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Can you plan ahead with these games
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Game Tree (2-player, deterministic, turns)

Calculated by utility function,
depends on the game.

Last state,
game is over

How to see the game as a tree

Image from [2]
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Your Moves

My Moves

My Moves

Your Moves Your Moves

My Moves My Moves
My Moves

• Two players take turns making moves

• Board state fully known, deterministic evaluation of moves

• One player wins by defeating the other (or else there is a tie)

• Want a strategy to win, assuming the other person plays as well 
as possible

Two-Person Perfect Information Deterministic Game
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Computer Games

Playing games can be seen as a Search Problem

Multiplayer games as multi-agent environments.

Agents' goals are in conflict.

Mostly deterministic and fully observable environments.

Some games are not trivial search problems, thus needs AI techniques, 
e.g. Chess has an average branching factor of 35, and games often go to 
50 moves by each player, so the search tree has about 35100or 10154

nodes.

Finding optimal move: choosing a good move with time limits.

Heuristic evaluation functions allow us to approximate the true utility of a 
state without doing a complete search.
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Minimax

Create a utility function
– Evaluation of board/game state to determine how strong the 

position of player 1 is.
– Player 1 wants to maximize the utility function
– Player 2 wants to minimize the utility function

Minimax Tree
– Generate a new level for each move
– Levels alternate between �max� (player 1 moves) and �min�

(player 2 moves)
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Minimax Tree

Max

Min

Max

Min

You are Max and your enemy is Min.
You play with your enemy in this way. 
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Minimax Tree Evaluation

Assign utility values to leaves

– Sometimes called �board evaluation function�

– If leaf is a �final� state, assign the maximum or minimum possible 
utility value (depending on who would win).

– If leaf is not a �final� state, must use some other heuristic, specific 
to the game, to evaluate how good/bad the state is at that point
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Minimax Tree

Max

Min

Max

Min

100

-24-8-14-73-100-5-70-12-470412-3212823

Terminal nodes: values calculated from the utility function, evaluates how good/bad 
the state is at this point
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Minimax Tree Evaluation

For the MAX player

1. Generate the game as deep as time permits
2. Apply the evaluation function to the leaf states

3. Back-up values
• At MIN assign minimum payoff move

• At MAX assign maximum payoff move

4. At root, MAX chooses the operator that led to the 
highest payoff
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Minimax Tree

-24-8-14-73-100-5-70-12-470412-3212823

Max

Min

Max

Min

Terminal nodes: values calculated from the utility function
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Minimax Tree

100

-24-8-14-73-100-5-70-12-470412-3212823

28 -3 12 70 -4 -73 -14 -8

Max

Min

Max

Min

Other nodes: values calculated via minimax algorithm
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Minimax Tree

100

-24-8-14-73-100-5-70-12-470412-3212823

28 -3 12 70 -4 -73 -14 -8

-3 -4 -73

Max

Min

Max

Min
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Minimax Tree

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

-3
Max

Min

Max

Min



Jarrar © 2018 16

Minimax Tree

100

-24-8-14-73-100-5-70-12-470412-3212823

21 -3 12 70 -4 -73 -14 -8

-3 -4 -73

-3
Max

Min

Max

Min

The best next 
move for Max
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MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

Terminal nodes: values calculated from the utility function

Max

Max

Min

Min

Based on [3]
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MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

Other nodes: values calculated via minimax algorithm

Max

Max

Min

Min
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MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

Max

Max

Min

Min
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MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

Max

Max

Min

Min
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MiniMax Example-2

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5 Max

Max

Min

Min
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MiniMax Example-2

Max

Max

Min

Min

4 7 9 6 9 8 8 5 6 7 5 2 3 2 5 4 9 3

4 7 6 2 6 3 4 5 1 2 5 4 1 2 6 3 4 3

7 6 5 5 6 4

5 3 4

5

moves by Max and countermoves by Min 
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Properties of MiniMax

Complete: Yes (if tree is finite)

Optimal: Yes (against an optimal opponent)

Time complexity: A complete evaluation takes time bm

Space complexity: A complete evaluation takes space bm

(depth-first exploration)

For chess, b ≈ 35, m ≈100 for "reasonable" games

à exact solution completely infeasible, since it�s too big

Instead, we limit the depth based on various factors, including time 

available.
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Alpha-Beta Pruning Algorithm 
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Pruning the Minimax Tree

Since we have limited time available, we want to avoid 
unnecessary computation in the minimax tree.

