
Jarrar © 2018 1

Mustafa Jarrar: Lecture Notes on Games and Adversarial Search Problems.
Birzeit University, Palestine. 2018

Games
and Adversarial Search Problems

Version 4

(Chapter 5)

Mustafa Jarrar
Birzeit University
mjarrar@birzeit.edu
www.jarrar.info

mailto:mjarrar@birzeit.edu
http://www.jarrar.info/

Jarrar © 2018 2

Watch this lecture
and download the slides

Acknowledgement:
This lecture is based on (but not limited to) chapter 5 in “S. Russell and P. Norvig: Artificial Intelligence:
A Modern Approach”.

Download: http://www.jarrar.info/courses/AI/Jarrar.LectureNotes.Ch3.Games.pdf
More Courses: http://www.jarrar.info/courses/

http://www.jarrar.info/courses/AI/Jarrar.LectureNotes.Ch3.UninformedSearch.pdf
http://www.jarrar.info/courses/

Jarrar © 2018 3

Can you plan ahead with these games

Jarrar © 2018 4

Game Tree (2-player, deterministic, turns)

Calculated by utility function,
depends on the game.

Last state,
game is over

How to see the game as a tree

Image from [2]

Jarrar © 2018 5

Your Moves

My Moves

My Moves

Your Moves Your Moves

My Moves My Moves
My Moves

• Two players take turns making moves

• Board state fully known, deterministic evaluation of moves

• One player wins by defeating the other (or else there is a tie)

• Want a strategy to win, assuming the other person plays as well
as possible

Two-Person Perfect Information Deterministic Game

Jarrar © 2018 6

Computer Games

Playing games can be seen as a Search Problem

Multiplayer games as multi-agent environments.

Agents' goals are in conflict.

Mostly deterministic and fully observable environments.

Some games are not trivial search problems, thus needs AI techniques,
e.g. Chess has an average branching factor of 35, and games often go to
50 moves by each player, so the search tree has about 35100or 10154

nodes.

Finding optimal move: choosing a good move with time limits.

Heuristic evaluation functions allow us to approximate the true utility of a
state without doing a complete search.

Jarrar © 2018 7

Minimax

Create a utility function
– Evaluation of board/game state to determine how strong the

position of player 1 is.
– Player 1 wants to maximize the utility function
– Player 2 wants to minimize the utility function

Minimax Tree
– Generate a new level for each move
– Levels alternate between �max� (player 1 moves) and �min�

(player 2 moves)

Jarrar © 2018 8

Minimax Tree

Max

Min

Max

Min

You are Max and your enemy is Min.
You play with your enemy in this way.

Jarrar © 2018 9

Minimax Tree Evaluation

Assign utility values to leaves

– Sometimes called �board evaluation function�

– If leaf is a �final� state, assign the maximum or minimum possible
utility value (depending on who would win).

– If leaf is not a �final� state, must use some other heuristic, specific
to the game, to evaluate how good/bad the state is at that point

Jarrar © 2018 10

Minimax Tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

Terminal nodes: values calculated from the utility function, evaluates how good/bad
the state is at this point

Jarrar © 2018 11

Minimax Tree Evaluation

For the MAX player

1. Generate the game as deep as time permits
2. Apply the evaluation function to the leaf states

3. Back-up values
• At MIN assign minimum payoff move

• At MAX assign maximum payoff move

4. At root, MAX chooses the operator that led to the
highest payoff

Jarrar © 2018 12

Minimax Tree

-24-8-14-73-100-5-70-12-470412-3212823

Max

Min

Max

Min

Terminal nodes: values calculated from the utility function

Jarrar © 2018 13

Minimax Tree

100

-24-8-14-73-100-5-70-12-470412-3212823

28 -3 12 70 -4 -73 -14 -8

Max

Min

Max

Min

Other nodes: values calculated via minimax algorithm

Jarrar © 2018 14

Minimax Tree

100

-24-8-14-73-100-5-70-12-470412-3212823

28 -3 12 70 -4 -73 -14 -8

-3 -4 -73

Max

Min

Max

Min

Jarrar © 2018 15

Minimax Tree

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

-3
Max

Min

Max

Min

Jarrar © 2018 16

Minimax Tree

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

-3
Max

Min

Max

Min

The best next
move for Max

Jarrar © 2018 17

MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

Terminal nodes: values calculated from the utility function

Max

Max

Min

Min

Based on [3]

