Mustafa Jarrar: Lecture Notes on Introduction to Machine Learning Birzeit University, 2020

Version 4

Introduction to Machine Learning

Mustafa Jarrar

Birzeit University

Watch this lecture and download the slides

Course Page: <u>http://www.jarrar.info/courses/AI/</u> More Courses : <u>http://www.jarrar.info/courses</u>

Mustafa Jarrar: Lecture Notes on Introduction to Machine Learning Birzeit University, 2020

Introduction to Machine Learning

Mustafa Jarrar

Part 1: Introduction and Basics

Part 2: Supervised Learning (Regression, Classification)

> Part 3: Unsupervised Learning (Clustering)

> Part 4: Reinforcement Learning

Keywords: Learning, Machine learning, Supervised Learning, unsupervised Learning, Reinforcement learning

Learning Agents

The agent adapts its action(s) based on feedback (not only sensors).

Introduction

What is Machine Learning?

Field of study that gives computers the ability to learn without being explicitly programed (Arthur Samuel 1959)

Machine Learning is used when [1,2]:

- expertise does not exist (Curiosity Rover)
- we cannot explaining our expertise (Speech Recognition)
- data is too large for us to analyze (Data Mining)
- Prediction of new data (Stock Market Prediction)
- Tasks that are learnt by practicing (Robot Path Planning)

learn a function from examples (past experience)

f is the target function

An **example** is a pair (x, f(x))

Problem: find a **hypothesis** *h* such that *h* ≈ *f* given a **training set** of examples

Construct/adjust *h* to agree with *f* on training set (*h* is consistent if it agrees with *f* on all examples)

Construct/adjust *h* to agree with *f* on training set (*h* is consistent if it agrees with *f* on all examples)

Construct/adjust *h* to agree with *f* on training set (*h* is consistent if it agrees with *f* on all examples)

Construct/adjust *h* to agree with *f* on training set (*h* is consistent if it agrees with *f* on all examples)

Construct/adjust *h* to agree with *f* on training set (*h* is consistent if it agrees with *f* on all examples)

e.g., curve fitting:

Ockham's razor: prefer the simplest hypothesis consistent with data

What is meant by learning?

- Writing algorithms that can learn patterns from data.
- The algorithms create a statistical model that is a good approximation of the data.

Challenges of Machine Learning

High Dimensionality [3]

- Complexity of the data requires bigger models.
- Requires bigger of memory and more time to process.
- Might cause over-fitting.

Choice of Statistical Model [4]

- Choosing the correct model and parameters that satisfy the data
- Can cause under-fitting or over-fitting

Challenges of Machine Learning

Noise and Errors [5]

- Gaussian Noise: Statistical Noise that has its probability density function equal to normal distribution.
- Outlier: an observation that is distant from the rest of the data.
- Inlier: a local outlier. (see: 2-sigma rule).
- Human Error causing incorrect measurements

Challenges of Machine Learning

Insufficient Training Data

The amount of data is not sufficient to build a good approximation of the process that generated the data.

Feature Extraction in Patterns

Feature extraction is the process of converting the data to a reduced representation of a set of features.

Image Reference: Face Verification Mustafa Jarrar: Lecture Notes on Introduction to Machine Learning Birzeit University, 2020

Introduction to Machine Learning

Mustafa Jarrar

Part 1: Introduction and Basics

Part 2: Supervised Learning (Regression, Classification)

> Part 3: Unsupervised Learning (Clustering)

> Part 4: Reinforcement Learning

Keywords: Learning, Machine learning, Supervised Learning, unsupervised Learning, Reinforcement learning

Supervised Learning (Regression)

Regression aims to estimate a response. Input: $\{x_1, x_2, ..., x_n\}$ numeric values, called *features* Output: *y* numeric values, called *Target Value*

Toy Problem: areas and prices of apartments (training data). Find a model to predict prices of unseen cases

Example (Regression)

x_1	x_2	\boldsymbol{x}_3	X_4	У
Size ft ²	bedrooms	floors	Age	Price
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Suppose we have the following features

Linear regression

A hypothesis function h(x) might be:

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3 + \ldots + \theta_n x_n$$

e.g., $h(x) = 80 + 0.1 \cdot x_1 + 0.01 \cdot x_2 + 3 \cdot x_3 - 2 \cdot x_4$

There are many algorithms to find θ s values

One (old) way is called **Normal Equation:** $\theta = (X^T \cdot X)^{-1} \cdot X^T \cdot y$