Pruning: ways of determining that certain branches will not be 
useful.

a Cuts

If the current max value is greater than the successors min 
value, don’t explore that min subtree any more.
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a Cut Example

10021 -3 12 70 -4 -73 -14

-3 -4

-3

-73

Max

Max

Min
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a Cut Example

Depth first search along path 1

21

Max

Max

Min
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a Cut Example

21 is minimum so far (second level)
Can�t evaluate yet at top level

21

21

Max

Max

Min
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a Cut Example

-3 is minimum so far (second level)
-3 is maximum so far (top level)

21 -3

-3

-3Max

Max

Min
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a Cut Example

12 is minimum so far (second level)
-3 is still maximum (can’t use second node yet)

21 -3 12

-3

-3

12

Max

Max

Min
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a Cut Example

-70 is now minimum so far (second level)
-3 is still maximum (can�t use second node yet)

21 -3 12 -70

-3

-3

-70

Max

Max

Min
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a Cut Example

Since second level node will never be > -70, it will 
never be chosen by the previous level
We can stop exploring that node

21 -3 12 -70

-3

-3

-70

Max

Max

Min
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a Cut Example

Evaluation at second level is again -73

10021 -3 12 -70 -4 -73

-3

-3

-70 -73

Max

Max

Min
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a Cut Example

Again, can apply a cut since the second level node 
will never be > -73, and thus will never be chosen 
by the previous level

10021 -3 12 -70 -4 -73

-3

-3

-70 -73

Max

Max

Min



Jarrar © 2018 35

a Cut Example

As a result, we evaluated the Max node without 
evaluating several of the possible paths

10021 -3 12 -70 -4 -73 -14

-3

-3

-70 -73

Max

Max

Min
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b Cuts

Similar idea to a cuts, but the other way around
If the current minimum is less than the successor’s 
max value, don’t look down that max tree any more
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b Cut Example

Some subtrees at second level already have 
values > min from previous, so we can stop 
evaluating them.

10021 -3 12 70 -4 73 -14

Min

Min

Max 21

21

70 73
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Alpha-Beta Example 2

[-∞, +∞]

– we assume a depth-first, left-to-right search as basic strategy
– the range of the possible values for each node are indicated

• initially [-∞, +∞]
• from Max�s or Min�s perspective
• these local values reflect the values of the sub-trees in that node; 

the global values a and b are the best overall choices so far for Max or Min

[-∞, +∞]

a best choice for Max ?
b best choice for Min ?

Max

Min
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Alpha-Beta Example 2

Max

Min[-∞, 7]

[-∞, +∞]

a best choice for Max ?
b best choice for Min 7

7
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Alpha-Beta Example 2

Max

Min[-∞, 6]

[-∞, +∞]

a best choice for Max ?
b best choice for Min 6

7 6
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Alpha-Beta Example 2

Max

Min5

[5, +∞]

a best choice for Max 5
b best choice for Min 5

7 6 5

– Min obtains the third value from a successor node
– this is the last value from this sub-tree, and the exact value is known
– Max now has a value for its first successor node, but hopes that something 

better might still come



Jarrar © 2018 42

Alpha-Beta Example 2

Max

Min[-∞, 5]

[5, +∞]

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min continues with the next sub-tree, and gets a better value 
– Max has a better choice from its perspective, however, and will not consider a 

move in the sub-tree currently explored by min
– Initially [-∞, +∞]

[-∞,3]

3
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Alpha-Beta Example 2

Max

Min[-∞, 5]

[5, +∞]

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min knows that Max won�t consider a move to this sub-tree, and abandons it
– this is a case of pruning, indicated by 

[-∞,3]

3
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Alpha-Beta Example 2

Max

Min[-∞, 5]

[5, +∞]

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min explores the next sub-tree, and finds a value that is worse than the other 
nodes at this level

– if Min is not able to find something lower, then Max will choose this branch, so 
Min must explore more successor nodes

[-∞,3]

3

[-∞,6]

6
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Alpha-Beta Example 2

Max

Min[-∞, 5]

[5, +∞]

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min is lucky, and finds a value that is the same as the current worst value at 
this level

