equiv \exists x \cdot \neg \phi \\
\neg \exists x \cdot \phi & \equiv \forall x \cdot \neg \phi \\
\& & \text { propositional equivalences }
\end{aligned}
$$

Knowledge Engineering in FOL

1. Identify the task
2. Assemble the relevant knowledge
3. Decide on a vocabulary of predicates, functions, and constants
4. Encode general knowledge about the domain
5. Encode a description of the specific problem instance
6. Pose queries to the inference procedure and get answers
7. Debug the knowledge base

A simple genealogy KB (Another Example)

- Build a small genealogy knowledge base by FOL that
- contains facts of immediate family relations (spouses, parents, etc.)
- contains definitions of more complex relations (ancestors, relatives)
- is able to answer queries about relationships between people
- Predicates:
- parent(x, y), child (x, y), father(x, y), daughter(x, y), etc.
- spouse(x, y), husband(x, y), wife(x, y)
- ancestor(x, y), descendent(x, y)
- relative(x, y)
- Facts:
- husband(Joe, Mary), son(Fred, Joe)
- spouse(John, Nancy), male(John), son(Mark, Nancy)
- father(Jack, Nancy), daughter(Linda, Jack)
- daughter(Liz, Linda)
- etc.

A simple genealogy KB (Another Example)

- Rules for genealogical relations
- $(\forall x, y)$ parent $(x, y)<=>$ child (y, x)
($\forall \mathrm{x}, \mathrm{y}$) father $(\mathrm{x}, \mathrm{y})<=>$ parent $(\mathrm{x}, \mathrm{y})^{\wedge}$ male(x$)$ (similarly for mother (x, y))
$(\forall x, y)$ daughter $(x, y)<=>\operatorname{child}(x, y)^{\wedge}$ female (x) (similarly for son (x, y))
- ($\forall \mathrm{x}, \mathrm{y}$) husband $(\mathrm{x}, \mathrm{y})<=>$ spouse $(\mathrm{x}, \mathrm{y})^{\wedge}$ male (x) (similarly for wife (x, y))
($\forall \mathrm{x}, \mathrm{y}$) spouse $(\mathrm{x}, \mathrm{y})<=>$ spouse (y, x) (spouse relation is symmetric)
- ($\forall x, y)$ parent(x, y) => ancestor(x, y)
$(\forall x, y)(\exists z) \operatorname{parent}(x, z)^{\wedge}$ ancestor(z, $\left.y\right)=>$ ancestor (x, y)
- $(\forall \mathrm{x}, \mathrm{y})$ descendent $(\mathrm{x}, \mathrm{y})<=>$ ancestor (y, x)
- $(\forall x, y)(\exists z)$ ancestor $(z, x)^{\wedge}$ ancestor($\left.z, y\right)=>$ relative (x, y)
(related by common ancestry)
($\forall x, y$) spouse $(x, y)=>$ relative (x, y) (related by marriage)
$(\forall x, y)(\exists z)$ relative $(z, x)^{\wedge}$ relative $(z, y)=>$ relative (x, y) (transitive)
($\forall x, y$) relative $(x, y)=>$ relative (y, x) (symmetric)
- Queries
- ancestor(Jack, Fred) /* the answer is yes */
- relative(Liz, Joe) /* the answer is yes */
- relative(Nancy, Mathews)
/* no answer in general, no if under closed world assumption */

The electronic circuits domain

One-bit full adder

The electronic circuits domain

1. Identify the task

- Does the circuit actually add properly? (circuit verification)

2. Assemble the relevant knowledge

- Composed of wires and gates; Types of gates (AND, OR, XOR, NOT)
- Irrelevant: size, shape, color, cost of gates

3. Decide on a vocabulary

- Alternatives:

Type $\left(\mathrm{X}_{1}\right)=$ XOR
Type(X_{1}, XOR) $\operatorname{XOR}\left(\mathrm{X}_{1}\right)$