Example (Regression) – using Normal Equation

x_1	x_2	x_3	X_4	У	_	
Size ft ²	bedrooms	floors	Age	Price	X	Y
2104	5	1	45	460		460
1416	3	2	40	232	1 1416 3 2 40	232
1534	3	2	30	315	1 1534 3 2 30	315
852	2	1	36	178	<u>1</u> 852 2 1 36	_ [178]

In Octave:

load X.txt
load y.txt
C= pinv(X'*X)*X' *y
Save 0.txt

In R:

X = as.matrix(read.table("~/x.txt", header=F, sep=",")) Y = as.matrix(read.table("~/y.txt", header=F, sep=",")) thetas = solve(t(X) %*% X) %*% t(X) %*% Y write.table(thetas, file="~/thetas.txt", row.names=F, col.names=F)

$$\theta = \begin{bmatrix} 188.4 \\ 0.4 \\ -56 \\ -93 \\ -3.7 \end{bmatrix}$$

These are the values of θ s we need to use in our hypothesis function h(x) $h(x) = \theta_0 + \theta_1 x + \theta_2 x + \theta_3 x + \theta_4 x$ h(x) = 188.4 + 0.4x - 56x - 93x - 3.7x

Supervised Learning (Classification)

Classification aims to identify group membership. Input: $\{x_1, x_2, ..., x_n\}$ categorical values, called *features* Output: *y* categorical values, called *Target Value* **Toy Problem:** data about computers (training data) Find a model to predict status of unseen cases

features Target Value				
Processor (GHz)	Memory (GB)	Status		
1.0	1.0	Bad		
2.3	4.0	Good		
2.6	4.0	Good		
3.0	8.0	Good		
2.0	4.0	Bad		
2.6	0.5	Bad		
3.0	4.0	???		

Example (Classification) – using Decision Tree

Given the following training examples, will you play in D15?

Jarrar © 2020

Day	<u>Outlook</u>	Humidity	Wind	Play
D1	Sunny	High	Weak	No
D2	Sunny	High	Strong	No
D3	Overcast	High	Weak	Yes
D4	Rain	High	Weak	Yes
D5	Rain	Normal	Weak	Yes
D6	Rain	Normal	Strong	No
D7	Overcast	Normal	Strong	Yes
D8	Sunny	High	Weak	No
D9	Sunny	Normal	Weak	Yes
D10	Rain	Normal	Weak	Yes
D11	Sunny	Normal	Strong	Yes
D12	Overcast	High	Strong	Yes
D13	Overcast	Normal	Weak	Yes
D14	Rain	High	Strong	No

D15 Rain High Weak ???

Example (Classification) – using Decision Tree

Decision Rule:

Yes ⇔ (Outlook=Overcast) V (Outlook=Sunny ∧ Humidity=Normal)V (Outlook=Rain ∧ Wind=Weak)

Wind

???

Rain High Weak

Humid

Day Outlook

D15

Play

Using R to learn Decision Trees

Input.csv

Day,Outlook,Humidity,Wind,Play D1,Sunny,High,Weak,No D2,Sunny,High,Strong,No D3,Overcast,High,Weak,Yes D4,Rain,High,Weak,Yes D5,Rain,Normal,Weak,Yes D6,Rain,Normal,Strong,No D7,Overcast,Normal,Strong,Yes D8,Sunny,High,Weak,No D9,Sunny,Normal,Weak,Yes D10,Rain,Normal,Weak,Yes D11,Sunny,Normal,Strong,Yes D12,Overcast,High,Strong,Yes D13,Overcast,Normal,Weak,Yes

DT_example.R

require(C50) require(gmodels) dataset = read.table(file.choose(), header = T, sep=",") dataset = dataset[,-1] model = C5.0(dataset[, -4], dataset[, 4])

> Dicision Tree 1 [%100 data used to train the model]

Mustafa Jarrar: Lecture Notes on Introduction to Machine Learning Birzeit University, 2020

Introduction to Machine Learning

Mustafa Jarrar

Part 1: Introduction and Basics

Part 2: Supervised Learning (Regression, Classification)

Part 3: Unsupervised Learning (Clustering)

Part 4: Reinforcement Learning

Keywords: Learning, Machine learning, Supervised Learning, unsupervised Learning, Reinforcement learning

Unsupervised Learning

- Training data contain only the input vectors (No target value)
- Definition of training data: $\{x_1, x_2, ..., x_n\} \in \mathbb{R}^A$
- Goal: Learn some structures in the inputs.
- Can be divided to two categories: Clustering and Dimensionality Reduction

Unsupervised Learning (Clustering)

Clustering aims to group input based on the similarities.