– Max can choose this branch, or the other branch with the same value

[-∞,3]

3

[-∞,5]

6 5



Jarrar © 2018 46

Alpha-Beta Example 2

Max

Min[-∞, 5]

5

a best choice for Max 5
b best choice for Min 3

7 6 5

– Min could continue searching this sub-tree to see if there is a value that is less 
than the current worst alternative in order to give Max as few choices as 
possible

– this depends on the specific implementation
– Max knows the best value for its sub-tree 

[-∞,3]

3

[-∞,5]

6 5
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max

min

max

min

Exercise 
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max

min

max

min
10 9 14 2 4

10 14 4

10 4

10

Exercise (Solution) 
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a-b Pruning

Pruning by these cuts does not affect final result
– May allow you to go much deeper in tree

�Good� ordering of moves can make this pruning 
much more efficient

– Evaluating �best� branch first yields better likelihood of 
pruning later branches

– Perfect ordering reduces time to bm/2 instead of O(bd)

– i.e. doubles the depth you can search to!
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a-b Pruning

Can store information along an entire path, not just 
at most recent levels!
Keep along the path:

a: best MAX value found on this path 

(initialize to most negative utility value)

b: best MIN value found on this path 

(initialize to most positive utility value)
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Pruning at MAX node

a is possibly updated by the MAX of successors evaluated so far

If the value that would be returned is ever > b, then stop work on this 
branch

If all children are evaluated without pruning, return the MAX of their 
values
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Pruning at MIN node

b is possibly updated by the MIN of successors evaluated so far

If the value that would be returned is ever < a, then stop work on this 
branch

If all children are evaluated without pruning, return the MIN of their values
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Idea of a-b Pruning

We know b on this path is 21
So, when we get max=70, we 
know this will never be used, so we 
can stop here 100

21 -3

12 70 -4

21

21

70
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Why is it called α-β?

• α is the value of the best (i.e., highest-
value) choice found so far at any 
choice point along the path for max

• If v is worse than α, max will avoid it

à prune that branch

• Define β similarly for min
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Imperfect Decisions

Complete search is impractical for most games

Alternative: search the tree only to a certain depth

– Requires a cutoff-test to determine where to stop

• Replaces the terminal test

• The nodes at that level effectively become terminal leave nodes

– Uses a heuristics-based evaluation function to estimate 

the expected utility of the game from those leave nodes.
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Utility Evaluation Function

Very game-specific
Take into account knowledge about game
�Stupid� utility

– 1 if player 1 wins
– -1 if player 0 wins

– 0 if tie (or unknown)

– Only works if we can evaluate complete tree
– But, should form a basis for other evaluations
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Utility Evaluation

Need to assign a numerical value to the state

– Could assign a more complex utility value, but then the 

min/max determination becomes trickier.

Typically assign numerical values to lots of individual 

factors:

– a = # player 1�s pieces - # player 2�s pieces

– b = 1 if player 1 has queen and player 2 does not, -1 if 

the opposite, or 0 if the same

– c = 2 if player 1 has 2-rook advantage, 1 if a 1-rook 

advantage, etc.
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Utility Evaluation

The individual factors are combined by some function

Usually a linear weighted combination is used:
– u = aa + bb + cc

– Different ways to combine are also possible

Notice: quality of utility function is based on:
– What features are evaluated

– How those features are scored

– How the scores are weighted/combined

Absolute utility value doesn�t matter – relative value does.
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Evaluation Functions

If you had a perfect utility evaluation function, what 
would it mean about the minimax tree?

You would never have to evaluate more than 
one level deep!

Typically, you can�t create such perfect utility 
evaluations, though.
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Evaluation Functions for Ordering

As mentioned earlier, order of branch evaluation can make a 
big difference in how well you can prune

A good evaluation function might help you order your 
available moves:

– Perform one move only

– Evaluate board at that level

– Recursively evaluate branches in order from best first move to 
worst first move (or vice-versa if at a MIN node)
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The following are extra Examples
(Self Study)
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Example: Tic-Tac-Toe (evaluation function)

Simple evaluation function
E(s) = (rx + cx + dx) - (ro + co + do)

where r,c,d are the numbers of row, column and diagonal lines still 
available;  x and o are the pieces of the two players.