The electronic circuits domain

4. Encode general knowledge of the domain
5.
6. $\quad \forall \mathrm{t}_{1}, \mathrm{t}_{2} \operatorname{Connected}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Signal}\left(\mathrm{t}_{1}\right)=\operatorname{Signal}\left(\mathrm{t}_{2}\right)$

- $\quad \forall \mathrm{t}$ Signal $(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0$
- $1 \neq 0$
- $\quad \forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow$ Connected $\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$
- $\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{OR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow \exists \mathrm{n} \operatorname{Signal}(\operatorname{In}(\mathrm{n}, \mathrm{g}))=1$
- $\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{AND} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=0 \Leftrightarrow \exists \mathrm{n} \operatorname{Signal}(\operatorname{In}(\mathrm{n}, \mathrm{g}))=0$
$-\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{XOR} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g}))=1 \Leftrightarrow \operatorname{Signal}(\operatorname{In}(1, \mathrm{~g})) \neq$ Signal $(\ln (2, \mathrm{~g}))$
$-\quad \forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{NOT} \Rightarrow \operatorname{Signal}(\operatorname{Out}(1, \mathrm{~g})) \neq \operatorname{Signal}(\operatorname{In}(1, \mathrm{~g}))$

The electronic circuits domain

5. Encode the specific problem instance

Type $\left(\mathrm{X}_{1}\right)=$ XOR
Type $\left(\mathrm{X}_{2}\right)=\mathrm{XOR}$
$\operatorname{Type}\left(\mathrm{A}_{1}\right)=$ AND $\quad \operatorname{Type}\left(\mathrm{A}_{2}\right)=$ AND
Type $\left(\mathrm{O}_{1}\right)=\mathrm{OR}$

Connected(Out(1, $\left.\left.\mathrm{X}_{1}\right), \ln \left(1, \mathrm{X}_{2}\right)\right)$ Connected(Out(1, $\left.\left.\mathrm{X}_{1}\right), \ln \left(2, \mathrm{~A}_{2}\right)\right)$ Connected(Out(1, $\left.\left.\mathrm{A}_{2}\right), \ln \left(1, \mathrm{O}_{1}\right)\right)$ Connected(Out(1, $\left.\left.\mathrm{A}_{1}\right), \ln \left(2, \mathrm{O}_{1}\right)\right)$ Connected(Out(1, $\left.\mathrm{X}_{2}\right)$, $\left.\operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)$ Connected(Out(1, $\left.\mathrm{O}_{1}\right)$, Out($\left.2, \mathrm{C}_{1}\right)$)

Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{X}_{1}\right)\right)$ Connected $\left(\ln \left(1, \mathrm{C}_{1}\right), \ln \left(1, \mathrm{~A}_{1}\right)\right)$ Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{X}_{1}\right)\right)$ Connected $\left(\ln \left(2, \mathrm{C}_{1}\right), \ln \left(2, \mathrm{~A}_{1}\right)\right)$ Connected $\left(\ln \left(3, C_{1}\right), \ln \left(2, X_{2}\right)\right)$ Connected $\left(\ln \left(3, C_{1}\right), \ln \left(1, A_{2}\right)\right)$

The electronic circuits domain

6. Pose queries to the inference procedure
7.
8. What are the possible sets of values of all the terminals for the adder circuit?
9.
10. $\quad \exists \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}, \mathrm{O}_{1}, \mathrm{O}_{2} \operatorname{Signal}\left(\ln \left(1, \mathrm{C} _1\right)\right)=\mathrm{i}_{1} \wedge$ Signal $\left(\ln \left(2, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{2} \wedge \operatorname{Signal}\left(\ln \left(3, \mathrm{C}_{1}\right)\right)=\mathrm{i}_{3} \wedge$ Signal $\left(\operatorname{Out}\left(1, \mathrm{C}_{1}\right)\right)=o_{1} \wedge \operatorname{Signal}\left(\operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)=\mathrm{o}_{2}$
11. Debug the knowledge base

May have omitted assertions like $1 \neq 0$