Jarrar © 2018 18

MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

Other nodes: values calculated via minimax algorithm

Max

Max

Min

Min

Jarrar © 2018 19

MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

Max

Max

Min

Min

Jarrar © 2018 20

MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

Max

Max

Min

Min

Jarrar © 2018 21

MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5 Max

Max

Min

Min

Jarrar © 2018 22

MiniMax Example-2

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

moves by Max and countermoves by Min

Jarrar © 2018
23

Properties of MiniMax

Complete: Yes (if tree is finite)

Optimal: Yes (against an optimal opponent)

Time complexity: A complete evaluation takes time bm

Space complexity: A complete evaluation takes space bm

(depth-first exploration)

For chess, b ≈ 35, m ≈100 for "reasonable" games

à exact solution completely infeasible, since it�s too big

Instead, we limit the depth based on various factors, including time

available.

Jarrar © 2018 24

Alpha-Beta Pruning Algorithm

Jarrar © 2018 25

Pruning the Minimax Tree

Since we have limited time available, we want to avoid
unnecessary computation in the minimax tree.

Pruning: ways of determining that certain branches will not be
useful.

a Cuts

If the current max value is greater than the successors min
value, don’t explore that min subtree any more.

Jarrar © 2018 26

a Cut Example

10021 -3 12 70 -4 -73 -14

-3 -4

-3

-73

Max

Max

Min

Jarrar © 2018 27

a Cut Example

Depth first search along path 1

21

Max

Max

Min

Jarrar © 2018 28

a Cut Example

21 is minimum so far (second level)
Can�t evaluate yet at top level

21

21

Max

Max

Min

Jarrar © 2018 29

a Cut Example

-3 is minimum so far (second level)
-3 is maximum so far (top level)

21 -3

-3

-3Max

Max

Min

Jarrar © 2018 30

a Cut Example

12 is minimum so far (second level)
-3 is still maximum (can’t use second node yet)

21 -3 12

-3

-3

12

Max

Max

Min

Jarrar © 2018 31

a Cut Example

-70 is now minimum so far (second level)
-3 is still maximum (can�t use second node yet)

21 -3 12 -70

-3

-3

-70

Max

Max

Min

Jarrar © 2018 32

a Cut Example

Since second level node will never be > -70, it will
never be chosen by the previous level
We can stop exploring that node

21 -3 12 -70

-3

-3

-70

Max

Max

Min

Jarrar © 2018 33

a Cut Example

Evaluation at second level is again -73

10021 -3 12 -70 -4 -73

-3

-3

-70 -73

Max

Max

Min

Jarrar © 2018 34

a Cut Example

Again, can apply a cut since the second level node
will never be > -73, and thus will never be chosen
by the previous level

10021 -3 12 -70 -4 -73

-3

-3

-70 -73

Max

Max

Min

Jarrar © 2018 35

a Cut Example

As a result, we evaluated the Max node without
evaluating several of the possible paths

10021 -3 12 -70 -4 -73 -14

-3

-3

-70 -73

Max

Max

Min

Jarrar © 2018 36

b Cuts

Similar idea to a cuts, but the other way around
If the current minimum is less than the successor’s
max value, don’t look down that max tree any more

Jarrar © 2018 37

b Cut Example

Some subtrees at second level already have
values > min from previous, so we can stop
evaluating them.