1-ply lookahead
– start at the top of the tree

– evaluate all 9 choices for player 1

– pick the maximum E-value

2-ply lookahead
– also looks at the opponents possible move

• assuming that the opponents picks the minimum E-value
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E(s12)
8

- 6
= 2

E(s13)
8

- 5
= 3

E(s14)
8

- 6
= 2

E(s15)
8

- 4
= 4

E(s16)
8

- 6
= 2

E(s17)
8

- 5
= 3

E(s18)
8

- 6
= 2

E(s19)
8

- 5
= 3

Tic-Tac-Toe 1-Ply

X X X
X X X

X X X

E(s11)
8

- 5
= 3

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4 

Based on [3]
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E(s2:16)
5

- 6
= -1

E(s2:15)
5

-6
= -1

E(s28)
5

- 5
= 0

E(s27)
6

- 5
= 1

E(s2:48)
5

- 4
= 1

E(s2:47)
6

- 4
= 2

E(s2:13)
5

- 6
= -1

E(s2:9)
5

- 6
= -1

E(s2:10)
5

-6
= -1

E(s2:11)
5

- 6
= -1

E(s2:12)
5

- 6
= -1

E(s2:14)
5

- 6
= -1

E(s25)
6

- 5
= 1

E(s21)
6

- 5
= 1

E(s22)
5

- 5
= 0

E(s23)
6

- 5
= 1

E(s24)
4

- 5
= -1

E(s26)
5

- 5
= 0

E(s1:6)
8

- 6
= 2

E(s1:7)
8

- 5
= 3

E(s1:8)
8

- 6
= 2

E(s1:9)
8

- 5
= 3

E(s1:5)
8

- 4
= 4

E(s1:3)
8

- 5
= 3

E(s1:2)
8

- 6
= 2

E(s1:1)
8

- 5
= 3

E(s2:45)
6

- 4
= 2

Tic-Tac-Toe 2-Ply

X X X
X X X

X X X

E(s1:4)
8

- 6
= 2

X O X
O

X
O

E(s2:41)
5

- 4
= 1

E(s2:42)
6

- 4
= 2

E(s2:43)
5

- 4
= 1

E(s2:44)
6

- 4
= 2

E(s2:46)
5

- 4
= 1

O X
O

X
O
X

O
X X

O

X
O

X

O

X

O

XX
O

X OO X X

O

X
O

X

O

X

O

X
O

X
O

X OX O X

O

O

E(s0) = Max{E(s11), E(s1n)} = Max{2,3,4} = 4 
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31

Checkers Case Study

• Initial board configuration
– Black single on 20

single on 21
king on 31

– Red single on 23
king on 22

– Evaluation function
E(s) = (5 x1 + x2) - (5r1 + r2)

where 
x1 = black king advantage, 
x2 = black single advantage,
r1 = red king advantage, 
r2 = red single advantage

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

Based on [4]
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1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -8 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 13

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

MAX

MAX

MIN

Checkers MiniMax Example
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1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31
23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1 
b 6

MAX

MAX

MIN

Checkers Alpha-Beta Example
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1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
7

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1 
b 1

MAX

MAX

MIN

Checkers Alpha-Beta Example
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1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30

23 -> 32

20
 ->

 1
6 31 -> 27

31 -> 26

21 -> 1720
 ->

 1
6 21 -> 17

20 -> 16

20 -> 16

21 -> 17

31

1 2 3 4

865

9 10 11 12

161413

17 18 19 20

242221

25 26 27 28

323029

7

15

23

a 1 
b 1

b- cutoff: no need to
examine further branches

MAX

MAX

MIN

Checkers Alpha-Beta Example
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1

1

1 1 1 2

2

6

6

1

1

1 1 1 1 1

1

1 1 1 1 6

6

0

0

0 0 -4

-4

-4 -8

-8

-8 -8

-8

-8

1 0 -4 -8

1

20 ->
 16 21 -> 17

31 -> 26

31 -> 27

22 -> 17

22 ->
 18

22
 ->

 2
5

22
 ->

 2
6 23 -> 26

23 -> 27

21 ->
 14

16 -> 11

31
 ->

 2
7

16
 ->

 11

31 -> 27 31
 ->

 2
2

16
 ->

 1
1 31 -> 27

31 -> 24

22 -> 18

22 -> 31

23 -> 30
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