Types of clustering:

- Connectivity based clustering objects related to nearby objects than to objects farther away
- Centroid based clustering cluster points according to a set of given centers
- Distribution based clustering objects belonging most likely to the same distribution
- Density based clustering areas of higher density than the remainder of the data set

Unsupervised Learning (Clustering)

Toy Example: A survey that with questions on a scale 1-10:

- How much do you like shopping?
- How much are you willing to spend on shopping?

Cluster 1 can refer to people who are addicted to shopping

Cluster 2 can refer to people who rarely go shopping

Unsupervised Learning

Dimensionality Reduction [7]

- Convert high dimensional data to lower order dimension
- Motivation:
 - High Dimensional Data Analysis
 - Visualization of high-dimensional data
 - Feature Extraction

Mustafa Jarrar: Lecture Notes on Introduction to Machine Learning Birzeit University, 2020

Introduction to Machine Learning

Mustafa Jarrar

- Part 1: Introduction and Basics
- Part 2: Supervised Learning (Regression, Classification)
- > Part 3: Unsupervised Learning (Clustering)
 - Part 4: Reinforcement Learning

Keywords: Learning, Machine learning, Supervised Learning, unsupervised Learning, Reinforcement learning

- Learning a policy: a sequence of outputs [1].
- Delayed reward instead of supervised output.
- Toy Example: A robot wants to move from the outer door of an apartment to the bathroom to clean it.

All weights are equal at the first try. Choice of next state is randomly chosen if the weights are equal

33

Left is chosen randomly since the weights are equal

Wrong Destination. Return by backtracking

Reached the destination. Give a reward to the chosen paths by increasing the weight.

Adjusted weights after reinforcement learning.

Other Learning Paradigms

• Semi-Supervised Learning (Wikipedia)

• Active Learning (Wikipedia)

• Inductive Transfer/Learning (Wikipedia)

Real World Examples

Machine Learning in Real-World Examples: [6]

- Spam Filter
- Signature Recognition
- Credit Card Fraud Detection
- Face Recognition
- Text Recognition
- Speech Recognition
- Speaker Recognition
- Weather Prediction

- Stock Market Analysis
- Advertisement Targeting
- Language Translation
- Recommendation Systems
- Classifying DNA Sequences
- Automatic vehicle Navigation
- Object Detection
- Medical Diagnosis

Online Courses and Material

- Interactive Course with Stanford University Professor
 - Website: <u>https://www.coursera.org/course/ml</u>

- Stanford University Class
 - Playlist:

http://www.youtube.com/view_play_list?p=A89DCFA6ADACE599

• Material: <u>http://cs229.stanford.edu/</u>

- 1. E. Alpaydin, Introduction to Machine Learning. Cambridge, MA: MIT Press, 2004.
- 2. T. Mitchell, Machine Learning. McGraw Hill, 1997.
- Liu H, Han J, Xin D, Shao Z (2006) Mining frequent patterns on very high dimensional data: a top-down row enumeration approach. In: Proceeding of the 2006 SIAM international conference on data mining (SDM'06), Bethesda, MD, pp 280–291.
- 4. C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
- 5. T. Runkler. Data Analytics. Springer, 2012.
- 6. <u>http://www.cs.utah.edu/~piyush/teaching/23-8-slides.pdf</u>
- 7. Carreira-Perpinan, M., Lu, Z.: Dimensionality Reduction by Unsupervised Learning Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference, 1895 -1902 13 June 2010 .
- 8. S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach Prentice Hall, 2003, Second Edition
- 9. Sami Ghawi, Mustafa Jarrar: Lecture Notes on Introduction to Machine Learning, Birzeit University, 2018
- 10. Mustafa Jarrar: Lecture Notes on Decision Tree Machine Learning, Birzeit University, 2018
- 11. Mustafa Jarrar: Lecture Notes on Linear Regression Machine Learning, Birzeit University, 2018