10021 -3 12 70 -4 73 -14

Min

Min

Max 21

21

70 73

Jarrar © 2018 38

Alpha-Beta Example 2

[-∞, +∞]

– we assume a depth-first, left-to-right search as basic strategy
– the range of the possible values for each node are indicated

• initially [-∞, +∞]
• from Max�s or Min�s perspective
• these local values reflect the values of the sub-trees in that node;

the global values a and b are the best overall choices so far for Max or Min

[-∞, +∞]

a best choice for Max ?
b best choice for Min ?

Max

Min

Jarrar © 2018 39

Alpha-Beta Example 2

Max

Min[-∞, 7]

[-∞, +∞]

a best choice for Max ?
b best choice for Min 7

7

Jarrar © 2018 40

Alpha-Beta Example 2

Max

Min[-∞, 6]

[-∞, +∞]

a best choice for Max ?
b best choice for Min 6

7 6

Jarrar © 2018 41

Alpha-Beta Example 2

Max

Min5

[5, +∞]

a best choice for Max 5
b best choice for Min 5

7 6 5

– Min obtains the third value from a successor node
– this is the last value from this sub-tree, and the exact value is known
– Max now has a value for its first successor node, but hopes that something

better might still come

Jarrar © 2018 42

Alpha-Beta Example 2

Max

Min[-∞, 5]

[5, +∞]

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min continues with the next sub-tree, and gets a better value
– Max has a better choice from its perspective, however, and will not consider a

move in the sub-tree currently explored by min
– Initially [-∞, +∞]

[-∞,3]

3

Jarrar © 2018 43

Alpha-Beta Example 2

Max

Min[-∞, 5]

[5, +∞]

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min knows that Max won�t consider a move to this sub-tree, and abandons it
– this is a case of pruning, indicated by

[-∞,3]

3

Jarrar © 2018 44

Alpha-Beta Example 2

Max

Min[-∞, 5]

[5, +∞]

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min explores the next sub-tree, and finds a value that is worse than the other
nodes at this level

– if Min is not able to find something lower, then Max will choose this branch, so
Min must explore more successor nodes

[-∞,3]

3

[-∞,6]

6

Jarrar © 2018 45

Alpha-Beta Example 2

Max

Min[-∞, 5]

[5, +∞]

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min is lucky, and finds a value that is the same as the current worst value at
this level

– Max can choose this branch, or the other branch with the same value

[-∞,3]

3

[-∞,5]

6 5

Jarrar © 2018 46

Alpha-Beta Example 2

Max

Min[-∞, 5]

5

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min could continue searching this sub-tree to see if there is a value that is less
than the current worst alternative in order to give Max as few choices as
possible

– this depends on the specific implementation
– Max knows the best value for its sub-tree

[-∞,3]

3

[-∞,5]

6 5

Jarrar © 2018 47

max

min

max

min

Exercise

Jarrar © 2018 48

max

min

max

min
10 9 14 2 4

10 14 4

10 4

10

Exercise (Solution)

Jarrar © 2018 49

a-b Pruning

Pruning by these cuts does not affect final result
– May allow you to go much deeper in tree

�Good� ordering of moves can make this pruning
much more efficient

– Evaluating �best� branch first yields better likelihood of
pruning later branches

– Perfect ordering reduces time to bm/2 instead of O(bd)

– i.e. doubles the depth you can search to!

Jarrar © 2018 50

a-b Pruning

Can store information along an entire path, not just
at most recent levels!
Keep along the path:

a: best MAX value found on this path

(initialize to most negative utility value)

b: best MIN value found on this path

(initialize to most positive utility value)

Jarrar © 2018 51

Pruning at MAX node

a is possibly updated by the MAX of successors evaluated so far

If the value that would be returned is ever > b, then stop work on this
branch

If all children are evaluated without pruning, return the MAX of their
values

Jarrar © 2018 52

Pruning at MIN node

b is possibly updated by the MIN of successors evaluated so far

If the value that would be returned is ever < a, then stop work on this
branch

If all children are evaluated without pruning, return the MIN of their values

Jarrar © 2018 53

Idea of a-b Pruning

We know b on this path is 21
So, when we get max=70, we
know this will never be used, so we
can stop here 100

21 -3

12 70 -4

21

21

70

Jarrar © 2018 54

Why is it called α-β?

• α is the value of the best (i.e., highest-
value) choice found so far at any
choice point along the path for max

• If v is worse than α, max will avoid it

à prune that branch

• Define β similarly for min

Jarrar © 2018
55

Imperfect Decisions

Complete search is impractical for most games

Alternative: search the tree only to a certain depth

– Requires a cutoff-test to determine where to stop

• Replaces the terminal test

• The nodes at that level effectively become terminal leave nodes

– Uses a heuristics-based evaluation function to estimate

the expected utility of the game from those leave nodes.

Jarrar © 2018 56

Utility Evaluation Function

Very game-specific
Take into account knowledge about game
�Stupid� utility

– 1 if player 1 wins
– -1 if player 0 wins

– 0 if tie (or unknown)

– Only works if we can evaluate complete tree
– But, should form a basis for other evaluations

Jarrar © 2018
57

Utility Evaluation

Need to assign a numerical value to the state

– Could assign a more complex utility value, but then the

min/max determination becomes trickier.

Typically assign numerical values to lots of individual

factors:

– a = # player 1�s pieces - # player 2�s pieces

– b = 1 if player 1 has queen and player 2 does not, -1 if

the opposite, or 0 if the same

– c = 2 if player 1 has 2-rook advantage, 1 if a 1-rook

advantage, etc.

Jarrar © 2018 58

Utility Evaluation

The individual factors are combined by some function

Usually a linear weighted combination is used:
– u = aa + bb + cc

– Different ways to combine are also possible

Notice: quality of utility function is based on:
– What features are evaluated

– How those features are scored

– How the scores are weighted/combined

Absolute utility value doesn�t matter – relative value does.

Jarrar © 2018 59

Evaluation Functions

If you had a perfect utility evaluation function, what
would it mean about the minimax tree?

You would never have to evaluate more than
one level deep!

Typically, you can�t create such perfect utility
evaluations, though.

Jarrar © 2018 60

Evaluation Functions for Ordering

As mentioned earlier, order of branch evaluation can make a
big difference in how well you can prune

A good evaluation function might help you order your
available moves:

– Perform one move only

– Evaluate board at that level

– Recursively evaluate branches in order from best first move to
worst first move (or vice-versa if at a MIN node)

Jarrar © 2018 61

The following are extra Examples
(Self Study)

Jarrar © 2018 62

Example: Tic-Tac-Toe (evaluation function)

Simple evaluation function
E(s) = (rx + cx + dx) - (ro + co + do)

where r,c,d are the numbers of row, column and diagonal lines still
available; x and o are the pieces of the two players.

1-ply lookahead
– start at the top of the tree

– evaluate all 9 choices for player 1

– pick the maximum E-value

2-ply lookahead
– also looks at the opponents possible move

• assuming that the opponents picks the minimum E-value

Jarrar © 2018 63

E(s12)
8

- 6
= 2

E(s13)
8

- 5
= 3

E(s14)
8

- 6
= 2

E(s15)
8

- 4
= 4

E(s16)
8

- 6
= 2

E(s17)
8

- 5
= 3

E(s18)
8

- 6
= 2

E(s19)
8

- 5
= 3

Tic-Tac-Toe 1-Ply

X X X
X X X

X X X

E(s11)
8

- 5
= 3

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

Based on [3]

Jarrar © 2018 64

E(s2:16)
5

- 6
= -1

E(s2:15)
5

-6
= -1

E(s28)
5

- 5
= 0

E(s27)
6

- 5
= 1

E(s2:48)
5

- 4
= 1

E(s2:47)
6

- 4
= 2

E(s2:13)
5

- 6
= -1

E(s2:9)
5

- 6
= -1

E(s2:10)
5

-6
= -1

E(s2:11)
5

- 6
= -1

E(s2:12)
5

- 6
= -1

E(s2:14)
5

- 6
= -1

E(s25)
6

- 5
= 1

E(s21)
6

- 5
= 1

E(s22)
5

- 5
= 0

E(s23)
6

- 5
= 1

E(s24)
4

- 5
= -1

E(s26)
5

- 5
= 0

E(s1:6)
8

- 6
= 2

E(s1:7)
8

- 5
= 3

E(s1:8)
8

- 6
= 2

E(s1:9)
8

- 5
= 3

E(s1:5)
8

- 4
= 4

E(s1:3)
8

- 5
= 3

E(s1:2)
8

- 6
= 2

E(s1:1)
8

- 5
= 3

E(s2:45)
6

- 4
= 2

Tic-Tac-Toe 2-Ply

X X X
X X X

X X X

E(s1:4)
8

- 6
= 2

X O X
O

X
O

E(s2:41)
5

- 4
= 1

E(s2:42)
6

- 4
= 2

E(s2:43)
5

- 4
= 1

E(s2:44)
6

- 4
= 2

E(s2:46)
5

- 4
= 1

O X
O

X
O
X

O
X X

O

X
O

X

O

X

O

XX
O

X OO X X

O

X
O

X

O

X

O

X
O

X
O

X OX O X

O

O

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4

Jarrar © 2018 65

31

Checkers Case Study

• Initial board configuration
– Black single on 20

single on 21
king on 31

– Red single on 23
king on 22

– Evaluation function
E(s) = (5 x1 + x2) - (5r1 + r2)

where
x1 = black king advantage,
x2 = black single advantage,
r1 = red king advantage,
r2 = red single advantage

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

Based on [4]

Jarrar © 2018 66

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -8 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 13

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

MAX

MAX

MIN

Checkers MiniMax Example

Jarrar © 2018 67

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b 6

MAX

MAX

MIN

Checkers Alpha-Beta Example

Jarrar © 2018 68

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b 1

MAX

MAX

MIN

Checkers Alpha-Beta Example

Jarrar © 2018 69

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b 1

b- cutoff: no need to
examine further branches

MAX

MAX

MIN

Checkers Alpha-Beta Example

Jarrar © 2018 70

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b 1

MAX

MAX

MIN

Checkers Alpha-Beta Example

Jarrar © 2018 71

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b 1

b- cutoff: no need to
examine further branches

MAX

MAX

MIN

Checkers Alpha-Beta Example

Jarrar © 2018 72

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b 1

MAX

MAX

MIN

Checkers Alpha-Beta Example

Jarrar © 2018 73

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 13

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b 0

MAX

MAX

MIN

Checkers Alpha-Beta Example

Jarrar © 2018 74

Checkers Alpha-Beta Example

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b -4

a- cutoff: no need to
examine further branches

MAX

MAX

MIN

Jarrar © 2018 75

22 -> 31

1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1
b -8 MAX

MAX

MIN

Checkers Alpha-Beta Example

Jarrar © 2018 76

References

[1] S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach
Prentice Hall, 2003, Second Edition

[2] Nilufer Onden: Lecture Notes on Artificial Intelligence
http://www.cs.mtu.edu/~nilufer/classes/cs4811/2014-spring/lecture-slides/cs4811-ch05-adversarial-
search.pdf

[3] Samy Abu Nasser: Lecture Notes on Artificial Intelligence
http://up.edu.ps/ocw/repositories/academic/up/bs/it/ITLS4213/022009/data/ITLS4213.101_11042009.ppt

[4] Franz Kurfess: Lecture Notes on Artificial Intelligence
http://users.csc.calpoly.edu/~fkurfess/Courses/Artificial-Intelligence/F09/Slides/3-Search.ppt

http://www.cs.mtu.edu/~nilufer/classes/cs4811/2014-spring/lecture-slides/cs4811-ch05-adversarial-search.pdf
http://up.edu.ps/ocw/repositories/academic/up/bs/it/ITLS4213/022009/data/ITLS4213.101_11042009.ppt
http://users.csc.calpoly.edu/~fkurfess/Courses/Artificial-Intelligence/F09/Slides/3-Search.ppt

